More simulations: Approximate binomial intervals and robustness

Patrick Breheny
October 15, 2014

In the previous lab, we saw the power of simulations to investigate the accuracy of theoretical results in
mathematically intractable situations. We will continue using simulations today, investigating the accuracy
of approximate binomial intervals and (time permitting), the robustness of the ¢-test and variance interval
to departures from normality.

1 Simulation: Binomial CI coverage, Part 2

First, let’s revisit our binomial CI coverage simulation, but add some additional “competitors” to see how
their coverage compares to the Clopper-Pearson interval. Specifically, let’s add the Wald interval, the score
interval, and the Bayesian HPD interval. I have posted a function online, bayes.binom, that we can use to
calculate HPD intervals for binomial data (as we discussed previously, there is no standard R function for
this). The score interval is available via the R function prop.test (for inference concerning proportions).
Lastly, there is no R function that returns the Wald interval, but it is trivial to write one. So, after we source
the following:

> source("http://myweb.uiowa.edu/pbreheny/571/f14/1labs/binom.bayes.R")
> prop.wald <- function(x, n, level=0.95) {

+ pi.hat <- x/n

+ SE <- sqrt(pi.hat*(1-pi.hat)/n)

+ z <- gnorm(c((1-level)/2, 1-(1-level)/2))

+ pi.hat + z*SE

+
>

}

prop.test(31,39)

1-sample proportions test with continuity correction

data: 31 out of 39, null probability 0.5
X-squared = 12.41, df = 1, p-value = 0.000427
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.6306 0.9013

sample estimates:

p
0.7949

We can now run our simulation loop as in the last lab, using the binom.test, binom.bayes, prop.test,
and prop.wald functions to calculate our various intervals. Here, for the sake of organization, I'll store all
the coverage results in a matrix (previously, a vector was sufficient).

> source("http://myweb.uiowa.edu/pbreheny/571/£14/1labs/displayProgressBar.R")

> N <- 10000

>n <- 20

> pi <- ¢(0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.5, 0.68, 0.84, 0.92, 0.96, 0.98, 0.99)
> coverage <- matrix(NA, length(pi), 4, dimnames=list(pi, c("CP", "Bayes", "Score", "Wald")))
> for (j in 1:length(pi)) {

+ x <- rbinom(N, prob=pil[j], size=n)

+ covered <- matrix(NA, N, 4)

+ for (i in 1:N) {

+ ci <- binom.test(x[i], n)$conf

+ covered[i,1] <- (cil1] < pil[jl) & (pilj] < cil[2])

+ ci <- binom.bayes(x[i], n)$ci.hpd

+ covered[i,2] <- (cil1] < pil[jl) & (pilj] < cil2])

+ ci <- prop.test(x[i], n, correct=FALSE)$conf

+ covered[i,3] <- (cil1] < piljl) & (pilj] < cil[2])

+ ci <- prop.wald(x[i], n)

+ covered[i,4] <- (cil[1] < pil[jl) & (pil[j] < cil[2])

+

+ coveragel[j,] <- apply(covered, 2, mean)

+ displayProgressBar(j, length(pi))

+

}

Progress:

KK K 3K 3K 3k 5k %k %k %k %k %k %

> col <- hcl(seq(15, 375, len = 5), 150, 60)[1:4] ## Setting up some colors
> matplot(pi, coverage, type="l1", 1lwd=3, lty=1, col=col)
> legend("bottom", legend=colnames(coverage), col=col, lwd=3)

coverage

pi

> matplot(pi, coverage, type="1", 1lwd=3, lty=1, col=col, ylim=c(0.8,1))
> legend("bottom", legend=colnames(coverage), col=col, lwd=3)
> abline(h=0.95, col="gray", lwd=3)

coverage

0.80 0.85 0.90 0.95 1.00

pi

Note the use of apply here. apply is a very useful function that applies a function across all rows or
columns of a matrix (or a larger array). We could write a for loop to calculate the average coverage for each
method, but with apply, we can obtain the result we're interested in with just a single line of code. Also,
the function matplot works a lot like plot, but allows you to plot several lines at once.

Some observations I would make:

e The Wald interval is simply unacceptable. Its coverage is nowhere even close to 95%. The other three
intervals are at least reasonable here, never falling too far below 95%.

e The Clopper-Pearson interval is the most conservative, but is also the only interval that always provides
at least 95% coverage.

e The Bayesian interval is not a confidence interval at all — it provides an interval for the middle 95%
of the posterior distribution and is not concerned with coverage in the long-run frequency sense — but
still has reasonable frequentist properties. This is often the case for Bayesian methods.

As a brief aside, the default behavior for prop.test is to carry out a minor “continuity correction”. This
is a fairly simple adjustment, but we didn’t really discuss it in class. To get the version of the interval we
discussed in class, you can turn off the correction with correct=FALSE.

2 Simulation: NHANES lipid data

2.1 t-tests and confidence intervals

Carrying out one-sample ¢-tests and obtaining the corresponding confidence intervals is fairly straightforward
in R using the function t.test. To illustrate with the cystic fibrosis study we discussed in class:

> cf <- read.delim("http://myweb.uiowa.edu/pbreheny/data/cystic-fibrosis.txt")
> Diff <- cf$Placebo - cf$Drug
> hist(Diff, col="gray", border="white")

Histogram of Diff

Frequency
4
|

—-200 0 200 400 600 800

Diff

> t.test(Diff)

One Sample t-test

data: Diff
t = 2.288, df = 13, p-value = 0.03949
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

7.643 265.357
sample estimates:
mean of x

136.5

As we saw in class, the p-value for testing the null hypothesis that amiloride has no effect on the average
reduction in FVC is 0.04, and the confidence interval for the average difference is [8,265]. As we see from
the histogram, the distribution of differences doesn’t look exactly normal, but with only 14 observations, it’s
difficult to tell.

2.2 How well do t intervals do when the data is not normally distributed?

As we said in class, the derivation of the ¢ distribution (and, therefore, its resulting confidence intervals)
is based on an assumption of normality. How well do these intervals work when the data is not normally
distributed? Or to put it a different way, how robust are these results to departures from normality? As we
did in the previous lab, let’s investigate how well this works by resampling the NHANES triglyceride data:

> lipids <- read.delim("http://myweb.uiowa.edu/pbreheny/data/lipids.txt")
> pop <- lipids$TRG

Recall that the underlying distribution here is somewhat skewed to the right. Does this cause problems
for the ¢ intervals?

> N <- 10000
> n <- 25
> covered <- numeric(N)

> for (i in 1:N) {

+ sam <- sample(pop, n)

+ covered[i] <- t.test(sam, mu=mean(pop))$p.value > 0.05
+

>

}

mean (covered)

[1] 0.9317

The coverage is slightly under 95%, but the ¢ intervals aren’t doing too bad here. What if we lower the
sample size to 157 To 57

Now let’s look at the variance. As we discussed in class, there is a nice pivotal quantity for the normal
distribution that allows us to obtain confidence intervals for the variance. How about its coverage in this
situation? Unfortunately there is no standard R function for constructing this interval, but it’s pretty easy
to code:

> N <- 10000

>n <- 25

> covered <- numeric(N)

> for (i in 1:N) {

+ sam <- sample(pop, n)

+ ci <= var(sam)*(n-1)/qchisq(c(0.975,0.025), n-1)

+ covered[i] <- (ci[1] < var(pop)) & (var(pop) < cil[2])
+

>

}

mean (covered)

[1] 0.8412

The coverage here is far worse than we had for the mean. As we said in class, the central limit theorem
works for any distribution. For that reason, the ¢ test is often a reasonable approximation even if the data
departs somewhat from the normal distribution. There is no corresponding theorem for the variance: the
pivotal CI works for the normal distribution and is not guaranteed to be accurate — even approximately —
for other distributions.

This is a specific instance of an important general point in statistics: even though both of the above
confidence interval methods are derived based on the assumption of normality, the two methods are not
equally sensitive to that assumption. The ¢ test is quite robust to departures from normality, while the
variance interval is very sensitive to such departures. This is one reason why simulations are so important
and useful in statistics: to examine the performance of various methods when assumptions are not met (this
is typically difficult to address analytically).

