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Introduction

• It is relatively easy to think about the distribution of data –
heights or weights or blood pressures: we can see these
numbers, summarize them, plot them, etc.

• It is much harder to think about things like the distribution of
the sample mean, because in reality the experiment is
conducted only once and we only see one mean

• The distribution of the mean is more of a hypothetical
concept describing what would happen if we were to repeat
the experiment over and over
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Sampling distributions

• Consider a study to determine the average cholesterol level in
a certain population; if we were to repeat this study many
times, we would get different estimates each time, depending
on the random sample we drew

• To reflect the fact that its distribution depends on the random
sample, the distribution of an estimate (such as the sample
mean) is called a sampling distribution

• Sampling distributions are of fundamental importance to the
long-run frequency approach to statistical inference and
essential for carrying out hypothesis tests and constructing
confidence intervals

• In a broader sense, we study sampling distributions to
understand how reproducible a study’s findings are, and in
turn, how accurate its generalizations are likely to be
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Sampling distributions (cont’d)

• For independent one-zero outcomes, the sampling distribution
was simple enough that we could derive it exactly and
describe it with a simple formula

• For most other outcomes, however, this is not possible and we
often rely instead on the central limit theorem to provide the
sampling distribution – as we’ve seen, this is not exact, but
usually a very good approximation
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Applying the central limit theorem

• To get a sense of how useful the central limit theorem is, let’s
return to our hypothetical study to determine an average
cholesterol level
• According the National Center for Health Statistics, the

distribution of serum cholesterol levels for 20- to 74-year-old
males living in the United States has mean 211 mg/dl, and a
standard deviation of 46 mg/dl (these are estimates, of
course, but for the sake of this example we will take them to
be the true population parameters)
◦ We collect a sample of size 25; what is the probability that our

sample average will be above 230?
◦ We collect a sample of size 25; 95% of our sample averages

will fall between what two numbers?
◦ How large does the sample size need to be in order to insure a

95% probability that the sample average will be within 5
mg/dl of the population mean?
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Introduction

• We can use this same line of thinking to develop hypothesis
tests and confidence intervals

• We’ll begin by revisiting one-sample categorical data because
◦ It’s the simplest scenario
◦ We can compare our new approximate results to the exact

hypothesis tests and confidence intervals that we obtained
earlier based on the binomial distribution
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One-zero (Bernoulli) distribution: mean and variance

• To use the central limit theorem, we need the population
mean and variance

• For a single one-zero outcome (known as the Bernoulli
distribution), its mean is π as we showed in the previous
lecture (I’ll use π today instead of θ for the probability
parameter that we are interested in)

• Theorem: For a Bernoulli random variable X,
Var(X) = π(1− π)
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Hypothesis testing

• Now we’re ready to carry out a hypothesis test based on the
central limit theorem

• Consider our cystic fibrosis experiment in which 11 out of 14
people did better on the drug than the placebo; expressing
this as an average, π̂ = 11/14 = .79 (i.e., 79% of the subjects
did better on drug than placebo)

• Under the null hypothesis, the sampling distribution of the
percentage who did better on one therapy than the other will
(approximately) follow a normal distribution with mean
π0 = 0.5

• The notation π0 refers to the hypothesized value of the
parameter π under the null
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The standard error

• What about the standard error (i.e., the standard deviation of
π̂)?

• Recall that SE = SD/
√
n, so for a Bernoulli random variable,

SE =

√
π0(1− π0)

n

=
1

2
√
n

• For the cystic fibrosis experiment, under the null SE = 0.134
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Approximate test for the cystic fibrosis experiment

• To calculate a p-value, we need the probability that π̂ is more
extreme than 11/14 given that the true probability is π0 = 0.5

• By the central limit theorem, under the null

π̂ − π0
SE

.∼ N(0, 1)

• Thus,

z =
.786− .5
.134

= 2.14

and the p-value of this test is therefore 2(1− Φ(2.14)) = .032

• In other words, if the null hypothesis were true, there would
only be about a 3% chance of seeing the drug do this much
better than the placebo
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Terminology

• Hypothesis tests revolve around calculating some statistic
(known as a test statistic) from the data that, under the null
hypothesis, you know the distribution of

• In this case, our test statistic is z: we can calculate it from
the data, and under the null hypothesis, it follows a standard
normal distribution

• Tests are often named after their test statistics: the testing
procedure we just described is called a z-test
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Accuracy of the approximation

• So the z-test indicates moderate evidence against the null;
recall, however, that we calculated a p-value of 6% from the
(exact) binomial test, which is more in the “borderline
evidence” region
• With a sample size of just 14, the distribution of the sample

average is still fairly discrete, and this throws off the normal
approximation by a bit:

p̂

D
en

si
ty

0 0.5 1
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Introduction: confidence intervals

• Now let’s turn our attention to confidence intervals

• As usual, this is a harder problem – hypothesis testing was
straightforward because under the null, we knew π0 and
therefore we know the standard error

• This is not true in trying to determine a confidence interval –
the SE depends on π, which we don’t know

• There are two common approaches to dealing with this
problem, known as the Wald interval and the score interval;
we will discuss both
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Wald approach: Main idea

• In the Wald approach, we use π̂ to estimate SE

• The idea behind this approach is that uses our “best guess”
about π to obtain a “best guess” for the SE

• Otherwise, however, this approach does not directly account
for the fact that SE depends on π
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Wald approach for CF study

• For the CF study,

SE =

√
p̂(1− p̂)

n

=

√
0.786(1− 0.786)

14

= 0.110

• Now, by the central limit theorem,

π̂ − π
0.110

.∼ N(0, 1)

and we can solve for π to obtain a confidence interval
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Wald approach for CF study (cont’d)

• For the standard normal distribution,

Φ−1(0.975) = 1.96

Φ−1(0.025) = −1.96

• Thus,

0.95 = P (−1.96 < Z < 1.96) ≈ P
(
−1.96 <

π̂ − π
0.110

< 1.96

)
,

and

[π̂ − 1.96(0.110), π̂ + 1.96(0.110)] = [57.1%, 100.0%]

is an approximate 95% confidence interval for π
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Wald formula

• Let zα denote the value such that Φ(zα) = α

• We can summarize the Wald interval with the formula
π̂ ± z1−α/2SE, where SE =

√
π̂(1− π̂)/n

• As we will see, this is actually a very common form for
confidence intervals (estimate plus/minus a multiple of the
standard error), although the multiplier and standard error
formulas change depending on what we are estimating
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Score approach: Main idea

• The score approach also uses the central limit theorem to
create approximate confidence intervals, but does so in a
different manner than the Wald approach

• The score approach works very similarly to the
Clopper-Pearson interval, except that instead of inverting the
binomial test, we invert the CLT-based test from earlier

• This amounts to solving the quadratic formula

π̂ − π√
π(1− π)/n

= z1−α/2

for π
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Score approach: Formula

• In other words, the endpoints of the score interval are given by

−b±
√
b2 − 4ac

2a
,

where a = 1 + z21−α/2/n, b = −z21−α/2/n− 2π̂, and c = π̂2

(although I certainly don’t expect you to remember this
formula)

• For the cystic fibrosis study, the 95% CI is [52.4%, 92.4%]

• The score approach lies somewhat in between the Wald and
Clopper-Pearson approaches: still based on a CLT
approximation to the true sampling distribution, but
accounting for the fact that SE varies with π
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Cystic fibrosis study

• Let’s take a look at how the three confidence intervals
(binomial, wald, score) compare for the three studies we’ve
discussed previously

• For the cystic fibrosis study (x=11, n=14), we have:
◦ Binomial: [49.2, 95.3]
◦ Wald: [57.1, 100.0]
◦ Score: [52.4, 92.4]

• The score interval isn’t too bad, but the Wald interval is
pretty far off
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Infant survival, 25 weeks

• Sometimes, the agreement is much better; for the infant
survival data at 25 weeks (x=31,n=39), we have:
◦ Binomial: [63.6, 90.7]
◦ Wald: [66.8, 92.2]
◦ Score: [64.5, 89.2]

• Here all three intervals are reasonably close, although the
score interval is again closer to the binomial interval
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Infant survival, 25 weeks

• And sometimes, the Wald interval fails completely; for the
infant survival data at 22 weeks (x=0,n=29), we have:
◦ Binomial: [0, 11.9]
◦ Wald: [0, 0]
◦ Score: [0, 11.7]

• The Wald interval is clearly useless in this scenario
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Accuracy of the normal approximation

• The real sampling distribution is binomial, but when n is
reasonably big and p isn’t close to 0 or 1, the binomial
distribution looks a lot like the normal distribution, so the
normal approximation works pretty well

• When n is small and/or p is close to 0 or 1, the normal
approximation doesn’t work very well:
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Exact vs. approximate intervals

• When n is large and p isn’t close to 0 or 1, it doesn’t really
matter whether you choose the approximate or the exact
approach

• The approximate approaches are easy to do by hand, although
in the computer era, this is often not important in real life

• Keep in mind, however, that the Clopper-Pearson interval is
“exact” in the sense that it is based on the exact sampling
distribution, but as we will see in lab, does not produce exact
1− α coverage
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Summary

• A sampling distribution is the distribution of an estimate
based on a sample from a population

• Know how to use the CLT to approximate sampling
distributions

• Know how to use the CLT to carry out approximate tests for
one-sample categorical data

• Wald CI: π̂ ± z1−α/2SE, where SE =
√
π̂(1− π̂)/n, although

this approximation can be very poor at times

• Score CI: Based on inverting the CLT-based test; still
approximate, but better than Wald
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