
Likelihood Theory and Extensions (BIOS:7110)
Breheny

Assignment 11

Due: Wednesday, November 29

1. Newton’s method and iteratively weighted least squares. This problem explores the relationship be-
tween Newton’s method and weighted least squares.

(a) Suppose y ∼ N(Xβ,V), where V is a known positive definite variance-covariance matrix and
X is an n× d design matrix. Derive the MLE of β.

(b) As we have seen in a previous assignment, any (regular) likelihood can be approximated by that
of a normal distribution. In the specific context of a GLM, where the likelihood of yi depends
on a linear predictor ηi = x>

i β, taking a Taylor series approximation about η = Xβ̃ yields
expressions of the form

`(β) ≈ −1
2(ỹ −Xβ)>W(ỹ −Xβ);

derive ỹ and W in the specific context of logistic regression.

(c) In class, we derived the Newton update

β̂ = β̃ + (X>WX)−1X>(y − µ),

by taking a first-order approximation to the score function about β̃ (recall that W and µ were
evaluated at β̃). Suppose we instead take the second-order Taylor series expansion of the log-
likelihood as in (b), then solve for the MLE using our result from (a). Show that this MLE of
the approximate likelihood is equal to the Newton update. Note: You can certainly start from
scratch, but this is literally one line if you use the results from (a) and (b).

(d) Code your own function to solve for the logistic regression MLE. I should be able to call the
function as logistic(X, y), where X is the design matrix and y the vector of responses. It
should return the vector β̂ and nothing else. Note that you have already done the math for
logistic regression in an earlier assignment.

2. Conditional score. As we derived in class, given two independent binomial distributions X ∼
Binom(n1, π1) and Y ∼ Binom(n2, π2), the conditional likelihood given T = X + Y is
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where

θ =
π1/(1 − π1)

π2/(1 − π2)

denotes the odds ratio. Show that the score test statistic of H0 : θ = 1 is

z =
x− µ

σ
,

where µ and σ denote the mean and standard deviation of the (n1, n2, t) hypergeometric distribution,
and z ∼ N(0, 1) under the null. Note: Vandermonde’s identity states that(
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3. Conditional logistic regression. Suppose we have pairs of binary outcomes Yi1, Yi2 and we wish to fit
the probability model

log
πij

1 − πij
= αi + x>

ijβ,

where πij = P(Yij = 1); in other words, each pair has its own intercept, but we assume a common
effect of the covariates x. Given Yi1 + Yi2 = 1 (other pairs contain no information about β), the
conditional likelihood for the ith pair (this is a slight extension of what we went over in class) is

Li(β) =
exp(v>

i β)∑
ui:wi=1 exp(u>

i β)
,

where vi =
∑

j yijxij , ui =
∑

j Yijxij , and wi =
∑

j Yij . Here, I am using Yij to denote potential
values and yij to denote the observed values.

(a) Show that the conditional likelihood for a single pair can be written

Li =
eηi

1 + eηi
,

where ηi = ∆>
i β, with ∆i denoting the difference in covariate values between the observation

with Y = 1 and the observation with Y = 0.

(b) Derive the score vector. Hint: Use the chain rule, first taking ∂`/∂η, then ∂η/∂β.

(c) Derive the information matrix and show that it can be written X̃>WX̃, where X̃ and W are
matrices that you must derive.

(d) Suppose we have the following (simulated) data:

n <- 400

a <- rnorm(n)

X <- array(rnorm(n*2*3), dim=c(n, 2, 3))

b <- c(1, 0.5, 0)

Y <- cbind(rbinom(n, 1, binomial()$linkinv(a + X[,1,] %*% b)),

rbinom(n, 1, binomial()$linkinv(a + X[,2,] %*% b)))

Note that Y is an n×2 matrix of paired observations, while X is a n×2×d array of covariate values,
where d is the number of covariates. Write a function, paired_logistic(), that fits the model,
returning the coefficients as well as the information matrix (anything else you want to return is
optional). The function should return this list as an S3 object of class paired_logistic; i.e.,
the final line of the function should look like:

return(structure(list(beta=beta, Info=Info), class='paired_logistic'))

The reason for this will become apparent in the next part of the problem.

(e) Write a function, summary.paired_logistic() that accepts the output of the function from
part (d) and carries out Wald tests. In other words, you should be able to run the code

fit <- paired_logistic(X, Y)

summary(fit)

with X and Y organized as in part (d), and see a summary table like one typically sees when
fitting models in R, with columns for the coefficient estimates, standard errors, test statistics,
and p-values.
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