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Today’s lab will focus on the two most common settings in which a researcher will carry out a power
calculation: two-sample studies in which the outcome is continuous (i.e., power calculations for t-tests) and
two-sample studies in which the outcome is binary (i.e., power caluclations for χ2 tests).

1 Equal allocation

1.1 Continuous data

The base function in R for calculating power for t-tests is power.t.test. You supply n, the sample size in
each group, ∆ = µ1 − µ2, the difference in means, and σ, the standard deviation, and the function returns
the power:

> power.t.test(n=3, delta=3, sd=1)

Two-sample t test power calculation

n = 3

delta = 3

sd = 1

sig.level = 0.05

power = 0.7826

alternative = two.sided

NOTE: n is number in *each* group

You can also supply α, the type I error rate; this is set to α = 0.05 by default. The function also allows
you to pass the power and leave n blank, in which case the function will calculate the appropriate sample
size for you:

> power.t.test(power=0.9, delta=3, sd=1)

Two-sample t test power calculation

n = 3.625

delta = 3

sd = 1

sig.level = 0.05

power = 0.9

alternative = two.sided
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NOTE: n is number in *each* group

You can actually leave any of the above blank, and the function will solve for the remaining one. For
example,

> power.t.test(power=0.9, n=2, sd=1)

Two-sample t test power calculation

n = 2

delta = 6.796

sd = 1

sig.level = 0.05

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

This returns ∆ = 6.8, meaning that the true difference in means would have to be at least 6.8 in order
for us to detect that difference with 90% power if the sample size were 2 per group; this is sometimes called
the minimum detectable difference. You cannot leave more than one option blank, or supply all arguments.

Conveniently, the function also accepts vectors as arguments, which makes it easy to construct power
curves:

> n <- 2:20

> Power <- power.t.test(n=n, delta=2, sd=2)$power

> plot(n, Power, type="l")
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As we discussed in class, there is no closed-form solution for sample size when we’re dealing with the t
distribution, but we can set up the calculation as a root-finding problem:

> power.t.test(power=0.9, delta=5, sd=2)$n

[1] 4.575
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> f <- function(n) {qt(0.975, 2*n-2) - qt(0.1, 2*n-2, 5/(2*sqrt(2/n)))}
> uniroot(f, c(2, 100))$root

[1] 4.575

Note that we obtain a different answer for the t-test than we get from the formula we derived in class for
the z-test:

> 2*((qnorm(0.975)+qnorm(0.9))/(5/2))^2

[1] 3.362

The z-test calculation would indicate that n = 4 in each group easily suffices to obtain 90% power; this
would be true if we knew the standard deviation, but the t-test calculations show that we need n = 5 in
each group to overcome this limitation and achieve 90% power.

Finally, it is worth knowing that power.t.test can also be used for paired t-tests:

> power.t.test(n=6, delta=3, sd=2, type="paired")

Paired t test power calculation

n = 6

delta = 3

sd = 2

sig.level = 0.05

power = 0.8325

alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

> power.t.test(n=6, delta=3, sd=2)

Two-sample t test power calculation

n = 6

delta = 3

sd = 2

sig.level = 0.05

power = 0.6496

alternative = two.sided

NOTE: n is number in *each* group

Note that the paired test is considerably more powerful, even though it only has n = 6 subjects (assuming
a crossover design) while the unpaired study has 12 subjects. It should be said, though, that this calculation
is somewhat misleading, as it assumes that σ is the same for each study, even though the two standard
deviations represent rather different quantities (SD of individuals vs. SD of differences within an individual);
without knowing more about the problem, it is impossible to say which one will be larger.
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1.2 Binary data

R has a very similar function for binary data, power.prop.test. For binary data, we do not need to specify
σ (since it is determined by π), but we do need to specify both π1 and π2, the proportions in the two groups
(i.e., it is not sufficient to merely specify the difference, π1 − π2, as we did earlier). So, for example:

> power.prop.test(n=50, p1=.4, p2=.2)

Two-sample comparison of proportions power calculation

n = 50

p1 = 0.4

p2 = 0.2

sig.level = 0.05

power = 0.5901

alternative = two.sided

NOTE: n is number in *each* group

> power.prop.test(power=0.8, p1=.4, p2=.2)

Two-sample comparison of proportions power calculation

n = 81.22

p1 = 0.4

p2 = 0.2

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

We need a little over 80 subjects per group for 80% power in this setting; with n = 50 in each group, we
only have ≈ 60% power. As remarked earlier, power depends on both π1 and π2, not merely their difference:

> p1 <- seq(0.05, 0.85, len=99)

> Power <- power.prop.test(n=100, p1=p1, p2=p1+0.1)$power

> plot(p1, Power, type="l", ylim=0:1)
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In the plot, π2−π1 = 0.1 at all points, but the power is higher for values of π1 close to 0 and 1. Discussion:
Why does this happen?

The power is also not constant if we keep the ratio of π1 and π2 the same:

> p1 <- seq(0.01, 0.6, len=99)

> Power <- power.prop.test(n=100, p1=p1, p2=p1*1.5)$power

> plot(p1, Power, type="l", ylim=0:1)
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Here, π2 is 50% larger than π1 at all points, but there is an enormous difference in power as we change
π1. Discussion: Again, what is the explanation for this?

2 Unequal allocation

One limitation of power.t.test and power.prop.test is that they require n1 = n2; i.e., equal allotment of
subjects to the two groups. This is often the case, but not always. Not infrequently, I am asked to calculate
power in settings where the design uses a 1:2 or 1:3 ratio of sample sizes among groups, so it’s useful to know
about your options in such cases, although we have to go outside of base R for this.
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2.1 Binary data

Frank Harrell’s Hmisc package has a rather nice function bpower that offers many of the same features as
power.prop.test but also allows you to specify different sample sizes in the two groups:

> require(Hmisc)

> bpower(n1=50, n2=100, p1=.4, p2=.2)

Power

0.7335

> ## A power curve where we vary the allocation

> n1 <- 50:100

> Power <- bpower(n1=n1, n2=150-n1, , p1=.4, p2=.2)

> plot(n1, Power, type="l")
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> n1[which.max(Power)]

[1] 72

As the power curve indicates, we actually obtain optimal power here when n1 = 72 and n2 = 78, although
the gain in power over a balanced approach is minimal. The package also contains a useful function, bsamsize
that solves for the necessary total sample size while keeping the ratio n1/n2 fixed:

> ## fraction: Fraction in group 1

> bsamsize(p1=.4, p2=.2, power=0.8, fraction=1/3)

n1 n2

59.11 118.21

So, if we intend a 1:2 ratio, we should aim for n1 = 60 and n2 = 120 to attain 80% power.

2.2 Continuous data

I really like the bpower and bsamsize functions and often wished that there was an equivalent function for
t-tests. I never found one, so I wrote my own:
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> source("http://myweb.uiowa.edu/pbreheny/571/f14/labs/tpower.R")

> tpower(n1=6, n2=6, delta=3, sd=2) ## Same as before

[1] 0.6496

> tpower(n1=6, n2=12, delta=3, sd=2)

[1] 0.804

> ## w: Sampling weight for each group

> tsamsize(delta=3, sd=4, power=0.8, w=c(3,1))

n1 n2

43.35 14.45

So, to achieve 80% power with a 3:1 ratio between groups, we need n1 = 45 and n2 = 15. A nice
improvement to tpower and tsamsize would be to allow σ1 6= σ2, but I’ve never been asked to perform such
a power calculation, so I haven’t (yet!) seen the need to extend it in this manner.

3 Conclusion

These two settings (two-sample studies with continuous and binary data) are the most commonly encoun-
tered, and any statistician should know how to calculate power and sample size in these settings. There
are dozens of specialized packages out there for R that calculate power for specific situations (mixed models,
genetics, pharmacology, etc.), but if you understand the general principles, you should be able to familiarize
yourself with how those packages work (assuming, of course, you understand the underlying models!).

7


