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Probability

Statistical inference – the idea of generalizing about a
population from a sample – inherently involves some degree of
uncertainty, and “the language of uncertainty is probability”
(James Berger)

People talk loosely about probability all the time (“what are
the chances the Hawkeyes will win this weekend?”), but for
scientific purposes, we need to be more specific in terms of
defining and using probabilities
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Events

A random process is a phenomenon whose outcome cannot be
predicted with certainty

The sample space is the collection of all possible outcomes of
a random process

An event is an outcome (or collection of outcomes) of a
random process:

Examples:

Random process Event

Flipping a coin Obtaining heads
Rolling a die Obtaining an odd number
Child receives a vaccine Child contracts polio
Patient takes Clofibrate Patient survives
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Probability: Mathematical definition

Definition: Given a sample space S and collection of events F , a
probability function is a function P with domain F that satisfies

1: P (A) ≥ 0 for all A ∈ F
2: P (S) = 1

3: If A,B ∈ F satisfy A ∩B = ∅, then

P (A ∪B) = P (A) + P (B)

(Note that F has to satisfy certain properties for this definition to work – e.g.,

if A and B are in F , then A ∪B must be in F – and that this can get tricky if

F is an infinite collection; mathematical statistics courses such as STAT

4100/STAT 5100 discuss these issues in greater detail)
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Probability and long-run frequency

So a probability function takes an event and assigns it a
number between 0 and 1; however, the mathematical
definition doesn’t tell us anything about how to assign
probabilities to events

Everyone agrees that the probability of rolling a 1 on a fair die
is 1/6 . . . but why?

In many cases, probability has an uncontroversial
interpretation as a long-run frequency: the probability of an
event occurring is the fraction of time that it would happen if
the random process occurs over and over again under the
same conditions

Thus, the probability of rolling a 1 is 1/6 because it happens
1/6 of the time when we roll a die
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Probability for non-repeatable processes

Not everyone agrees, however, on what probability means for
non-repeatable random processes

For example, what is the probability that the U.S. becomes
involved in a ground war in the Middle East in the next 10
years?

Some would argue that it is valid to make probability
statements about this event as a reflection of one’s subjective
belief that the event will happen; others would say that
probabilities are not meaningful here because they cannot be
objectively established

We’ll return to this point later
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Long-run frequency

Suppose that the probability of developing polio for a child
who receives a vaccine is 0.00031

By the long-run frequency interpretation, if we vaccinate
100,000 children, we would expect therefore that 31 of those
children will develop polio

This works the other way too: in our polio study, 28 per
100,000 children who got the vaccine developed polio

Thus, the probability that a child in our sample who got the
vaccine developed polio is 28/100,000=.00028

Of course, what we really want to know is the probability of a
child in the population developing polio (not the sample) –
we’re getting there

Patrick Breheny Biostatistical Methods I (BIOS 571) 7/52



Events and probability
Working with probabilities
Additional theorems/rules

Summary

The complement rule
The addition rule
The multiplication rule

The complement rule

We are often interested in events that are derived from other
events, such as complements, unions, and intersections of
events; we will now cover the basic rules that allow us to
calculate such probabilities, starting with complements

Theorem (Complement rule): For any event A,

P (AC) = 1− P (A)

This simple but useful rule is called the complement rule

Example: Suppose the probability of developing polio is
0.0006. What is the probability of not developing polio?
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Introduction

Next, we turn our attention to unions

From the definition of probability, we can see that for two
events satisfying A ∩B = ∅, we have
P (A ∪B) = P (A) + P (B)

So, at least in some cases, we can find the probability of a
union by just adding the probabilities of the two events

However, this is not true in general
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A counterexample

Let A denote rolling a number 3 or less and B denote rolling
an odd number

P (A) + P (B) = 0.5 + 0.5 = 1

Clearly, however, we could roll a 4 or a 6, which is neither A
nor B
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The addition rule

The issue, of course, is that we are “double-counting” events
in A ∩B
Simply subtracting P (A ∩B) from our answer corrects this
problem

Theorem (Addition rule): For any two events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B)
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Mutually exclusive events

Note that P (A ∪B) = P (A) + P (B)− P (A ∩B) holds for
any two events, while P (A ∪B) = P (A) + P (B) only holds
when A ∩B = ∅
A special term is given to the situation when A and B cannot
both occur at the same time (i.e., when P (A ∩B) = 0): such
events are called mutually exclusive
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Example

An article in the American Journal of Public Health reported
that in a certain population, the probability that a child’s
gestational age is less than 37 weeks is 0.142

The probability that his or her birth weight is less than 2500
grams is 0.051

The probability of both is 0.031

Exercise: What is the probability that a child will weight less
than 2500 grams or be born at less than 37 weeks?
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Failing to use the addition rule

In the 17th century, French gamblers used to bet on the event
that in 4 rolls of the die, at least one “ace” would come up
(an ace is rolling a one)

In another game, they rolled a pair of dice 24 times and bet
on the event that at least one double-ace would turn up

The Chevalier de Méré, a French nobleman, thought that the
two events were equally likely

Patrick Breheny Biostatistical Methods I (BIOS 571) 14/52



Events and probability
Working with probabilities
Additional theorems/rules

Summary

The complement rule
The addition rule
The multiplication rule

Failing to use the addition rule (cont’d)

His reasoning was as follows: letting Ai denote the event of rolling
an ace on roll i and AAi denote the event of rolling a double-ace
on roll i

P (A1 ∪A2 ∪A3 ∪A4) = P (A1) + P (A2) + P (A3) + P (A4)

=
4

6
=

2

3
P (AA1 ∪AA2 ∪ · · · ) = P (AA1) + P (AA2) + · · ·

=
24

36
=

2

3

This reasoning, of course, fails to recognize that A1, A2, . . . are
not mutually exclusive
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Balls in urns

We now turn our attention to the probabilities of intersections

Imagine a random process in which balls are placed into an
urn and picked out at random, so that each ball has an equal
chance of being drawn

For example, imagine an urn that contains 1 red ball and 2
black balls

Let Ri denote that the ith ball was red

Clearly, P (R1) = 1/3, but what about P (R1 ∩R2)?
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Sampling with replacement

First, suppose that after we draw a ball, we put it back in the
urn before drawing the next ball (this method of drawing balls
from the urn is called sampling with replacement)

In this case,

P (R1 ∩R2) =
1

3

(
1

3

)
=

1

9

On the surface, then, it would seem that
P (A ∩B) = P (A) · P (B)

However, this is not true in general

Patrick Breheny Biostatistical Methods I (BIOS 571) 17/52



Events and probability
Working with probabilities
Additional theorems/rules

Summary

The complement rule
The addition rule
The multiplication rule

Sampling without replacement

Now suppose we don’t put the balls back after drawing them
(this method of drawing balls from the urn is called sampling
without replacement)

Now, it is impossible to draw two red balls; instead of 11%,
the probability is 0

Here, the outcome of the first event changed the random
process; after R1 occurs, P (R2) is no longer 1/3, but 0

When we draw without replacement, P (Ri) depends on what
has happened in the earlier draws
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Conditional probability

The notion that the probability of an event may depend on
other events is called conditional probability

The conditional probability of event A given event B is
written as P (A|B)

For example, in our ball and urn problem, when sampling
without replacement:

P (R2) =
1
3

P (R2|R1) = 0
P (R2|RC

1 ) =
1
2
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The multiplication rule

To determine P (A ∩B) in general, we need to use the
multiplication rule

Multiplication rule: For any two events A and B,

P (A ∩B) = P (A)P (B|A)

Rearranging the formula, we have

P (A|B) =
P (A ∩B)

P (B)
,

which allows us to calculate conditional probabilities
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Gestational age example

Recall our earlier example, where the probability that a child’s
gestational age is less than 37 weeks is 14.2%, the probability
that his or her birth weight is less than 2500 grams is 5.1%,
and the probability of both is 3.1%

Exercise: What is the probability that a child’s birth weight
will be less than 2500 grams, given that his/her gestational
age is less than 37 weeks?
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Independence

Note that sometimes, event B is completely unaffected by
event A, and P (B|A) = P (B)

If this is the case, then events A and B are said to be
independent

This works both ways – all the following are equivalent:

P (A) = P (A|B)
P (B) = P (B|A)
A and B are independent

Otherwise, if the probability of A depends on B (or vice
versa), then A and B are said to be dependent
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Dependence and independence

Scientific questions often revolve around conditional probability
and independence – are two events independent, and if they are
dependent, how dependent are they?

Event A Event B

Patient survives Patient receives treatment
Student is admitted Student is male
Person develops lung cancer Person smokes
Patient will develop disease Mutation of a certain gene
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Independence and the multiplication rule

Note that if A and B are independent, the multiplication rule
reduces to P (A ∩B) = P (A)P (B), which is often much
easier to work with, especially when more than two events are
involved

For example, consider an urn with 3 red balls and 2 black
balls; what is the probability of drawing three red balls?

With replacement:

P (R1 ∩R2 ∩R3) =

(
3

5

)3

= 21.6%

Without replacement:

P (R1 ∩R2 ∩R3) =
3

5
· 2
4
· 1
3
= 10%
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Independent versus mutually exclusive

It is important to keep in mind that “independent” and
“mutually exclusive” mean very different things

For example, consider drawing a random card from a standard
deck of playing cards

A deck of cards contains 52 cards, with 4 suits of 13 cards each
The 4 suits are: hearts, clubs, spades, and diamonds
The 13 cards in each suit are: ace, king, queen, jack, and 10
through 2

If event A is drawing a queen and event B is drawing a heart,
then A and B are independent, but not mutually exclusive

If event A is drawing a queen and event B is drawing a four,
then A and B are mutually exclusive, but not independent

It is impossible for two events to be both mutually exclusive
and independent
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The Chevalier de Méré, Part II

We can also use the rules of probability in combination to
solve the problem that stumped the Chevalier de Méré

Recall that we are interested in two probabilities:

What is the probability of rolling four dice and getting at least
one ace?
What is the probability of rolling 24 pairs of dice and getting
at least one double-ace?
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The Chevalier de Méré, Part II (cont’d)

First, we can use the complement rule:

P (At least one ace) = 1− P (No aces)

Next, we can use the multiplication rule:

P (No aces) =P (No aces on roll 1)

· P (No aces on roll 2|No aces on roll 1)

· · ·
Are rolls of dice independent?
Yes; therefore,

P (At least one ace) = 1−
(
5

6

)4

= 51.7%

Patrick Breheny Biostatistical Methods I (BIOS 571) 27/52



Events and probability
Working with probabilities
Additional theorems/rules

Summary

The complement rule
The addition rule
The multiplication rule

The Chevalier de Méré, Part II (cont’d)

By the same reasoning,

P (At least one double-ace) = 1−
(
35

36

)24

= 49.1%

Note that this is a little smaller than the first probability, and
that both are much smaller than the 2

3 probability reasoned by
the Chevalier
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Caution

With dice, independence is clear and we can multiply
probabilities to get the right answer

However, people often multiply probabilities when events are
not independent, leading to incorrect answers

A dramatic example of misusing the multiplication rule
occurred during the 1999 trial of Sally Clark, on trial for the
murder of her two children

Clark had two sons, both of which died of sudden infant death
syndrome (SIDS)
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The Sally Clark case

One of the prosecution’s key witnesses was the pediatrician
Roy Meadow, who calculated that the probability of one of
Clark’s children dying from SIDS was 1 in 8543, so the
probability that both children had died of natural causes was(

1

8543

)2

=
1

73, 000, 000

This figure was portrayed as though it represented the
probability that Clark was innocent, and she was sentenced to
life imprisonment
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The Sally Clark case (cont’d)

However, this calculation is both inaccurate and misleading
In a concerned letter to the Lord Chancellor, the president of
the Royal Statistical Society wrote:

The calculation leading to 1 in 73 million is invalid.
It would only be valid if SIDS cases arose
independently within families, an assumption that
would need to be justified empirically. Not only was
no such empirical justification provided in the case,
but there are very strong reasons for supposing that
the assumption is false. There may well be unknown
genetic or environmental factors that predispose
families to SIDS, so that a second case within the
family becomes much more likely than would be a
case in another, apparently similar, family.
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The Sally Clark case (cont’d)

There are also a number of issues, also mentioned in the
letter, with the accuracy of the calculation that produced the
“1 in 8543” figure

Finally, it is completely inappropriate to interpret the
probability of two children dying of SIDS as the probability
that the defendant is innocent

The probability that a woman would murder both of her
children is also extremely small; one needs to compare the
probabilities of the two explanations

The British court of appeals, recognizing the statistical flaws
in the prosecution’s argument, overturned Clark’s conviction
and she was released in 2003, having spent three years in
prison
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The law of total probability

A rule related to the addition rule is called the law of total
probability, which states that if you divide A into the part
that intersects B and the part that doesn’t, then the sum of
the probabilities of the parts equals P (A)

Theorem (Law of total probability): For any events A and
B,

P (A) = P (A ∩B) + P (A ∩BC)
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The law of total probability in action

Again recall the gestational age problem: P (E) = 0.142,
P (L) = 0.051, and P (E ∩ L) = 0.031

Exercise: What is the probability of low birth weight (L)
given that the gestational age was greater than 37 weeks
(EC)? How do the conditional probabilities P (L|E) and
P (L|EC) relate to the unconditional probability P (L)?
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Introduction

Conditional probabilities are often easier to reason through (or
collect data for) in one direction than the other

For example, suppose a woman is having twins

Obviously, if she were having identical twins, the probability
that the twins would be the same sex would be 1, and if her
twins were fraternal, the probability would be 1/2

But what if the woman goes to the doctor, has an ultrasound
performed, learns that her twins are the same sex, and wants
to know the probability that her twins are identical?
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Bayes’ rule

So, we know P (Same sex|Identical), but we want to know
P (Identical|Same sex)

To flip these probabilities around, we can use something called
Bayes’ rule

Theorem (Bayes’ Rule): For any events A and B with
nonzero probability,

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (AC)P (B|AC)
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Applying Bayes’ rule

To apply Bayes’ rule, we need to know one other piece of
information: the unconditional probability that a pair of twins
will be identical

The proportion of all twins that are identical is roughly 1/3

Exercise: For the woman in question, what is the probability
that her twins are identical?
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Meaning behind Bayes’ rule

Let’s think about what happened

Before the ultrasound, P (Identical) = 1
3

This is called the prior probability

After we learned the results of the ultrasound,
P (Identical) = 1

2

This is called the posterior probability
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Bayesian statistics

In fact, this prior/posterior way of thinking can be used to
establish an entire statistical framework known as Bayesian
statistics

In this way of thinking, we start out with an idea of the
possible values of some quantity θ (note that this is an
example of a non-repeatable event)

This distribution of possibilities P (θ) is our prior belief about
the unknown; we then observe data D and update those
beliefs, arriving at our posterior beliefs about the unknown,
P (θ|D)

Mathematically, this updating uses Bayes’ rule, hence the
name for this line of inferential reasoning
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Bayesian statistics (cont’d)

As noted earlier, not everyone agrees with the notion of
assigning prior probabilities to represent subjective beliefs

At least for the present, the long-run frequency interpretation
of probability has been adopted more widely and represents
the most common approach to statistical inference

Nevertheless, the Bayesian approach offers many advantages –
in particular, it offers a natural representation of human
thought and allows us to quantify probabilities about
non-repeatable events – and has become more widespread in
recent decades, although whether this trend will continue or
not is anyone’s guess

We will focus primarily on “frequentist” statistics in this
course, although we will return to Bayesian statistics again
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Testing and screening

A common application of Bayes’ rule in biostatistics is in the
area of diagnostic testing

For example, older women in the United States are
recommended to undergo routine X-rays of breast tissue
(mammograms) to look for cancer

Even though the vast majority of women will not have
developed breast cancer in the year or two since their last
mammogram, this routine screening is believed to save lives
by catching the cancer while it is relatively treatable

The application of a diagnostic test to asymptomatic
individuals in the hopes of catching a disease in its early
stages is called screening
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Terms involved in screening

Let D denote the event that an individual has the disease that
we are screening for

Let + denote the event that their screening test is positive,
and − denote the event that the test comes back negative

Ideally, both P (+|D) and P (−|DC) would equal 1

However, diagnostic tests are not perfect
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Terms involved in screening (cont’d)

Instead, there are always false positives, patients for whom the
test comes back positive even though they do not have the
disease

Likewise, there are false negatives, patients for whom the test
comes back negative even though they really do have the
disease

Suppose we test a person who truly does have the disease:

P (+|D) is the probability that we will get the test right
This probability is called the sensitivity of the test
P (−|D) is the probability that the test will be wrong (that it
will produce a false negative)
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Terms involved in screening (cont’d)

Alternatively, suppose we test a person who does not have the
disease:

P (−|DC) is the probability that we will get the test right
This probability is called the specificity of the test
P (+|DC) is the probability that the test will be wrong (that
the test will produce a false positive)
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Terms involved in screening (cont’d)

The accuracy of a test is determined by these two factors:

Sensitivity: P (+|D)
Specificity: P (−|DC)

One final important term is the probability that a person has
the disease, regardless of testing: P (D)

This is called the prevalence of the disease
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Values for mammography

According to an article in Cancer (more about this later),

The sensitivity of a mammogram is 0.85
The specificity of a mammogram is 0.80
The prevalence of breast cancer is 0.003

With these numbers, we can calculate what we really want to
know: if a woman has a positive mammogram, what is the
probability that she has breast cancer?
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Using Bayes’ rule for diagnostic testing

Applying Bayes’ rule to this problem,

P (D|+) =
P (D)P (+|D)

P (D)P (+|D) + P (DC)P (+|DC)

=
.003(.85)

.003(.85) + (1− .003)(1− .8)
= 0.013

In the terminology of Bayes’ rule, the prior probability that a
woman had breast cancer was 0.3%

After the new piece of information (the positive
mammogram), that probability jumps to 1.3%
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Controversy (Part 1)

So according to our calculations, for every 100 positive
mammograms, only one represents an actual case of breast
cancer

Because P (D|+) is so low, screening procedures like
mammograms are controversial

We are delivering scary news to 99 women who are free from
breast cancer

On the other hand, we may be saving that one other woman’s
life

These are tough choices for public health organizations
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Two studies of mammogram accuracy

In our example, we calculated that the probability that a
woman has breast cancer, given that she has a positive
mammogram, is 1.3%

The numbers we used (sensitivity, specificity, and prevalence)
came from the article

Hulka, B. (1988). Cancer screening: degrees of proof and
practical application. Cancer, 62 1776–1780.

A more recent study is
Carney, P., Miglioretti, D., Yankaskas, B.,
Kerlikowske, K., Rosenberg, R., Rutter, C.,
Geller, B., Abraham, L., Taplin, S., Dignan, M.
et al. (2003). Individual and combined effects of age, breast
density, and hormone replacement therapy use on the accuracy
of screening mammography. Annals of Internal Medicine, 138
168–175.
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Comparing the two studies

Hulka (1988) Carney (2003)
Sensitivity .85 .750
Specificity .80 .923
Prevalence .003 .005
P (D|+) 1.3% 4.7%

It would seem, then, that radiologists have gotten more
conservative in calling a mammogram positive, and this has
increased P (D|+)

However, the main point remains the same: a woman with a
positive mammogram is much more likely not to have breast
cancer than to have it
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Controversy (Part 2)

Based on these kinds of calculations, in 2009 the US
Preventive Services Task Force changed its recommendations:

It is no longer recommended for women under 50 to get
routine mammograms
Women over 50 are recommended to get mammograms every
other year, as opposed to every year

Of course, not everyone agreed with this change, and much
debate ensued (my Google search for USPSTF “breast cancer
screening” controversy returned over 20,000 hits)
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Complement rule: P (AC) = 1− P (A)
Addition rule: P (A ∪B) = P (A) + P (B)− P (A ∩B)

Multiplication rule: P (A ∩B) = P (A)P (B|A)
Law of total probability: P (A) = P (A ∩B) + P (A ∩BC)

Bayes’ Rule:

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (AC)P (B|AC)

Important terms: mutually exclusive, independent, conditional
probability, sensitivity, specificity, prevalence
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