
The binomial distribution

Patrick Breheny

September 15, 2016

So, today we’re going to learn about R’s suite of functions for the binomial distribution. In addition, we’ll
see how to carry out hypothesis tests and construct confidence intervals for binomially distributed data.

1 The binomial distribution

R has four functions related to the binomial distribution:

• dbinom: Probability mass function

• pbinom: Cumulative distribution function

• qbinom: Quantile function (inverse of CDF)

• rbinom: Generates random variables from a binomial distribution

This is a common pattern in R; as we will see, there is are dnorm, pnorm, qnorm, and rnorm functions that
do the same thing for the normal distribution, and so on for many other distributions.

The dbinom function evaluates the binomial formula, returning P (X = k):

> dbinom(31, size=39, prob=0.7)

[1] 0.06368719

> ## Same as:

> choose(39,31) * 0.7^31 * 0.3^8

[1] 0.06368719

As an aside, note the use of the choose function; you could use factorials directly, but this can lead to
overflow inaccuracies if the numbers are large enough:

> ## This is OK:

> print(choose(39,31), digits=15)

[1] 61523748

> print(factorial(39)/(factorial(31)*factorial(8)), digits=15)

[1] 61523748

> ## This is a problem:

> print(choose(139,131), digits=15)

[1] 2815120424853

> print(factorial(139)/(factorial(131)*factorial(8)), digits=15)

[1] 2815120424853.04

1

The pbinom function evaluates the binomial CDF:

> pbinom(31, size=39, prob=0.7)

[1] 0.9335719

> ## Same as:

> sum(dbinom(0:31, size=39, prob=0.7))

[1] 0.9335719

Note that in the second line of code, I passed a vector of values to dbinom; this is fine, and is much more
convenient than writing a for loop. For example, it allows you to plot the whole distribution with a single
line of code:

> barplot(dbinom(0:39, 39, 0.7), names=0:39, border=FALSE, las=1)

0 3 6 9 13 17 21 25 29 33 37

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Finally, rbinom generates a vector of random variables from the binomial distribution (yes, I know I
skipped qbinom; it’s not as useful, although we will use other “q” functions, such as qnorm, many times):

> x <- rbinom(100, size=39, prob=0.7)

> x

[1] 27 24 23 23 21 29 22 29 28 26 28 26 26 32 31 27 24 29 29 24 29 28 26

[24] 20 28 29 27 26 32 27 29 27 22 25 29 27 31 32 29 31 30 26 26 31 26 24

[47] 24 26 24 27 25 28 30 28 27 28 23 34 32 29 22 27 22 22 24 27 26 24 26

[70] 29 26 30 28 28 26 27 24 29 28 27 24 31 25 29 28 28 28 23 24 26 28 28

[93] 29 31 24 23 28 30 27 30

> barplot(table(x), border=FALSE, las=1)

2

20 22 24 26 28 30 32

0

5

10

15

2 Constructing the Clopper-Pearson interval

As we discussed in class, we need a way to find the values θL and θU such that we would reject the hypothesis
concerning θ at the α = 0.025 level for all the values outside [θL, θU]. Let’s draw a picture of what’s going
on:

> p <- function(theta) pbinom(31, 39, theta)

> x <- seq(0.85, 1, 0.01)

> plot(x, p(x), type="l", xlab=expression(theta), ylab=expression(p(theta)), las=1)

> abline(h=0.025, col="red")

0.85 0.90 0.95 1.00

0.00

0.05

0.10

0.15

0.20

θ

p(
θ)

3

This is our first example of a user-created function in R. R of course comes with a lot of functions, but
here, on the first line, we created a new function p that didn’t exist before. Once we create it, we can call it,
as we do on the third line with p(x). This is a pretty simple function; we’ll create more complicated ones
later in the course.

The illustration gives us a good idea of where θU is, but how can we find the exact value of θU? This
is what is known in numerical analysis as a root-finding problem; i.e., it can be restated as finding the zero,
or root, of a function. Strictly speaking, we want to find where our function intersects 0.025, not where
it intersects zero, but this can be trivially fixed by subtracting off 0.025 from p(theta). R’s function for
root-solving in one dimension is called uniroot. Here’s what it looks like in action:

> p.u <- function(theta) pbinom(31, 39, theta) - 0.025

> uniroot(p.u, 0:1)$root

[1] 0.9070363

Note that we need to supply an interval to uniroot; here, [0, 1] is an obvious interval for θ. Now let’s
find θL:

> p.l <- function(theta) 1 - pbinom(30, 39, theta) - 0.025

> uniroot(p.l, 0:1)$root

[1] 0.635356

So, by inverting the hypothesis test, we have obtained the 95% confidence interval [0.635, 0.907] for θ.
Of course, this is a pretty common task in statistics, so it shouldn’t be surprising that R has a function to
calculate the confidence interval directly:

> binom.test(31,39)

Exact binomial test

data: 31 and 39

number of successes = 31, number of trials = 39, p-value =

0.0002941

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.6353558 0.9070361

sample estimates:

probability of success

0.7948718

Note that we get the same interval from binom.test that we got “manually” – in practice, of course,
you’d use binom.test, but it’s important to see where that interval comes from.

4

