Descriptive statistics

Patrick Breheny

September 3

Tables and figures

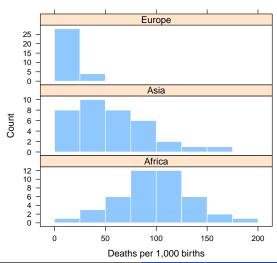
- Human beings are not good at sifting through large streams of data; we understand data much better when it is summarized for us
- We often display summary statistics in one of two ways: tables and figures
- Tables of summary statistics are very common (we have already seen several in this course) – nearly all published studies in medicine and public health contain a table of basic summary statistics describing their sample
- However, figures are usually better than tables in terms of distilling clear trends from large amounts of information

Types of data

- The best way to summarize and present data depends on the type of data
- There are two main types of data:
 - Categorical data: Data that takes on distinct values (i.e., it falls into categories), such as sex (male/female), alive/dead, blood type (A/B/AB/O), stages of cancer
 - Continuous data: Data that takes on a spectrum of fractional values, such as time, age, temperature, cholesterol levels
- The distinction between categorical (also called discrete) and continuous data is fundamental and occurs throughout all of statistics

Categorical data

- Summarizing categorical data is pretty straightforward you just count how many times each category occurs
- Instead of counts, we are often interested in percents
- A percent is a special type of rate, a rate per hundred
- Counts (also called frequencies), percents, and rates are the three basic summary statistics for categorical data, and are often displayed in tables or bar charts

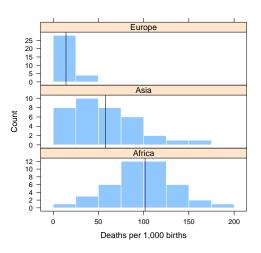

Continuous data

- For continuous data, instead of a finite number of categories, observations can take on a potentially infinite number of values
- Summarizing continuous data is therefore much less straightforward
- To introduce concepts for describing and summarizing continuous data, we will look at data on infant mortality rates for 111 nations on three continents: Africa, Asia, and Europe

Histograms

- One very useful way of looking at continuous data is with histograms
- To make a histogram, we divide a continuous axis into equally spaced intervals, then count and plot the number of observations that fall into each interval
- This allows us to see how our data points are distributed

Histogram of infant mortality rates



Summarizing continuous data

- As we can see, continuous data comes in a variety of shapes
- Nothing can replace seeing the picture, but if we had to summarize our data using just one or two numbers, how should we go about doing it?
- The aspect of the histogram we are usually most interested in is, "Where is its center?"
- This is typically summarized by the average

The average and the histogram

The average represents the center of mass of the histogram:

Spread

- The second most important bit of information from the histogram to summarize is, "How spread out are the observations around the center"?
- This is typically summarized by the *standard deviation*:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

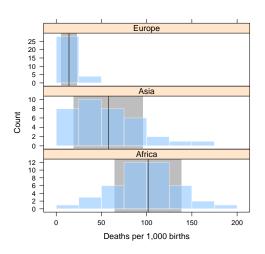
- The root-mean-square (RMS) is the most natural way of measuring the average size of an n-dimensional object
- \bullet The standard deviation is essentially the RMS of the deviations, except it has an n-1 in the denominator instead of n

Why n-1

- Why n-1 instead of n?
- The reason has to do with the *variance*, which is simply s^2
- We will return to this point in a few weeks, but it turns out that the "natural" estimator

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

systematically underestimates the true variance (i.e., it is biased); dividing by n-1 corrects this bias

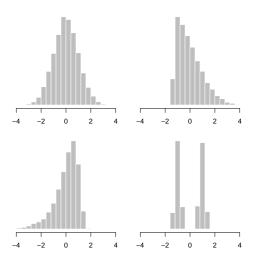

ullet It is worth noting, however, that s is still biased for the true standard deviation

Meaning of the standard deviation

- The standard deviation (SD) describes how far away numbers in a list are from their average
- The SD is often used as a "plus or minus" number, as in "adult women tend to be about 5'4, plus or minus 3 inches"
- Most numbers (roughly 68%) will be within 1 SD away from the average
- Very few entries (roughly 5%) will be more than 2 SD away from the average
- This rule of thumb works very well for a wide variety of data;
 we'll discuss where these numbers come from in a few weeks

Standard deviation and the histogram

Background areas within 1 SD of the mean are shaded:

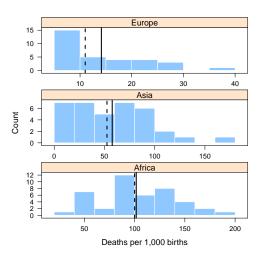


The 68%/95% rule in action

	% of observations within			
Continent	One SD	Two SDs		
Europe	78	97		
Asia	67	97		
Africa	63	95		

Summaries can be misleading!

All of the following have the same mean and standard deviation:



Percentiles

- The average and standard deviation are not the only ways to summarize continuous data
- Another type of summary is the percentile
- A number is the 25th percentile of a list of numbers if it is bigger than 25% of the numbers in the list
- The 50th percentile is given a special name: the median
- The median, like the mean, can be used to answer the question, "Where is the center of the histogram?"

Median vs. mean

The dotted line is the median, the solid line is the mean:

Skew

- Note that the histogram for Europe is not symmetric: the tail
 of the distribution extends further to the right than it does to
 the left
- Such distributions are called skewed
- The distribution of infant mortality rates in Europe is said to be right skewed or skewed to the right
- For asymmetric/skewed data, the mean and the median will be different

Interquartile range

- Percentiles can also be used to summarize spread
- A common percentile-based measure is the interquartile range (IQR), defined as the difference between the 75th percentile (3rd quartile) and the 25th percentile (1st quartile)
- By construction, the IQR contains the middle 50% of the data

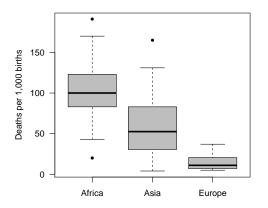
Robustness

- Azerbaijan had the highest infant mortality rate in Europe at 37
- What if, instead of 37, it was 200?

	Mean	Median	SD	IQR
Real	14.1	11	8.7	13.2
Hypothetical	19.2	11	33.8	13.2

- Note that the mean is sensitive to extreme values and the standard deviation is even more sensitive
- In comparison, the median and IQR are not; these statistics are *robust* to the presence of outlying observations

Five number summary


- The mean and standard deviation are a common way of providing a two-number summary of a distribution of continuous values
- Another approach, based on quantiles, is to provide a "five-number summary" consisting of: (1) the minimum, (2) the first quartile, (3) the median, (4) the third quartile, and (5) the maximum

	Europe	Asia	Africa
Min	5	4	20
First quartile	7	32	83
Median	11	52.5	100
Third quartile	20	83	123
Max	37	165	191

Box plots

- Quantiles are used in a type of graphical summary called a box plot
- Box plots are constructed as follows:
 - Calculate the three quartiles (the 25th, 50th, and 75th)
 - Draw a box bounded by the first and third quartiles and with a line in the middle for the median
 - Call any observation more than 1.5×IQR away from the box an "outlier" and plot the observations using a special symbol (the 1.5 is customary but arbitrary and can be modified)
 - Draw a line from the top of the box to the highest observation that is not an outlier; likewise for the lowest non-outlier

Box plots of the infant mortality rate data

One big advantage of box plots (compared to histograms) is the each with which they can be placed next to each other

Summary

- Raw data is complex and needs to be summarized; typically, these summaries are displayed in tables and figures
- Tables are useful for looking up information, but figures are superior for illustrating trends in the data
- Summary measures for categorical variables: counts, percents, rates
- Summary measures for continuous variables: mean, standard deviation, quantiles
- Ways to display continuous data: histogram, box plot