Lab 10: Practice Problem 3

Consider a problem in which we observe students to see if they took notes by hand or by laptop and recorded whether they passed or failed. Of the 67 that used a laptop 44 passed. Of the 76 that wrote by hand 56 of them passed. Construct an observed and expected table. Compute the chi-squared statistic and find the p-value from the chi-squared table. Interpret your results.

Expected cell $\mathrm{E}_{\mathrm{ij}}=\left(\mathrm{n}_{\mathrm{i}+} * \mathrm{n}_{+\mathrm{j}}\right) / \mathrm{n}_{++}$

Observed

	Pass	Fail	Total
Laptop	44	23	67
Hand	56	20	76
Total	100	43	143

Expected: $\left(67^{*} 100\right) / 143=46.85$ etc

	Pass	Fail	Total
Laptop	46.85	20.14	67
Hand	53.14	22.85	76
Total	100	43	143

$$
\chi^{2}=\frac{(44-46.85)^{2}}{46.83}+\frac{(23-20.14)^{2}}{20.17}+\frac{(56-53.14)^{2}}{53.12}+\frac{(20-22.85)^{2}}{22.88}
$$

$\chi^{2}=1.087$
$\mathrm{df}=1$
From the table, everything below 1.087 is $p=0.701$.
Therefore p-value: 1-0.701= $\underline{\mathbf{0 . 2 9 9}}$

There is about a 30% probability of observing such an association by chance alone. There is no statistical evidence that writing notes on a laptop or by hand impacts test performance.

