
Binomial data from the Bayesian perspective

Patrick Breheny

September 24, 2014

In last week’s lab, we were introduced to the function binom.test and we learned how it worked by
recreating the analyses that it performs “manually” in R. Unfortunately, there is no simple equivalent function
in R that does the same kind of analysis from the Bayesian perspective. So today, we’re going to create one
for ourselves.

1 Starting out: doing the analysis outside of a function

Before we can create a function to do the analysis, we should make sure that we can actually do the analysis
in the first place. So let’s check that we can re-create the results from class in R. Let’s work with the 25-week
survival example and a uniform prior:

> x <- 31

> n <- 39

> a <- 1 ## Prior alpha

> b <- 1 ## Prior beta

Now, we know from lecture that the posterior will follow a Beta(x+ a, n− x+ b) distribution. As with
the binomial distribution last week, R has dbeta, pbeta, qbeta, and rbeta functions, and that’s all we need
to perform our analyses. So, for example, we can plot the posterior density:

> theta <- seq(0, 1, 0.005)

> plot(theta, dbeta(theta, x+a, n-x+b), type="l")

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

theta

db
et

a(
th

et
a,

 x
 +

 a
, n

 −
 x

 +
 b

)

We can find out, say, the posterior probability that θ < 0.6:

1

> pbeta(0.6, x+a, n-x+b)

[1] 0.006065

And we can construct the central 95% interval:

> qbeta(0.025, x+a, n-x+b)

[1] 0.6435

> qbeta(0.975, x+a, n-x+b)

[1] 0.8916

> ## Or:

> qbeta(c(0.025, 0.975), x+a, n-x+b)

[1] 0.6435 0.8916

2 How should our function work?

Basically, what we’re going to do now is just put that stuff above into a function. But let’s give a little thought
first as to what our function should look like and accomplish. Let’s call our function binom.bayes and have it
work somewhat analogously to binom.test. In other words, I’d like to be able to run binom.bayes(31,39)

and get my results. So obviously, the function is going to have to have two required arguments, x and n. But
we’d also like to have a number of options to adjust the analysis, such as:

• a, b: So we can change the prior

• level: In case we want something other than a 95% posterior interval

• plot: It would be nice to optionally plot the posterior density

So, the basic outline of our function would look like this:

> binom.bayes <- function(x, n, a=1, b=1, level=0.95, plot=FALSE, ...) {
+ }

A few remarks:

• In the above, x and n are required arguments to binom.bayes. If we fail to pass x and n, the function
will produce an error. This is as it should be – without knowing x and n, there is nothing the function
can possibly do.

• The other arguments, though, have default values. We can specify a if we want to, but if we don’t, the
function will just use the default value a=1.

• When calling binom.bayes (or any R function), we can refer to the arguments either by name or
by position. For example, binom.bayes(31,39) will work fine, because R will assume that the first
argument, 31, is x, and the second argument, 39, is n. However, binom.bayes(39, 31) will not
work, because the arguments are in the wrong order. We can, however, pass arguments in any order
if we call them by name: binom.bayes(n=39, x=31) works. Also, it is fine to mix the two, as in
binom.bayes(31, 39, level=0.9).

2

• The ... argument is a special argument in R that allows any number of additional arguments to be
passed along to other functions called by binom.bayes. We’ll see how this works and why it is useful
in the next section.

3 Writing our function

OK, let’s put the stuff from Section 1 inside the function we set up in Section 2:

> binom.bayes <- function(x, n, a=1, b=1, level=0.95, plot=FALSE, ...) {
+ theta <- seq(0, 1, 0.005)

+ plot(theta, dbeta(theta, x+a, n-x+b), type="l")

+ qbeta(c(0.025, 0.975), x+a, n-x+b)

+ }

This obviously doesn’t really work as written, because the level and plot arguments don’t actually do
anything yet. Let’s start with plot. We need to make the first two lines conditional expressions, meaning
that they only get run if plot=TRUE. This can be accomplished with an if statement:

> binom.bayes <- function(x, n, a=1, b=1, level=0.95, plot=FALSE, ...) {
+ if (plot) {
+ theta <- seq(0, 1, 0.005)

+ plot(theta, dbeta(theta, x+a, n-x+b), type="l")

+ }
+ qbeta(c(0.025, 0.975), x+a, n-x+b)

+ }

Note the syntax:

• if is followed by something in parentheses that is either TRUE or FALSE – in this case, that is plot

itself, but it could also be an expression such as x==5

• This is then followed by one or more expressions or assignments that will only be run if the condition
is TRUE. If you just have one line, you don’t need the brackets, for example if (x > 5) print("x is

bigger than 5!"). However, if you have multiple lines that need to be run conditionally, you need
to bunch them together with curly brackets, as in the above.

Let’s check to see that this actually works:

> binom.bayes(31,39)

[1] 0.6435 0.8916

> binom.bayes(31,39, plot=TRUE)

3

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

theta

db
et

a(
th

et
a,

 x
 +

 a
, n

 −
 x

 +
 b

)

[1] 0.6435 0.8916

Unfortunately, however, we can’t actually change anything about the plot yet:

> binom.bayes(31,39, plot=TRUE, col="blue")

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

theta

db
et

a(
th

et
a,

 x
 +

 a
, n

 −
 x

 +
 b

)

[1] 0.6435 0.8916

This is where those dots come in. By passing along any extra arguments to the plot function, we can
take advantage of all the usual plotting options in R:

> binom.bayes <- function(x, n, a=1, b=1, level=0.95, plot=FALSE, ...) {
+ if (plot) {
+ theta <- seq(0, 1, 0.005)

+ plot(theta, dbeta(theta, x+a, n-x+b), type="l", ...)

+ }
+ qbeta(c(0.025, 0.975), x+a, n-x+b)

+ }
> binom.bayes(31,39, plot=TRUE, col="blue", lwd=3, ylab="Posterior density")

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

theta

P
os

te
rio

r
de

ns
ity

[1] 0.6435 0.8916

We still need to make the level option work, though:

> binom.bayes <- function(x, n, a=1, b=1, level=0.95, plot=FALSE, ...) {
+ if (plot) {
+ theta <- seq(0, 1, 0.005)

+ plot(theta, dbeta(theta, x+a, n-x+b), type="l", ...)

+ }
+ lp <- (1-level)/2

+ up <- 1-(1-level)/2

+ qbeta(c(lp, up), x+a, n-x+b)

+ }
> binom.bayes(31, 39, level=0.9)

[1] 0.6680 0.8773

> binom.bayes(31, 39, level=0.8)

[1] 0.6955 0.8594

Let’s add one last feature. As you will show on the homework, the posterior mode of a beta distribution
is (α− 1)/(α+ β − 2). Let’s return the posterior mode along with the interval:

> binom.bayes <- function(x, n, a=1, b=1, level=0.95, plot=FALSE, ...) {
+ if (plot) {
+ theta <- seq(0, 1, 0.005)

+ plot(theta, dbeta(theta, x+a, n-x+b), type="l", ...)

+ }
+ lp <- (1-level)/2

+ up <- 1-(1-level)/2

+ interval <- qbeta(c(lp, up), x+a, n-x+b)

+ mode <- (x+a-1) / (x+a+n-x+b-2)

+ list(mode=mode, interval=interval)

+ }
> binom.bayes(31, 39)

5

$mode

[1] 0.7949

$interval

[1] 0.6435 0.8916

In case you hadn’t noticed, by default an R function returns its final evaluated expression (i.e., whatever
you put in the last line will be returned by the function). You could change this using the return() function
if you wished.

We now have a pretty useful function. One nice additional feature would be if it calculated the highest
posterior density interval for us. Sounds like a nice homework problem. . . .

4 A little glimpse at Monte Carlo methods

Suppose there was some other hospital at which 10 out of 20 infants born at 25 weeks gestation survived.
Let θ1 denote the probability of a 25-week infant surviving at Johns Hopkins and θ2 denote the probability
of a 25-week infant surviving at this other hospital. In the actual samples, the Johns Hopkins infants were
more likely to survive, but there is considerable uncertainty about the true long-run survival probabilities
at each hospital. We might be interested in asking, what is the probability that θ1 > θ2 (conditional on the
data, of course)?

This certainly seems like a reasonable question, and yet, nothing we’ve talked about yet provides an
answer. Although we know the posterior distributions of θ1 and θ2, this is a question about their joint
distribution, and we don’t have any convenient functions in R to help us with multivariate beta distributions.
However, if we can generate random numbers from the posterior distributions (and of course we can in this
case), we can use that to obtain good numerical approximations of P (θ1 > θ2|x1, x2).

Let’s try this out with 10,000 draws from each posterior, assuming a uniform prior for each hospital:

> theta1 <- rbeta(10000, 32, 9)

> theta2 <- rbeta(10000, 11, 11)

> mean(theta1 > theta2)

[1] 0.9889

In other words, we can be 99% certain that a 25-week infant is more likely to survive at Johns Hopkins
than the other hospital. This way of obtaining numerical approximations to otherwise intractable problems
is known as Monte Carlo integration. As data becomes more complex, we rapidly lose the abiliy to obtain
nice closed-form solutions to Bayesian posteriors like we have for binomial data. For this reason, modern
Bayesian data analysis relies heavily on Monte Carlo approaches like the above to calculate quantities of
interest from posterior distributions.

6

