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Today’s lab is about nonparametric statistics. We will discuss the use of R’s built-in function, wilcox.test,
for carrying out the Wilcoxon rank sum test, then do some programming and create our own permutation
test and construct a bootstrap confidence interval.

1 wilcox.test

Let’s begin by using a built-in function in R for nonparametric testing. To illustrate its use, let’s work with
the lead smelter data we’ve discussed in class. The primary syntax of the function is essentially identical to
that of t.test:

> lead <- read.delim("http://myweb.uiowa.edu/pbreheny/data/lead-iq.txt")

> t.test(IQ~Smelter, lead)

Welch Two Sample t-test

data: IQ by Smelter

t = 1.38, df = 120.6, p-value = 0.1702

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.519 8.506

sample estimates:

mean in group Far mean in group Near

92.69 89.19

> wilcox.test(IQ~Smelter, lead)

Wilcoxon rank sum test with continuity correction

data: IQ by Smelter

W = 2218, p-value = 0.1229

alternative hypothesis: true location shift is not equal to 0

> x <- with(lead, IQ[Smelter=="Near"])

> y <- with(lead, IQ[Smelter=="Far"])

> wilcox.test(x, y) ## Same thing

Wilcoxon rank sum test with continuity correction
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data: x and y

W = 1602, p-value = 0.1229

alternative hypothesis: true location shift is not equal to 0

In this particular case, as you may recall, the data is quite normal-looking, and the agreement between
the parametric and nonparametric test is not surprising. However, in the presence of outliers, the two might
give very different results. Let’s see what happens if we add a super-genius to the “near smelter” group:

> x <- c(x, 210)

> t.test(x, y)$p.value

[1] 0.6665

> wilcox.test(x, y)$p.value

[1] 0.1747

As we mentioned in class, the Wilcoxon rank sum test is a permutation test. In general, exact solutions
to permutation tests are quite time-consuming to calculate, although there are some very clever algorithms
for speeding things up when you’re considering sums of permuted consecutive positive integers (i.e., what
you’re doing in a rank sum test). Now, this won’t actually work for the lead smelter data because there
are ties – eight kids, for example, have an IQ of 96 – so the ranks aren’t consecutive integers anymore. So
unfortunately, even if you ask for an exact test, wilcox.test can’t give you one:

> wilcox.test(IQ~Smelter, lead, exact=TRUE)

Warning: cannot compute exact p-value with ties

Wilcoxon rank sum test with continuity correction

data: IQ by Smelter

W = 2218, p-value = 0.1229

alternative hypothesis: true location shift is not equal to 0

For the sake of illustration, though, let’s just remove the ties by adding a small amount of random noise
to all the observations (this is known as “jittering”):

> lead2 <- lead

> lead2$IQ <- lead2$IQ + runif(nrow(lead2), -0.1, 0.1)

> wilcox.test(IQ~Smelter, lead2, exact=TRUE) ## Exact result

Wilcoxon rank sum test

data: IQ by Smelter

W = 2210, p-value = 0.1329

alternative hypothesis: true location shift is not equal to 0

> wilcox.test(IQ~Smelter, lead2) ## Approximation 1

Wilcoxon rank sum test with continuity correction
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data: IQ by Smelter

W = 2210, p-value = 0.1326

alternative hypothesis: true location shift is not equal to 0

> wilcox.test(IQ~Smelter, lead2, correct=FALSE) ## Approximation 2

Wilcoxon rank sum test

data: IQ by Smelter

W = 2210, p-value = 0.1319

alternative hypothesis: true location shift is not equal to 0

In this case, with n = 124, both approximations are very accurate. At the same time, it didn’t take
very long to compute the exact result, so there is little reason in this case to prefer the appoximation. The
computational burden increases dramatically, however, with larger sample sizes. For example, with n = 400,
the exact result takes thousands of times longer to compute than the approximation:

> x <- runif(200)

> y <- runif(200)

> system.time(wilcox.test(x, y, exact=TRUE))

user system elapsed

3.181 0.148 3.332

> system.time(wilcox.test(x, y))

user system elapsed

0.002 0.000 0.001

Finally, as we discussed in class, one can invert the Wilcoxon rank sum test to obtain a semiparametric
confidence interval for the difference in location for two groups:

> x <- with(lead, IQ[Smelter=="Near"])

> y <- with(lead, IQ[Smelter=="Far"])

> wilcox.test(x, y, mu=3) ## This is the test

Wilcoxon rank sum test with continuity correction

data: x and y

W = 1374, p-value = 0.007337

alternative hypothesis: true location shift is not equal to 3

> wilcox.test(x, y+3) ## we are inverting

Wilcoxon rank sum test with continuity correction

data: x and y + 3

W = 1374, p-value = 0.007337

alternative hypothesis: true location shift is not equal to 0
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> wilcox.test(x, y, conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: x and y

W = 1602, p-value = 0.1229

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-8 1

sample estimates:

difference in location

-4

It is again worth noting that this interval is quite similar to the confidence interval we get from the t test
for the difference in mean IQ between the two groups.

2 The Wilcoxon signed rank test

In class, we discussed the idea of nonparametric testing for two-sample studies, but what about one-sample
studies like our cystic fibrosis crossover experiment? The idea of conditioning on the observed responses
and putting them into the same urn doesn’t apply here. How can we construct a nonparametric test in the
one-sample case?

Frank Wilcoxon had an idea for this situation as well, and his idea was this: consider instead conditioning
on the absolute values of the observations. Under the null, these values are just as likely to be positive as
negative (i.e., a patient is just as likely to do better on the drug as on the placebo), so we can randomly
assign each observation a +/− sign under the null. Let’s implement this idea in R:

> cf <- read.delim("http://myweb.uiowa.edu/pbreheny/data/cystic-fibrosis.txt")

> Diff <- apply(cf, 1, diff)

> r <- rank(abs(Diff)) ## Absolute ranks

> Obs <- sum(r[Diff>0]) ## Sum of positive ranks

> n <- nrow(cf)

> N <- 10000

> ts <- numeric(N)

> for (i in 1:N) {
+ s <- rbinom(n, 1, 0.5) ## Random signs

+ ts[i] <- sum(r[s==1])

+ }
> hist(ts, col="gray", border="white", xlim=c(0,105), breaks=0:105, main="", xlab="Test statistic")

> v <- c(mean(ts) - (Obs-mean(ts)), Obs)

> abline(v=v, col="slateblue", lwd=3)

> p <- sum(ts <= v[1] | ts >= v[2])/N

> mtext(paste("p =",p), line=1)

4



Test statistic

F
re

qu
en

cy

0 20 40 60 80 100

0
50

10
0

20
0

p = 0.0331

In this particular case, the sample size is small enough where we can work out the exact test ourselves:

> l <- rep(list(0:1), n)

> X <- expand.grid(l)

> N <- nrow(X)

> ts <- numeric(N)

> source("http://myweb.uiowa.edu/pbreheny/571/f14/labs/displayProgressBar.R")

> for (i in 1:N) {
+ ts[i] <- sum(r[X[i,]==1])

+ displayProgressBar(i, N)

+ }

Progress:

| |

******************************

> tab <- table(ts)

> obs <- as.character(Obs)

> v <- as.numeric(names(tab)[tab==tab[obs]])

> hist(ts, col="gray", border="white", xlim=c(0,105), breaks=0:105, main="", xlab="Test statistic")

> abline(v=v, col="slateblue", lwd=3)

> p <- sum(tab[tab <= tab[obs]])/N

> mtext(paste("p =", round(p, 5)), line=1)
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p = 0.03528

The purpose of the above programming was mainly pedagogical, since the wilcox.test function can be
used for Wilcoxon signed rank tests as well:

> wilcox.test(Diff)

Wilcoxon signed rank test

data: Diff

V = 86, p-value = 0.03528

alternative hypothesis: true location is not equal to 0

Note that we obtain exactly the same p-value from wilcox.test that we got from our do-it-yourself
version, which is reassuring.

As with the rank sum test, the signed rank test can be inverted to form a semiparametric confidence
interval:

> wilcox.test(Diff, mu=4) ## Test of location

Wilcoxon signed rank test

data: Diff

V = 83, p-value = 0.05798

alternative hypothesis: true location is not equal to 4

> wilcox.test(Diff-4) ## Same thing

Wilcoxon signed rank test

data: Diff - 4

V = 83, p-value = 0.05798

alternative hypothesis: true location is not equal to 0

> wilcox.test(Diff, conf.int=TRUE)
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Wilcoxon signed rank test

data: Diff

V = 86, p-value = 0.03528

alternative hypothesis: true location is not equal to 0

95 percent confidence interval:

3.5 251.0

sample estimates:

(pseudo)median

113.5

What is this a confidence interval for? As the output indicates, it’s for something called the “pseudome-
dian”. OK, but what if we want a confidence interval for the actual median? This is a perfect time to use
the bootstrap:

> B <- 10000

> b <- numeric(B)

> for (i in 1:B) {
+ x <- sample(Diff, replace=TRUE)

+ b[i] <- median(x)

+ }
> quantile(b, c(.025, .975)) ## Percentile interval

2.5% 97.5%

13.5 185.0

> median(Diff) + qnorm(c(.025, .975))*sd(b) ## "z" interval

[1] 29.56 189.44

Generally, the bootstrap percentile interval is superior to the bootstrap z interval. It is possible to
construct other, even more accurate bootstrap confidence intervals as well, although such intervals lie beyond
the scope of this course. If you are interested, however, there is a nice R package, boot, that will construct
such intervals (known as BCa intervals) for you.
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