6 Binomial practice problems

1. Suppose a group of 20 men, all unrelated, received a flu vaccine. Assume each man in this group has a 0.05 chance of dying in the next year.
How likely it is that at least 2 of these men will die in the following year?

$$
\begin{aligned}
P[X \geq 2] & =1-P[X<2] \\
& =1-(P[X=0]+P[X=1]) \\
& =1-\operatorname{sum}(\operatorname{dbinom}(0: 1, \text { size }=20, \text { prob }=0.05)) \\
& =0.264
\end{aligned}
$$

2. Suppose 67% of Americans watch TV on a daily basis. Suppose repeated samples of size 19 are drawn from the U.S. population.
What is the probability that at least 3 of the randomly selected individuals watch TV on a daily basis?

$$
\begin{aligned}
P[X \geq 3] & =1-(P[X=0]+P[X=1]+P[X=2]) \\
& =1-\left(\binom{19}{0}(0.67)^{0}(0.33)^{19-0}+\binom{19}{1}(0.67)^{1}(0.33)^{19-1}+\binom{19}{2}(0.67)^{0}(0.33)^{19-2}\right) \\
& =0.9999995
\end{aligned}
$$

7 Normal practice problems

1. Find the area under the normal curve...
(a) below 0.3.

$$
\begin{aligned}
P[X \leq 0.3] & =\operatorname{pnorm}(.3) \\
& =0.6179114
\end{aligned}
$$

Using the table, we find the probability to be 0.618 .
(b) above 0.65.

$$
\begin{aligned}
P[X \geq 0.65] & =1-\operatorname{pnorm}(0.65) \\
& =0.2578461 \\
& \text { OR } \\
P[X \geq 0.65] & =\operatorname{pnorm}(-0.65) \\
& =0.2578461
\end{aligned}
$$

Using the table, we find the probability to be $1-0.742=0.258$.
(c) between 0.3 and 0.65 .

$$
\begin{aligned}
P[0.3 \leq X \leq 0.65] & =\operatorname{pnorm}(0.65)-\operatorname{pnorm}(0.3) \\
& =0.1242425 \\
& O R \\
P[0.3 \leq X \leq 0.65] & =1-(\operatorname{pnorm}(0.3)+\operatorname{pnorm}(-0.65)) \\
& =0.1242425
\end{aligned}
$$

Using the table, we find the probability to be $0.742-0.618=0.124$.
(d) below -0.45.

$$
\begin{aligned}
P[X \leq-0.45] & =\operatorname{pnorm}(-0.45) \\
& =0.3263552
\end{aligned}
$$

Using the table, we find the probability to be 0.326 .
2. Find the following percentiles of the normal curve.
(a) $20^{t h}$

$$
\begin{aligned}
P[Z \leq z] & =0.1 \\
z & =\text { qnorm }(0.2) \\
& =-0.8416212
\end{aligned}
$$

Using the table, we find the percentile to be -0.84 .
(b) $80^{t h}$

$$
\begin{aligned}
P[Z \leq z] & =0.80 \\
z & =\text { qnorm }(0.80) \\
& =0.8416212
\end{aligned}
$$

Using the table, we find the percentile to be 0.84 .
(c) $95^{t h}$

$$
\begin{aligned}
P[Z \leq z] & =0.95 \\
z & =\text { qnorm }(.95) \\
& =1.644854
\end{aligned}
$$

Using the table, we find that the percentile is between 1.64 and 1.65 . From the R code above, we see that the percentile is actually rounded to 1.645 ; this is value commonly used for the $95^{\text {th }}$ percentile.
(d) $90^{t h}$

$$
\begin{aligned}
P[Z \leq z] & =0.90 \\
z & =\text { qnorm }(.90) \\
& =1.281552
\end{aligned}
$$

Using the table, we find the percentile to be 1.28 .

8 Categorical practice problems

1. Use the table below summarizing the survival data at gestational age 22 weeks to answer the following questions.

Outcome	Count
Survived	0
Died	29

(a) What are the exact 95% Confidence Limits for probability of surviving?

$$
\begin{aligned}
\text { Lower Bound } & =1-95 \% \text { Upper Conf Limit } \\
& =1-1.0000 \\
& =0.0000 \\
\text { Upper Bound } & =1-95 \% \text { Lower Conf Limit } \\
& =1-0.8806 \\
& =0.1194
\end{aligned}
$$

(b) What is the p-value for the approximate test and exact test?

$$
\begin{aligned}
\text { approx } & =<.0001 \\
\text { exact } & =3.725 \mathrm{E}-09
\end{aligned}
$$

(c) What test does the p-value correspond to?

$$
\begin{gathered}
H_{0}: p=0.50 \\
\text { vs. } \\
H_{1}: p \neq 0.50
\end{gathered}
$$

2. Use the smoking data set to answer the following questions.
(a) What proportion of the observations survived?

$$
\frac{\# \text { survived }}{\# \text { observations }}=0.7191781
$$

(b) What is the exact confidence interval for survival?

$$
\mathrm{CI}=(0.6940270,7433448)
$$

(c) What is the exact p-value testing that the proportion of survival is equal to 0.5 ?

$$
P[p \geq 0.7191781]=<2.2 e-16
$$

