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Introduction

• So far we’ve (thoroughly!) discussed how to carry out
hypothesis tests and construct confidence intervals for
categorical outcomes: success versus failure, life versus death

• This week we’ll turn our attention to continuous outcomes
like blood pressure, cholesterol, etc.

• We’ve seen how continuous data must be summarized and
plotted differently, and how continuous probability
distributions work very differently from discrete ones

• It should come as no surprise, then, that there are also big
differences in how these data must be analyzed
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Notation

• We’ll use the following notation:
◦ The true population mean is denoted µ
◦ The observed sample mean is denoted either x̄ or µ̂
◦ For hypothesis testing, H0 is shorthand for the null hypothesis,

as in H0 : µ = µ0

• Unlike the case for binary outcomes, we also need some
notation for the standard deviation:
◦ The true population variance is denoted σ2 (i.e. σ is the SD)
◦ The observed sample variance is denoted σ̂2 or s2:

σ̂2 =

∑
i(xi − x̄)2

n− 1
,

with σ̂ and s the square root of the above quantity
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Using the central limit theorem

• We’ve already used the central limit theorem to construct
confidence intervals and perform hypothesis tests for
categorical data

• The same logic can be applied to continuous data as well,
with one wrinkle

• For categorical data, the parameter we were interested in (π)
also determined the standard deviation:

√
π(1− π)

• For continuous data, the mean tells us nothing about the
standard deviation
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Estimating the standard error

• In order to perform any inference using the CLT, we need a
standard error

• We know that SE = SD/
√
n, so it seems reasonable to

estimate the standard error using the sample standard
deviation as a stand-in for the population standard deviation

• This turns out to work decently well for large n, but as we will
see, has problems when n is small
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FVC example

• Let’s revisit the cystic fibrosis crossover study that we’ve
discussed a few times now, but instead of focusing on whether
the patient did better on drug or placebo (a categorical
outcome), let us now focus on how much better the patient
did on the drug:
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• Let’s carry out a z-test for this data, plugging in σ̂ for σ
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FVC example (cont’d)

• In the study, the mean difference in reduction in FVC (placebo
− drug) was 137, with standard deviation 223

• Performing the z-test of H0 : µ = 0:

#1 SE = 223/
√

14 = 60
#2

z =
137− 0

60
= 2.28

#3 The area outside ±2.28 is 2Φ(−2.28) = 2(0.011) = 0.022

• This is fairly substantial evidence that the drug helps prevent
deterioration in lung function
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Flaws with the z-test

• However, as I mentioned before, these procedures are flawed
when n is small

• This is a completely separate flaw than the issue of “how
accurate is the normal approximation?” in using the central
limit theorem

• Indeed, this is a problem even when the sampling distribution
is perfectly normal

• This flaw can be witnessed by repeatedly drawing random
samples from the normal distribution, then carrying out this
test and recording the type I error rate

Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 8 / 25



z tests
The χ2-distribution
The t-distribution

Summary

Introduction
z tests
What’s wrong with z-tests?

Simulation results

Using p < 0.05 as a rejection rule:
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What would a simulation involving confidence intervals look like?
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Why isn’t the z-test working?

• The flaw with the z-test is that it is ignoring one of the
sources of the variability in the test statistic

• We’re acting as if we know the standard error, but we’re really
just estimating it from the data

• In doing so, we underestimate the amount of uncertainty we
have about the population based on the data
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Distribution of the sample variance

• Before we get into the business of fixing the z-test, we need
to discuss a more basic issue: what does the sampling
distribution of the variance look like?

• We have this beautiful central limit theorem describing what
the sampling distribution of the mean looks like for any
underlying distribution

• Unfortunately, there is no corresponding theorem for the
sample variance
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Special case: The normal distribution

• We may, however, consider the important special case of the
normal distribution

• If the underlying distribution is normal, we can derive many
useful results concerning the sample variance

• Keep in mind, however, that unlike the results we established
in the central limit theorem lecture, these results only apply to
random variables that follow a normal distribution
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The χ2 distribution

• An important distribution derived from the normal distribution
is the χ2-distribution

• Suppose Z ∼ N(0, 1); then Z2 is said to follow a χ2
1

distribution, with pdf:

f(x) =
1√
2π
x−1/2e−x/2
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The χ2 distribution: Degrees of freedom

• An important generalization is to consider sums of squared
observations from the normal distribution
• Suppose Z1, Z2, . . . , Zp ∼ N(0, 1) and are mutually

independent; then
∑p

i=1 Z
2
i is said to follow a chi-squared

distribution with p degrees of freedom, denoted χ2
p:

f(x) =
1

Γ(p/2)2p/2
xp/2−1e−x/2
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Distribution of the sample variance (normal case)

• From the previous slide, it immediately follows that if
X1, X2, . . . , Xn ∼ N(µ, σ2) are mutually independent, then

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n

• In other words, letting S̃2 =
∑

(xi − µ)2/n, we have
nS̃2/σ2 ∼ χ2

n

• It can also be shown (not so immediately) that if
X1, X2, . . . , Xn ∼ N(µ, σ2) are mutually independent, then

(n− 1)S2/σ2 ∼ χ2
n−1
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Independence of mean and variance

• By working out the joint distribution of X̄ and
X2 − X̄,X3 − X̄, . . . , Xn − X̄, we also arrive at the useful
conclusion that the sampling distributions of X̄ and S2 are
independent

• In other words, for normally distributed variables, the mean
and variance have no relationship whatsoever

• This is obviously not true for other distributions – for
example, we saw that the binomial distribution has
Var(X) = nE(X)(1− E(X))
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Distribution of the sample mean (normal case)

• Finally, it is worth mentioning that when a random variable
follows a normal distribution, the distribution of its sample
mean is exactly normal (i.e., the central limit theorem is an
exact result, not an approximation)

• More formally, suppose X1, X2, . . . , Xn ∼ N(µ, σ2) are
mutually independent; then

√
n
X̄ − µ
σ

∼ N(0, 1)
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Revisiting our earlier test statistic

• When we carried out our z-test from earlier, we looked at the
quantity

X̄ − µ0
S/
√
n

and acted as if it followed a normal distribution

• But of course, it really doesn’t: the numerator is normal, but
then we’re dividing it by another random variable
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The t-distribution

• The problem of “What is the resulting distribution when you
divide one random variable by another?” was studied by a
statistician named W. S. Gosset, who showed the following

• Suppose that Z ∼ N(0, 1), X2 ∼ χ2
n, and that Z and X2 are

independent; then

Z√
X2/n

∼ tn,

the t-distribution with n degrees of freedom
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t-distribution vs. normal distribution, df = 4
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t-distribution vs. normal distribution, df = 14
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t-distribution vs. normal distribution, df = 99
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t-distribution vs. normal distribution

• There are many similarities between the normal distribution
and t-distribution:
◦ Both are symmetric around 0
◦ Both have positive support over the entire real line
◦ As the degrees of freedom go up, the t-distribution converges

to the normal distribution

• However, there is one very important difference:
◦ The tails of the t-distribution are thicker than those of the

normal distribution
◦ This difference can be quite pronounced when df is small
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The t-distribution and the sample mean

• Returning to our test statistic for one-sample inference
concerning the mean of a continuous random variable, we
have the following result:

• Suppose X1, X2, . . . , Xn ∼ N(µ, σ2) are mutually
independent; then

√
n
X̄ − µ
S

∼ tn−1

• In other words, our test statistic from earlier does have a
known, well-defined distribution – it’s just not N(0, 1)

• Thus, we can still derive hypothesis tests and confidence
intervals, we’ll just have to use the t-distribution instead of the
normal distribution; this will be the subject of the next lecture
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• z-tests fail for continuous data because they ignore
uncertainty about SD – this is especially problematic for small
sample sizes

• Z1, Z2, . . . , Zn ∼ N(0, 1) =⇒
∑
Z2
i ∼ χ2

n

• Z ∼ N(0, 1), X2 ∼ χ2
n, and Z qX2 =⇒ Z/

√
X2/n ∼ tn

• For X1, X2, . . . , Xn ∼ N(µ, σ2),
◦ √n(X̄ − µ)/σ ∼ N(0, 1)
◦ (n− 1)S2/σ2 ∼ χ2

n−1

◦ X̄ and S2 are independent
◦ Thus,

√
n(X̄ − µ)/S ∼ tn−1
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