Prospective, retrospective, and cross-sectional studies

Patrick Breheny

April 2
Study designs that can be analyzed with χ^2-tests

- One reason that χ^2-tests are so popular is that they can be used to analyze a wide variety of study designs.
- In addition to controlled experiments, they are widely used in epidemiology, where investigators must conduct observational studies.
- Broadly speaking, observational studies in epidemiology fall into three categories: prospective studies, retrospective studies, and cross-sectional studies.
- χ^2-tests and Fisher’s exact test can be used to analyze all of these studies.

- Best of all (some might say), you don’t even need to think about your study design or where your data came from; if it can be expressed as a 2x2 contingency table, the χ^2-test is always appropriate.

- One caveat: there are a lot of tables in this world that have two rows and two columns; that does not necessarily make them contingency tables, so please don’t try to perform χ^2-tests on them!
Prospective studies

- We have said that the double-blind, randomized controlled trial is the gold standard of biomedical research.
- When this is not possible (or ethical), the prospective study (also called a cohort study) is the next best thing.
- In a prospective study, investigators collect a sample, classify individuals in some way, and then wait to see if the individuals develop a condition.
- The classification is usually based on exposure to a risk factor such as smoking or obesity.
For example, the CDC tracked 6,168 women in the hopes of finding risk factors that led to breast cancer.

One risk factor they looked at was the age at which the woman gave birth to her first child:

<table>
<thead>
<tr>
<th>Age</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before age 25</td>
<td>4475</td>
</tr>
<tr>
<td>25 or older</td>
<td>1597</td>
</tr>
</tbody>
</table>
Performing a χ^2-test on the data, we obtain $p = .19$

Thus, the evidence from this study is rather unconvincing as far as whether the risk of developing breast cancer depends on the age at which a woman gives birth to her first child.

In other words, the data is consistent with the null hypothesis that the two groups have the same risk of developing breast cancer.
Not all researchers have the resources to follow thousands of people for decades to see if they develop a rare disease. Instead, they often try the more feasible approach of collecting a sample of people with the condition of interest, a second sample of people without the condition of interest, and then ask them if they were exposed to a risk factor in the past. For example, a much cheaper way to conduct the study of breast cancer risk factors would be to find 50 women with breast cancer, 50 women without breast cancer, and ask them when they had their first child. This approach is called a retrospective, or case-control study.
Prospective studies
Retrospective studies
Cross-sectional studies
Summary

Fluoride poisoning in Alaska

- In 1992, an outbreak of illness occurred in an Alaskan community
- The CDC suspected fluoride poisoning from one of the town’s water supplies

<table>
<thead>
<tr>
<th></th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drank from supply</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>Didn’t drink from supply</td>
<td>5</td>
<td>46</td>
</tr>
</tbody>
</table>
Fluoride poisoning in Alaska

- Testing whether this could be due to chance, the χ^2-test gives $p = 6 \times 10^{-13}$
- The observed association was certainly not due to chance
- But the association still may be due to factors besides fluoride poisoning
Recall bias

- For example, people who got sick may think much harder about what they ate and drank than people who didn’t.
- This is called *recall bias*, and it is an important source of bias in retrospective studies.
- The extent to which recall bias is a concern certainly depends on the study:
 - In the breast cancer example, it would not be much of a concern, since giving birth to a child is a major life event and a woman would know how old she was when it happened.
 - On the other hand, if the risk factor was something like diet or exercise, recall bias would be a huge concern, as people are notoriously unreliable at recalling these things.
- Furthermore, because researchers must gather separate samples of cases and controls, these studies are more prone to sampling biases than prospective studies.
Prospective studies
Retrospective studies
Cross-sectional studies
Summary

Electromagnetic field example

- For example, retrospective studies have been performed investigating links between childhood leukemia and exposure to electromagnetic fields (EMF).
- Families with low socioeconomic status are more likely to live near electromagnetic fields.
- Families with low socioeconomic status are also less likely to participate in studies as controls.
- Socioeconomic status does not affect the participation of cases, however (cases are usually eager to participate).
- This results in an observed association between EMF and leukemia potentially arising entirely due to bias.
Cross-sectional studies

- The weakest type of observational study is the cross-sectional study.
- In a cross-sectional study, the investigator simply gathers a single sample and cross-classifies them depending on whether they have the risk factor or not and whether they have the disease or not.
- Cross-sectional studies are the easiest to carry out, but are subject to all sorts of hidden biases.
Prospective studies
Retrospective studies
Cross-sectional studies
Summary

For example, one study surveyed 257 hospitalized individuals and determined whether each individual suffered from a disease of the respiratory system, a disease of the circulatory system, or both.

Their results:

<table>
<thead>
<tr>
<th></th>
<th>Respiratory Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulatory</td>
<td>Yes 7</td>
</tr>
<tr>
<td></td>
<td>No 13</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes 29</td>
</tr>
<tr>
<td></td>
<td>No 208</td>
</tr>
</tbody>
</table>

Could this association be due to chance?

Not likely; $\chi^2 = 7.9$, so $p = .005$
Okay, so it’s probably not due to chance
But does that mean that you are more likely to get a respiratory disease if you have a circulatory disease?
The same study surveyed nonhospitalized individuals as well:

<table>
<thead>
<tr>
<th></th>
<th>Respiratory Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulatory</td>
<td>Yes: 15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No: 189</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes: 142</td>
</tr>
<tr>
<td></td>
<td>No: 2181</td>
</tr>
</tbody>
</table>
The evidence in favor of an association is now nonexistent: \(p = .48 \)

What’s going on?

The issue isn’t a poor sampling design: both samples were gathered carefully and are representative of their respective populations

Instead, the issue is that cross-sectional studies are very susceptible to selection bias
Selection bias in cross-sectional studies

- In this example, the bias was that if a patient has both a circulatory disease and a respiratory disease, then he or she is much more likely to be hospitalized and to be included in the cross-sectional study.

- There are many other examples:
 - Suppose we obtained a cross-sectional sample of factory workers to see if they had developed asthma at a higher rate than non-factory workers.
 - Workers who developed asthma from working in the factory may be more likely to quit their job, and less likely to be included in our sample.
 - Suppose we notice an association between milk drinking and peptic ulcers.
 - Is it because milk drinking causes ulcers, or because ulcer sufferers like to drink milk in order to relieve their symptoms?
In conclusion, prospective studies are the most trustworthy observational study, but like any observational study, they are subject to confounding.

Retrospective studies are often much more feasible, but potentially subject to recall bias and unrepresentative sampling.

Cross-sectional studies provide a quick snapshot of an association, but need to be interpreted with care.