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Today’s lab will introduce the R functions for analyzing contingency tables as well as analyzing count
data using the Poisson distribution.

1 Contingency tables

1.1 Fisher’s exact test

The R function for carrying out Fisher’s exact test is called fisher.test. To illustrate how it works, let’s
use one of the examples we saw in class when discussing cross-sectional studies. Below, we create a matrix
X containing the data (here, counts of hospitalized patients according to whether they have a respiratory
disease, a circulatory disease, both, or neither) in a 2 × 2 table, then analyze it using Fisher’s exact test.
First, I use the built-in R function, then I demonstrate where this p-value is coming from using the equations
we derived in class.

> X <- rbind(c( 7, 29),

+ c(13, 208))

> fisher.test(X)

Fisher's Exact Test for Count Data

data: X

p-value = 0.01174

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.193351 11.392898

sample estimates:

odds ratio

3.833179

> ## By hand

> M <- sum(X[,1])

> N <- sum(X)

> n <- sum(X[1,])

> x <- 0:20

> Prob <- choose(M,x)*choose(N-M,n-x)/choose(N,n)

> names(Prob) <- x

> barplot(Prob, border="white", las=1)
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> sum(Prob[Prob <= Prob["7"]])

[1] 0.01173709

Notice that fisher.test provides an estimate of the odds ratio along with a confidence interval. We
didn’t discuss this in class, but it is also possible to construct a confidence interval for the odds ratio by
inverting Fisher’s exact test. However, being able to test hypotheses other than indepdendence involves
analysis of noncentral hypergeometric distributions, which are a bit beyond the scope of our course.

Still, it is worthwhile knowing that we can obtain these exact confidence intervals from fisher.test.
Let’s see how they compare with the approximate confidence interval that we derived in class.

> SE <- sqrt(sum(1/X))

> OR <- X[1,1]*X[2,2]/(X[1,2]*X[2,1])

> log(OR) + qnorm(c(0.025, 0.975))*SE ## CI for log(OR)

[1] 0.3536013 2.3488048

> exp(log(OR) + qnorm(c(0.025, 0.975))*SE) ## CI for OR

[1] 1.424187 10.473045

So, reasonably close, although clearly there are some differences. Differences between exact and approx-
imate methods are to be expected here, since low counts are present in several cells. We see much better
agreement, for example, in the CDC breast cancer data:

> Y <- rbind(c(4475, 65),

+ c(1597, 31))

> fisher.test(Y)$conf.int

[1] 0.8385228 2.0890648

attr(,"conf.level")

[1] 0.95

> SE <- sqrt(sum(1/Y))

> OR <- Y[1,1]*Y[2,2]/(Y[1,2]*Y[2,1])

> exp(log(OR) + qnorm(c(0.025, 0.975))*SE)

[1] 0.8679478 2.0576870
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1.2 The χ2 test

R also offers a function for carrying out the χ2 test, called chisq.test. As before, I’ll use the built-in R

function, then demonstrate where the p-value is coming from using the equations we derived in class.

> chisq.test(X)

Warning in chisq.test(X): Chi-squared approximation may be incorrect

Pearson's Chi-squared test with Yates' continuity correction

data: X

X-squared = 6.1569, df = 1, p-value = 0.01309

> chisq.test(X, correct=FALSE)

Warning in chisq.test(X, correct = FALSE): Chi-squared approximation may be incorrect

Pearson's Chi-squared test

data: X

X-squared = 7.9342, df = 1, p-value = 0.004851

> E <- outer(apply(X, 1, sum), apply(X, 2, sum))/sum(X) ## Expected cell counts

> sum((X-E)^2/E)

[1] 7.934195

> 1-pchisq(sum((X-E)^2/E), 1)

[1] 0.004850919

> x <- seq(0, 10, 0.01)

> plot(x, dchisq(x, 1), type="l")

> abline(v=sum((X-E)^2/E), col="red")
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Two remarks here:
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• First, note that we get a warning here for the χ2 test. As you can verify by looking at E, one of the
expected cell counts is only 2.8; chisq.test will warn you if any of the Ei values is below 5.

• Second, we didn’t discuss the idea of a continuity correction in class. The most important thing to
know in terms of practical usage is that a continuity “correction” doesn’t necessarily make the test
more accurate, but it always makes the test more conservative (increases the p-value). For example,
although for the hospital data the continuity-corrected test was in closer agreement with Fisher’s exact
test than the regular χ2 test, this is not the case for the CDC breast cancer data:

> fisher.test(Y)$p.value

[1] 0.1991656

> chisq.test(Y)

Pearson's Chi-squared test with Yates' continuity correction

data: Y

X-squared = 1.451, df = 1, p-value = 0.2284

> chisq.test(Y, correct=FALSE)

Pearson's Chi-squared test

data: Y

X-squared = 1.7457, df = 1, p-value = 0.1864

Note that the chisq.test function does not provide an estimate or confidence interval for the odds ratio
(and there is no option to request one).

1.3 Larger tables

Before moving on to Poisson/count data, let’s take a quick look at larger tables (i.e., not 2 × 2 tables). For
example, here are the results from the 2000 General Social Survey in terms of gender and party identification:

> Z <- as.table(rbind(c(762, 327, 468), c(484, 239, 477)))

> dimnames(Z) <- list(gender = c("Female","Male"),

+ party = c("Democrat","Independent", "Republican"))

> Z

party

gender Democrat Independent Republican

Female 762 327 468

Male 484 239 477

The χ2 test proceeds in exactly the same way for larger tables, with the exception of a change in the
degrees of freedom:
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> chisq.test(Z, correct=FALSE)

Pearson's Chi-squared test

data: Z

X-squared = 30.07, df = 2, p-value = 2.954e-07

> E <- outer(apply(Z, 1, sum), apply(Z, 2, sum))/sum(Z)

> 1-pchisq(sum((Z-E)^2/E), 2)

[1] 2.953589e-07

The syntax of fisher.test is the same for larger tables as it is for smaller ones. The internal calcula-
tions, however, are quite different as the distribution of counts no longer follows a simple hypergeometric
distribution.

> fisher.test(Z)

Fisher's Exact Test for Count Data

data: Z

p-value = 3.027e-07

alternative hypothesis: two.sided

Note that (a) the p-value is nearly identical to that of the χ2 test, and (b) we no longer get an odds ratio.
There is an obvious reason for this: we cannot take a ratio when we have more than two categories we are
comparing. We can only discuss the odds ratios for smaller comparisons within the larger table:

> fisher.test(Z[,-2])

Fisher's Exact Test for Count Data

data: Z[, -2]

p-value = 6.806e-08

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.347341 1.910944

sample estimates:

odds ratio

1.604345

> fisher.test(Z[,-3])

Fisher's Exact Test for Count Data

data: Z[, -3]

p-value = 0.1786

alternative hypothesis: true odds ratio is not equal to 1
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95 percent confidence interval:

0.9349959 1.4151128

sample estimates:

odds ratio

1.1506

Thus, women are 60% more likely to identify as Democrats (vs. Republicans) compared to men, but
there is no clear evidence from this survey that women are any more likely to identify as Independents (vs.
Republicans) than men are.

2 Count data

The function in R for analyzing one- and two-sample count data using the Poisson distribution is called
poisson.test. To get some added variety, let’s consider a different sort of experimental setup than what
we considered in class. The Poisson distribution is widely used to model plate counts in laboratory settings.
One common example is the Ames test for mutagenicity:

Let’s analyze data from an Ames test concerning the mutagenicity of a substance called harmine:

> x <- c(16, 21, 22) ## Control

> y <- c(22, 23, 33, 37) ## 100 micrograms of harmine

> X <- sum(x)

> Y <- sum(y)

Here, due to the additivity of the Poisson distribution, we have X ∼ Pois(3λ) and Y ∼ Pois(4µ). To
analyze using poisson.test:

> poisson.test(c(Y, X), c(4, 3))

Comparison of Poisson rates

data: c(Y, X) time base: c(4, 3)

count1 = 115, expected count1 = 99.429, p-value = 0.01749

alternative hypothesis: true rate ratio is not equal to 1

95 percent confidence interval:
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1.059044 2.036378

sample estimates:

rate ratio

1.461864

Thus, the data are incompatible with the hypothesis that harmine does not affect mutation rate; this
study indicates that harmine increases the natural mutation rate by 46%, with a 95% confidence interval for
the rate ratio of [1.06, 2.04]. Note that a t-test of the same data is considerably less powerful:

> t.test(x, y)

Welch Two Sample t-test

data: x and y

t = -2.1919, df = 4.2892, p-value = 0.08891

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-20.289645 2.122978

sample estimates:

mean of x mean of y

19.66667 28.75000

Finally, if we wanted to obtain separate intervals for each rate, we can use poisson.test for that also:

> poisson.test(Y, 4)

Exact Poisson test

data: Y time base: 4

number of events = 115, time base = 4, p-value < 2.2e-16

alternative hypothesis: true event rate is not equal to 1

95 percent confidence interval:

23.73607 34.51002

sample estimates:

event rate

28.75

> poisson.test(X, 3)

Exact Poisson test

data: X time base: 3

number of events = 59, time base = 3, p-value < 2.2e-16

alternative hypothesis: true event rate is not equal to 1

95 percent confidence interval:

14.97118 25.36857

sample estimates:

event rate

19.66667
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> ## Equivalent to

> f.u <- function(lam) ppois(X, 3*lam) - 0.025

> uniroot(f.u, c(20,30))$root

[1] 25.36859

> f.l <- function(lam) 1-ppois(X-1, 3*lam) - 0.025

> uniroot(f.l, c(1, 20))$root

[1] 14.97118
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