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Introduction

In the previous lecture, we discussed nonparametric tests, but
avoided any discussion of nonparametric confidence intervals;
intervals are the subject of today’s lecture

We will discuss two general approaches to constructing
distribution-free confidence intervals:

Inverting nonparametric hypothesis tests
A more modern, computationally-intensive approach known as
the “bootstrap”
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Inverting the Wilcoxon rank sum test

We have inverted hypothesis tests to construct confidence
intervals several times in this course

This begs the natural question: if we flip the MWW test
around, do we get a confidence interval for something? If so,
what?

Before answering that question, we first need to generalize our
description of the MWW test to include testing for differences
other than zero
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Testing nonzero location shifts

Consider introducing a “shift” parameter ∆ in which we
modify all the observations in group 1 by adding ∆ to them
prior to carrying out the Wilcoxon rank sum test

In other words, the Wilcoxon rank sum test proceeds exactly
as usual, but the data in group has been modified so that xi
becomes xi + ∆ (the data in group 2 is left alone)

Then, as we have seen several times, we could carry out such
a test for all values of ∆ and collect all the non-rejected
values into an interval for the shift in location between the
two groups

Note: Such an interval is typically referred to as
“semiparametric” rather than “nonparametric” in the sense
that we had to introduce the parameter ∆ in order to carry
out the test
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The location shift confidence interval

For the tailgating data, this procedure produces the
confidence interval [0.57, 7.51] for ∆

In words, illegal drug users seem to follow the car in front of
them about 1-7 meters closer than drivers who do not use
illegal drugs

It is worth noting that we could also obtain a point estimator
∆̂ by solving for the value of ∆ such that p = 1

For the tailgating data, ∆̂ = 4.3; note that this is not
necessarily equal to the difference in medians, which for the
tailgating data was 5.0
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The bootstrap

A different approach to making nonparametric confidence
intervals is the bootstrap

Although the theory underlying the bootstrap (why it works,
and when it doesn’t) is a deep and complex subject, the idea
behind it is simple

We’ll first illustrate the idea using the tailgating data to
obtain a nonparametric confidence intervals for the difference
in median following times, then say a few words about why it
works
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Bootstrap procedure: Difference in medians

To “bootstrap” a sample, we simply place all 55 observed
following distance values for the illegal drug user group in an
urn and randomly draw 55 observations back out again (with
replacement)

Calculate the median for this “bootstrapped” sample

Do the same for the non-illegal drug user group, and calculate
the difference in medians

Repeat the above a large number of times (say, B = 10, 000),
obtaining a long list of differences in medians

The (percentile) bootstrap confidence interval is the interval
that contains the middle 95% of this list of values
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Bootstrap results: Tailgating study

For the tailgating study, this interval is (1.1, 7.6); similar to
the Wilcoxon interval from earlier, although not identical,
since the assumptions that go into the two approaches are
different

The great virtue of the bootstrap, like that of the permutation
test, is its versatility – this same technique can be used to
obtain nonparametric confidence intervals for almost any
other quantity one cares to define

For this reason, Casella & Berger (2002) call it “perhaps the
single most important development in statistical methodology
in recent times”
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Derivation of bootstrap

Suppose we are interested in deriving the distribution of
estimate θ̂ = θ(x)

It’s actual distribution P (θ̂ ∈ A) is given by∫
· · ·

∫
1{θ(x) ∈ A}dF (x1) · · · dF (xn)

There are two problems with evaluating this expression directly

The first is that we do not know F ; a natural solution to this
problem is to plug in the empirical CDF, F̂ :∫

· · ·
∫

1{θ(x) ∈ A}dF̂ (x1) · · · dF̂ (xn)
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Monte Carlo approach

The second problem is that this integral is difficult to evaluate

However, we can approximate this answer instead using Monte
Carlo integration

Instead of actually evaluating the integral, we approximate it
numerically by drawing random samples of size n from F̂ and
finding the sample average of the integrand

This approach gives us the bootstrap

By the law of large numbers, this approximation will converge
to the actual value of the integral as the number of random
samples that we draw goes to infinity
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Resampling

What does a random sample drawn from F̂ look like?

Because F̂ places equal mass at every observed value xi,
drawing a random sample from F̂ is equivalent to drawing n
values, with replacement, from {xi}
This somewhat curious phenomenon in which we draw new
samples by sampling our original sample is called resampling
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Bootstrap accuracy

Thus, the bootstrap works by using F̂ to approximate F , and
using Monte Carlo integration to approximate the true
distribution of θ̂ given by the full integral over Rn

It’s worth pointing out that the accuracy of the bootstrap
calculations depends on both B, the number of bootstrap
samples, and n, the number of observations

If B is small, then the Monte Carlo approximation might not
be accurate; this is usually easy to fix, because you can always
increase B – the only cost is computing time

If n is small, then F̂ might not be a good estimate of F ; to fix
this, you would actually need to go out and gather more data
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Summary

There are two primary ways of constructing confidence intervals
without assuming we know what family the distribution of the data
belongs to:

Inverting a nonparametric test; this involves introducing a
parameter (such as the location shift ∆) and thus, such
intervals are usually referred to as semiparametric confidence
intervals

The bootstrap; this involves using the empirical CDF F̂ to
estimate the true CDF F and Monte Carlo integration to
approximate the true n-dimensional integral we are interested
in

The above description makes the bootstrap sound complicated, but
the idea is actually quite straightforward and extremely versatile
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