
Correlation and regression

Patrick Breheny

December 1, 2016

Today’s lab is about correlation and regression. It will be somewhat shorter than some of our other
labs, as I would also like to spend some time discussing another useful statistical software program called
SAS. Our goals for this section of the lab are to cover R’s built-in functions for calculating and carrying out
inference with respect to the correlation coefficient and regression coefficient, then do a quick simulation
comparing various methods for constructing confidence intervals for ρ.

1 Correlation

For our example today, we’ll use a standard R data set (see ?airquality for more details) on the relationship
between ozone concentrations and various atmospheric factors; we’ll focus on temperature. Ozone, while
beneficial in the stratosphere in terms of providing protection from ultraviolet radiation, is a respiratory
hazard at low altitudes, predominantly emitted by the burning of fossil fuels. Let’s start by looking at the
data (always a wise first step); note the use of complete.cases to filter out missing data.

> Ozone <- airquality[complete.cases(airquality), "Ozone"]

> Temp <- airquality[complete.cases(airquality), "Temp"]

> plot(Temp, Ozone, pch=19)

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●●

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

There appears to be a pretty clear positive relationship between the two quantities: Ozone concentratons
are higher on hotter days. We can quantify this relationship using the correlation coefficient:

1

> cor(Ozone, Temp)

[1] 0.6985414

So, a pretty strong correlation of ≈ 0.7. We can carry out inference – testing, confidence intervals – with
the cor.test function, which uses the Fisher Z transformation we discussed in class:

> cor.test(Ozone, Temp)

Pearson's product-moment correlation

data: Ozone and Temp

t = 10.192, df = 109, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5888139 0.7829869

sample estimates:

cor

0.6985414

> ## By hand

> r <- cor(Ozone, Temp)

> n <- length(Ozone)

> ci.trans <- atanh(r) + qnorm(c(.025, .975))*sqrt(1/(n-3))

> tanh(ci.trans)

[1] 0.5888139 0.7829869

The interval tells us that we can be reasonably confident that the true correlation between ozone and
temperature is between 0.6 and 0.8.

2 Regression

Now, let’s approach the problem from a regression standpoint, and consider predicting ozone concentrations
based on temperature. This is not just a theoretical concern – ozone is hazardous to health, especially for
asthmatics, so predicting ozone concentrations is a meaningful public health objective. The function for
carrying out linear regression in R is called lm, which stands for linear model. lm works slightly differently
from the functions we have seen so far in that it separates the estimation (model fitting) from all the things
(testing, confidence intervals, plotting, making predictions) you might want to do with the model once you’ve
fit it. This might seem strange at first, but it’s actually quite convenient. To illustrate:

> fit <- lm(Ozone~Temp)

> coef(fit)

(Intercept) Temp

-147.64607 2.43911

> confint(fit)

2.5 % 97.5 %

(Intercept) -184.818372 -110.473773

Temp 1.964787 2.913433

2

> summary(fit)

Call:

lm(formula = Ozone ~ Temp)

Residuals:

Min 1Q Median 3Q Max

-40.922 -17.459 -0.874 10.444 118.078

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -147.6461 18.7553 -7.872 2.76e-12 ***

Temp 2.4391 0.2393 10.192 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.92 on 109 degrees of freedom

Multiple R-squared: 0.488,Adjusted R-squared: 0.4833

F-statistic: 103.9 on 1 and 109 DF, p-value: < 2.2e-16

> predict(fit, newdata=data.frame(Temp=c(60, 70, 80, 90)))

1 2 3 4

-1.299478 23.091621 47.482720 71.873819

> ## Plot the regression line

> plot(Temp, Ozone, pch=19, col="gray")

> abline(fit, col="slateblue", lwd=3)

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●●

60 70 80 90

0
50

10
0

15
0

Temp

O
zo

ne

In particular, note that the regression coefficient is 2.4; for every additional degree of temperature, the
expected ozone levels rises by 2.4 units (parts per billion). As we discussed in class, this is the same basic

3

statement we obtain from the correlation coefficient – which says that for every 1 SD change in temperature,
the expected ozone level changes by 0.7 SDs – just in different units. We can easily convert between the two:

> coef(fit)[2]*sd(Temp)/sd(Ozone) ## Same as correlation coefficient

Temp

0.6985414

Also note that lm works with abline, which makes plotting convenient. Another way to visualize regres-
sion models is with the visreg package:

> require(visreg)

> visreg(fit)

60 70 80 90

0

50

100

150

Temp

O
zo

ne

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

visreg plots the points and the regression line, but also adds 95% confidence intervals for the regression
line in the form of a shaded band that lets you see the uncertainty of the fit. An intuitive, yet interesting,
aspect of regression is that uncertainty about the mean is greater at the extremes (very high and low
temperatures) than it is in the middle (average temperatures).

Looking carefully at these various plots, we can see a potential problem with our linear model – namely,
at low temperatures, our model predicts negative ozone concentrations, which is nonsensical. A potential
improvement to our model would be to transform ozone concentrations and model the log of the ozone
concentration rather than the ozone itself:

> fit <- lm(log(Ozone)~Temp)

> visreg(fit)

4

60 70 80 90

0

1

2

3

4

5

Temp

lo
g(

O
zo

ne
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

> visreg(fit, trans=exp, partial=TRUE, ylab="Ozone") ## Transforming back to original scale

60 70 80 90

0

50

100

150

Temp

O
zo

ne

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

This appears to perhaps fit the data a little better, especially at low temperatures. There are many other
ways one could address this issue besides the log transformation we considered here; the fascinating world of
regression modeling will be the subject of the next course in this sequence, Biostatistical Methods II (BIOS
5720).

3 Simulation: Confidence intervals for ρ

Lastly, I’d like to carry out a simulation of various possible ways of calculating a confidence interval for the
correlation coefficient, ρ. In class, I mentioned that one could construct Wald or Score intervals based on

5

the relationship

ρ̂− ρ
(1− ρ2)/

√
n
∼ N(0, 1),

but that the Fisher Z-transformation approach was better. But is it really, or was I lying? Let’s carry out
a simulation study!

First, we’ll have to write functions that calculate Wald and score intervals for the correlation coefficient:

> cor.wald <- function(x, y, alpha=.05) {
+ r <- cor(x,y)

+ n <- length(x)

+ SE <- (1-r^2)/sqrt(n)

+ z <- qnorm(c(alpha/2, 1-alpha/2))

+ r + z*SE

+ }
> cor.score <- function(x, y, alpha=.05) {
+ r <- cor(x,y)

+ n <- length(x)

+ f.u <- function(x) (r-x)/((1-x^2)/sqrt(n)) - qnorm(alpha/2)

+ f.l <- function(x) (r-x)/((1-x^2)/sqrt(n)) - qnorm(1-alpha/2)

+ c(uniroot(f.l, c(-1,1))$root, uniroot(f.u, c(-1,1))$root)

+ }

Note that we could analytically solve for the score interval, but we’d have to do some inspection of
discriminants to make sure we’re choosing the correct root of the quadratic equation, so I’m just using
uniroot for simplicity. The Fisher Z approach is coded for us already (cor.test). I’ll add one more
method that could conceivably be used for constructing confidence intervals for ρ: constructing confidence
intervals for the regression coefficient, β, and then transforming that confidence interval to a confidence
interval for ρ:

> cor.lm <- function(x, y, alpha=0.05) {
+ fit <- lm(y~x)

+ ci <- confint(fit, 2, level=1-alpha)

+ ci*sd(x)/sd(y)

+ }

Note that all of these intervals seem to be in reasonable agreement for the air quality data:

> cor.test(Ozone, Temp)$conf.int

[1] 0.5888139 0.7829869

attr(,"conf.level")

[1] 0.95

> cor.wald(Ozone, Temp)

[1] 0.6032858 0.7937970

> cor.score(Ozone, Temp)

[1] 0.5737665 0.7733352

> cor.lm(Ozone, Temp)

2.5 % 97.5 %

x 0.5626991 0.8343838

6

We’ll also need a function to generate correlated data. There are packages (e.g., mvtnorm) for this, but I
think it’s instructive to just construct our own:

> genData <- function(n, rho) {
+ a <- sqrt(rho/(1-rho))

+ U <- rnorm(n)

+ V <- matrix(rnorm(n*2), n, 2)

+ (V + a*U)/sqrt(1+a^2)

+ }

OK, now we’re ready to carry out the simulation:

> N <- 5000

> n <- 10

> Names <- c("Wald", "Score", "Fisher Z", "LM")

> covered <- matrix(NA, N, 4)

> rho <- c(0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99)

> coverage <- matrix(NA, length(rho), 4)

> colnames(covered) <- colnames(coverage) <- Names

> pb <- txtProgressBar(1, length(rho), style=3)

> for (j in 1:length(rho)) {
+ for (i in 1:N) {
+ X <- genData(n, rho=rho[j])

+ x <- X[,1]

+ y <- X[,2]

+ ci <- cor.wald(x,y)

+ covered[i,1] <- (ci[1] < rho[j]) & (ci[2] > rho[j])

+ ci <- cor.score(x,y)

+ covered[i,2] <- (ci[1] < rho[j]) & (ci[2] > rho[j])

+ ci <- cor.test(x,y)$conf.int

+ covered[i,3] <- (ci[1] < rho[j]) & (ci[2] > rho[j])

+ ci <- cor.lm(x,y)

+ covered[i,4] <- (ci[1] < rho[j]) & (ci[2] > rho[j])

+ }
+ coverage[j,] <- apply(covered, 2, mean)

+ setTxtProgressBar(pb, j)

+ }

> source("http://myweb.uiowa.edu/pbreheny/5710/f16/labs/toplegend.R")

> col <- hcl(seq(15, 375, len=5), l=60, c=150)[1:4]

> matplot(rho, coverage, type="l", lty=1, lwd=3, col=col, xlab=expression(rho), las=1)

> toplegend(legend=Names, lwd=3, col=col)

7

0.5 0.6 0.7 0.8 0.9 1.0

0.85

0.90

0.95

1.00

ρ

co
ve

ra
ge

Wald Score Fisher Z LM

The Wald interval is far too liberal (low coverage) and the linear model interval is far too conservative.
The score interval isn’t too bad, but the Fisher Z interval is close to perfect, demonstrating the impressive
accuracy of variance-stabilizing transformations.

8

