
Introduction
The three trends

The central limit theorem
Summary

The Central Limit Theorem

Patrick Breheny

October 1

Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/31



Introduction
The three trends

The central limit theorem
Summary

10,000 coin flips
Expectation and variance of sums

Kerrich’s experiment

A South African mathematician named John Kerrich was
visiting Copenhagen in 1940 when Germany invaded Denmark

Kerrich spent the next five years in an interment camp

To pass the time, he carried out a series of experiments in
probability theory

One of them involved flipping a coin 10,000 times
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The law of averages?

We know that a coin lands heads with probability 50%

So, loosely speaking, if we flip the coin a lot, we should have
about the same number of heads and tails

The subject of today’s lecture, though is to be much more
specific about exactly what happens and precisely what
probability theory tells us about what will happen in those
10,000 coin flips
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Kerrich’s results

Number of Number of Heads -
tosses (n) heads 0.5·Tosses

10 4 -1
100 44 -6
500 255 5

1,000 502 2
2,000 1,013 13
3,000 1,510 10
4,000 2,029 29
5,000 2,533 33
6,000 3,009 9
7,000 3,516 16
8,000 4,034 34
9,000 4,538 38

10,000 5,067 67
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Kerrich’s results plotted
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Instead of getting closer, the numbers of heads and tails are
getting farther apart
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Repeating the experiment 50 times
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This is not a fluke – instead, it occurs systematically and
consistently in repeated simulated experiments
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Where’s the law of averages?

As the figure indicates, simplistic notions like “we should have
about the same number of heads and tails” are inadequate to
describe what happens with long-run probabilities

We must be more precise about what is happening – in
particular, what is getting more predictable as the number of
tosses goes up, and what is getting less predictable?

Consider instead looking at the percentage of flips that are
heads
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Repeating the experiment 50 times, Part II
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What happens as n gets bigger?

We now turn our attention to obtaining a precise
mathematical description of what is happening to the mean
(i.e, the proportion of heads) with respect to three trends:

Its expected value
Its variance
Its distribution

First, however, we need to define joint distributions and prove
a few theorems about the expectation and variance of sums
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Joint distributions

We can extend the notion of a distribution to include the
consideration of multiple variables simultaneously

Suppose we have two discrete random variables X and Y .
Then the joint probability mass function is a function
f : R2 → R defined by

f(x, y) = P (X = x, Y = y)

Likewise, suppose we have two discrete random variables X
and Y . Then the joint probability density function is a
function f : R2 → R satisfying

P ((X,Y ) ∈ A) =

∫ ∫
A
f(x, y) dx dy

for all rectangles A ∈ R2

Patrick Breheny Biostatistical Methods I (BIOS 5710) 10/31



Introduction
The three trends

The central limit theorem
Summary

10,000 coin flips
Expectation and variance of sums

Marginal distributions

Suppose we have two discrete random variables X and Y .
Then the pmf

f(x) =
∑
y

f(x, y)

is called the marginal pmf of X

Likewise, if X and Y are continuous, we integrate out one
variable to obtain the marginal pdf of the other:

f(x) =

∫
f(x, y) dy
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Expectation of a sum

Theorem: Let X and Y be random variables. Then

E(X + Y ) = E(X) + E(Y )

provided that E(X) and E(Y ) exist

Note in particular that X and Y do not have to be
independent for this to work
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Variance of a sum

Theorem: Let X and Y be independent random variables.
Then

Var(X + Y ) = Var(X) + Var(Y )

provided that Var(X) and Var(Y ) exist

Note that X and Y must be independent for this to work

Patrick Breheny Biostatistical Methods I (BIOS 5710) 13/31



Introduction
The three trends

The central limit theorem
Summary

Expected value
Variance
The distribution of the average

The expected value of the mean

Theorem: Suppose X1, X2, . . . Xn are random variables with
the same expected value µ, and let X̄ denote the mean of all
n random variables. Then

E(X̄) = µ

In other words, for any value of n, the expected value of the
sample mean is expected value of the underlying distribution

When an estimator θ̂ has the property that E(θ̂) = θ, the
estimator is said to be unbiased

Thus, the above theorem shows that the sample mean is an
unbiased estimator of the population mean
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Applying this result to the coin flips example

Theorem: For the binomial distribution, E(X) = nπ

Thus, letting π̂ = X/n, E(π̂) = π, which is exactly what we
saw in the earlier picture:
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The variance of the mean

Our previous result showed that the sample mean is always
“close” to the expected value, at least in the sense of being
centered around it

Of course, how close it is also depends on the variance, which
is what we now consider

Theorem: Suppose X1, X2, . . . Xn are independent random
variables with expected value µ and variance σ2. Letting X̄
denote the mean of all n random variables,

Var(X̄) =
σ2

n

Corollary: SD(X̄) = σ/
√
n

Patrick Breheny Biostatistical Methods I (BIOS 5710) 16/31



Introduction
The three trends

The central limit theorem
Summary

Expected value
Variance
The distribution of the average

The square root law

To distinguish between the standard deviation of the data and
the standard deviation of an estimator (e.g., the mean),
estimator standard deviations are typically referred to as
standard errors

As the previous slide makes clear, these are not the same, and
are related to each other by a very important way, sometimes
called the square root law:

SE =
SD√
n

This is true for all averages, although as we will see later in
the course, must be modified for other types of estimators
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Standard errors

Note that Var(
∑
X) goes up with n, while Var(X̄) goes down

with n, exactly as we saw in our picture from earlier:

−100

−50

0

50

100

Number of tosses

N
um

be
r 

of
 h

ea
ds

 m
in

us
 h

al
f t

he
 n

um
be

r 
of

 to
ss

es

10 100 400 1000 2000 4000 7000 10000

30

40

50

60

70

Number of tosses

P
er

ce
nt

ag
e 

of
 h

ea
ds

10 100 400 1000 2000 4000 7000 10000

Indeed, Var(X̄) actually goes down all the way to zero as n→∞
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The distribution of the mean

Finally, let’s look at the distribution of the mean by creating
histograms of the mean from our 50 simulations
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The central limit theorem (informal)

In summary, there are three very important phenomena going
on here concerning the sample average:

#1 The expected value is always equal to the population average
#2 The standard error is always equal to the population standard

deviation divided by the square root of n
#3 As n gets larger, its distribution looks more and more like the

normal distribution

Furthermore, these three properties of the sample average
hold for any distribution
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The central limit theorem (formal)

Central limit theorem: Suppose X1, X2, . . . Xn are
independent random variables with expected value µ and
variance σ2. Letting X̄ denote the mean of all n random
variables,

√
n
X̄ − µ
σ

d−→ N(0, 1)

The notation
d−→ is read “converges in distribution to”, and

means that the limit as n→∞ of the CDF of the quantity on
the left is equal to the CDF on the right (at all points x where
the CDF on the right is continuous)
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Graphical idea of convergence in distribution

For the binomial distribution (red=normal, blue=
√
n(X̄ − µ)/σ):
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Power of the central limit theorem

This result is one of the most important, remarkable, and
powerful results in all of statistics

In the real world, we rarely know the distribution of our data

But the central limit theorem says: we don’t have to
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Power of the central limit theorem

Furthermore, as we have seen, knowing the mean and
standard deviation of a distribution that is approximately
normal allows us to calculate anything we wish to know with
tremendous accuracy – and the distribution of the mean is
always approximately normal

The caveat, however, is that for any finite sample size, the
CLT only holds approximately

How good is this approximation? It depends. . .
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How large does n have to be?

Rules of thumb are frequently recommended that n = 20 or
n = 30 is “large enough” to be sure that the central limit
theorem is working

There is some truth to such rules, but in reality, whether n is
large enough for the central limit theorem to provide an
accurate approximation to the true distribution depends on
how close to normal the population distribution is, and thus
must be checked on a case-by-case basis

If the original distribution is close to normal, n = 2 might be
enough

If the underlying distribution is highly skewed or strange in
some other way, n = 50 might not be enough
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Example #2

Now imagine an urn containing the numbers 1, 2, and 9:
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Example #3

Weight tends to be skewed to the right (more people are
overweight than underweight)

Let’s perform an experiment in which the NHANES sample of
adult men is the population

I am going to randomly draw twenty-person samples from this
population (i.e. I am re-sampling the original sample)
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Example #3 (cont’d)
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Why do so many things follow normal distributions?

We can see now why the normal distribution comes up so
often in the real world: any time a phenomenon has many
contributing factors, and what we see is the average effect of
all those factors, the quantity will follow a normal distribution

For example, there is no one cause of height – thousands of
genetic and environmental factors make small contributions to
a person’s adult height, and as a result, height is normally
distributed

On the other hand, things like eye color, cystic fibrosis, broken
bones, and polio have a small number of (or a single)
contributing factors, and do not follow a normal distribution
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Summary

E(X + Y ) = E(X) + E(Y )

Var(X + Y ) = Var(X) + Var(Y ) if X and Y are independent

Central limit theorem:

The expected value of the average is always equal to the
population average
SE = SD/

√
n

As n gets larger, the distribution of the sample average looks
more and more like the normal distribution

Generally speaking, the sampling distribution looks pretty
normal by about n = 20, but this could happen faster or
slower depending on the underlying distribution, in particular
by how skewed it is
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