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A common histogram shape

A histograms of infant mortality rates in Africa, heights from a
sample of adult women in the U.S., and a Bayesian posterior for a
binomial outcome with 20 successes/20 failures:

Infant Mortality Rate
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Three extremely different contexts, and yet all three have
essentially the same shape
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The normal curve

All three distributions (and, of course, many, many more) are well
described by the following equation:

f(x) =
1√
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This distribution is known as the normal distribution; other names
for it include the Gaussian distribution (after Gauss, one of the first
to describe it mathematically) and the bell curve (because it looks
like a bell) Patrick Breheny Biostatistical Methods I (BIOS 5710) 3/28
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Features of the normal curve

Note that

The normal curve is symmetric around x = 0

The normal curve is always positive

The normal curve drops rapidly down near zero as x moves
away from 0
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Transforming the data/distribution

Of course, the normal distribution doesn’t look exactly like the
distributions on the first slide – it’s centered at zero and the
others aren’t

There are large differences in how spread out the distributions
are

There are two ways to fix this: we can either transform the
data, or transform the normal distribution itself

Both are important and widely used in statistics, so we’ll
discuss each approach
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Standardization

Let’s discuss transforming the data first, and take height as an
example

In the women’s height data, one woman measured 66.0 inches
tall

Because the average height of the women was 63.5 inches,
another way of describing her height is to say that she was 2.5
inches above average

Furthermore, because the standard deviation was 2.75 inches,
yet another way of describing her height is to say that she was
0.91 standard deviations above average
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Standardization (cont’d)

This idea of taking a variable and converting it into SDs away
from the mean is known as standardization, and can be
expressed mathematically as:

zi =
xi − x̄
SDx

,

where x̄ and SDx are the mean and standard deviation of x

One virtue of standardizing a variable is interpretability:

If someone tells you that the concentration of urea in your
blood is 50 mg/dL, that likely means nothing to you
On the other hand, if you are told that the concentration of
urea in your blood is 4 standard deviations above average, you
can immediately recognize this as a very high value
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More on standardization

If you standardize all of the observations in your sample, the
resulting variable (i.e., z on the previous slide) will have mean
0 and standard deviation 1

Standardization therefore brings all variables onto a common
scale – regardless of whether the heights were originally
measured in inches, centimeters, or miles, the standardized
heights will be identical

For many kinds of data, it would be illogical if the results
depended on the scale of measurement, so typically, we can
analyze standardized data without loss of generality
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Standardization in action

Infant mortality rates (std)
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Data whose density/histogram looks like the normal curve are said
to be “normally distributed” or to “follow a normal distribution”
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Transforming densities

It’s also useful to be able to transform the normal distribution
itself

However, we need to be a little careful when we start
stretching and compressing probability densities to ensure that
the actual probabilities are correctly preserved

For example, let’s suppose Z is a random variable and we
want to create a new random variable X given by

X = σZ + µ;

i.e., by shifting Z µ units and stretching it out by a factor of σ
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Transforming densities (cont’d)

What happens when we just plug (x− µ)/σ into the density
function for z?

We run into the problem that f((x− µ)/σ) integrates to σ,
not 1

However, this is an easy fix; we can simply divide the density
function of X by σ to guarantee that the function integrates
to 1:

g(x) =
1

σ
f

(
x− µ
σ

)
and is therefore a valid probability density for all values of µ
and σ
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Location-scale family of normal distributions

Let’s extend this logic to the normal distribution, shifting it
over by µ units and rescaling it by a factor of σ

The density function of X = σZ + µ, where Z has the normal
distribution given on slide 3, is given by

f(x) =
1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}

This is the density function for a family of normal
distributions with location scale µ and scale parameter σ

The special case with µ = 0 and σ = 1 that we encountered
originally is known as the standard normal distribution
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The location-scale family in action

Plugging in the appropriate means/SDs for the location and scale
parameters:

Infant Mortality Rate
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Expected values

Now is a good time to introduce one final concept that is
fundamental to random variables and probability theory, that
of the expected value

The expected value generalizes the idea of the sample mean
to a distribution

The expected value of a discrete random variable X is defined
by

E(X) =
∑

xf(x)

The expected value of a continuous random variable X is
defined by

E(X) =

∫
xf(x)dx
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Linearity of the expectation operator

Theorem: Let X be a random variable and a, b denote
constants. Then

E(aX + b) = aE(X) + b

This linearity property is extremely convenient and makes
expected values very easy to work with – much more so than
working with probability distributions directly

It is worth noting, however, that expectations cannot, in
general, be moved inside of functions:

E(f(X)) 6= f(E(X))

in general, the linear case above being one of the rare cases
where this holds
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Expected value of a normal distribution

Theorem: Let X follow a standard normal distribution. Then
E(X) = 0.

Theorem: Let X ∼ N(µ, σ). Then E(X) = µ.
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Moments

The expected values of various powers of X are called its
moments

The nth moment of X is E(Xn)

The nth central moment of X is E{(X − µ)n}, where
µ = E(X)
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Variance

The second central moment is of particular interest, and is
called the variance:

Var(X) =
∑

(x− µ)2f(x) (discrete)

Var(X) =

∫
(x− µ)2f(x) (continuous)

Theorem: Let X be a random variable and a, b denote
constants. Then

Var(aX + b) = a2Var(X)

Theorem: For any random variable X,

Var(X) = E(X2)− E(X)2
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Variance of a normal distribution

Theorem: Let X follow a standard normal distribution. Then
Var(X) = 1.

Theorem: Let X ∼ N(µ, σ). Then Var(X) = σ2.
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Reconstructing data with just two numbers

One of the reasons that the normal distribution is so
convenient to work with is that it only has two parameters,
and those parameters are directly connected to the mean and
standard deviation

So, as you may recall, we said earlier in the course that the
mean and standard deviation provide a two-number summary
of a histogram; we can now make this remark a little more
concrete

To a large extent, anything we want to know about the data,
we can determine by approximating the real distribution of the
data by the normal distribution

This approach is called the normal approximation
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NHANES adult women

The data set we will work with on these examples is the
NHANES sample of the heights of 2,649 adult women

The mean height is 63.5 inches

The standard deviation of height is 2.75 inches
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Estimating probabilities: Example # 1

Suppose we want to estimate the percent of women who are
under 5 feet tall

We could take one of two equivalent approaches:

Take the CDF of the normal distribution with µ = 63.5,
σ = 2.75
Transform 5 feet (60 inches) to (60− 63.5)/2.75 = −1.27 and
take the standard normal CDF of −1.27

P (X < 60) = P (Z < −1.27) = 10.2% (and either way, this is
not an integral you can easily calculate without a computer)

In the actual sample, 282 out of 2,649 women were under 5
feet tall, which comes out to 10.6%
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Estimating probabilities: Example # 2

Another example: suppose we want to estimate the percent of
women who are between 5’3 and 5’6 (63 and 66 inches)

Again, either F (66)− F (63) based on N(63.5, 2.75) or
Φ(0.91)−Φ(−0.18); φ is commonly used to denote the pdf of
the standard normal distribution and Φ its CDF

Using the normal distribution, the probability of falling in this
region is 39.0%

In the actual data set, 1,029 out of 2,649 women were
between 5’3 and 5’6: 38.8%
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Approximating percentiles: Example

Suppose instead that we wished to find the 75th percentile of
these women’s heights

Again we could take one of two equivalent approaches:

Take the inverse CDF of 0.75 for the normal distribution with
µ = 63.5, σ = 2.75
Take Φ−1(0.75), then transform using 63.5 + 2.75Φ−1(0.75)

Using the normal distribution, the 75th quantile is 65.35
inches

For the actual data, the 75th percentile is 65.39 inches
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The broad applicability of the normal approximation

These examples are by no means special: the distribution of
many random variables are very closely approximated by the
normal distribution (we will discuss why this happens next
time)

When it happens, this is pretty remarkable and powerful – for
variables with approximately normal distributions, the mean
and standard deviation essentially tell us everything we need
to know about the data; other summary statistics and
graphics are redundant
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Caution

Other variables, however, are not approximated by the normal
distribution well, and give misleading or nonsensical results
when you apply the normal approximation to them

For example, the value 0 lies 1.63 standard deviations below
the mean infant mortality rate for Europe

The normal approximation therefore predicts a probability that
5.1% of the countries in Europe will have negative infant
mortality rates
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Caution (cont’d)

As another example, the normal distribution will always predict
the median to lie 0 standard deviations above the mean

i.e., it will always predict that the median equals the mean

As we have seen, however, the mean and median can differ
greatly when distributions are skewed

For example, according to the U.S. census bureau, the mean
income in the United States is $66,570, while the median
income is $48,201
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Summary

The distribution of many random variables are very closely
approximated by the normal distribution:

f(x) =
1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}

Expected value and variance of a continuous distribution:

E(X) =

∫
xf(x)dx

Var(X) =

∫
(x− µ)2f(x)

E(aX + b) = aE(X) + b

Var(aX + b) = a2Var(X)

Know how to calculate quantiles for the normal distribution
and use them to approximate other distributions
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