
Introduction to Biostatistics (171:161)
Breheny

Lab #13

In the previous lab we began analyzing Infant Diarrhea study, in lab #13 we will further anaylze
that data set using what we now know about outliers, transforming data and non-parametric
procedures.

1 Infant diarrhea study

We will begin by revisting the distribution of the Infant Diarrhea data. Pay particular attention
to the strong right-skew and the outliers.

SAS: R:

PROC SGPLOT DATA=diarrhea;

VBOX Stool / CATEGORY=Group;

RUN;

boxplot(Stool~Group,col="gray")

2 Outliers

We know that extreme observations have an unfair impact on the mean. Since the two-sample
t-test is based on comparing the means within each study group, anything that impacts the mean
will impact the results of the test. We also know that outliers influence the standard error which
will also factor in towards the test results. Lets try using 750 ml/kg as an upper limit to remove
the outliers in each group. Compare the results we get from this to analysis from lab #12 when
the outliers were included.

In SAS, we can work with subsets of our data using the WHERE option; in R, diarrhea[condition,]
tells R to use only those rows the data set diarrhea where condition is true:

SAS: R:

PROC TTEST DATA=diarrhea;

WHERE Stool < 750;

CLASS Group;

VAR Stool;

RUN;

t.test(Stool~Group,

diarrhea[Stool < 750,],

var.equal=TRUE)

Note that after throwing out these observations the p-value is a lot lower. It is important to
recognize two points here:
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• The t-test is quite heavily affected by those severe cases, for which the severity of the illness
was much higher than the average. This might not be desirable, to have your analysis so
highly affected by such a small percentage of your data. Perhaps we should do something
about it.

• Okay, we should do something about it, but arbitrarily throwing away some of the data is
not the ideal solution! In particular, if you’re trying to say something about whether bismuth
salicylate can help sick infants, how can you justify excluding the sickest of these children?

3 Log transformations

One approach that would be better than throwing away data is to take a log transformation of the
original response. As we discussed in lecture log transformations work well when the data is right
skewed.

SAS: R:

DATA diarrhea;

SET diarrhea;

logStool=log(Stool);

RUN;

logStool <- log(Stool)

SAS: R:

PROC SGPANEL DATA=diarrhea;

PANELBY Group;

HISTOGRAM logStool;

RUN;

require(lattice)

histogram(~logStool|Group)

From the plot of logStool, you can see that there’s still a little bit of skewness to the data, but
far less than there was originally. We can now perform a t-test on logStool and acheive a more
powerful result.

SAS: R:

PROC TTEST DATA=diarrhea;

CLASS Group;

VAR logStool;

RUN;

t.test(logStool~Group,

var.equal=FALSE)

t.test(logStool~Group)

Note that our p-value is four times lower than before. We’ve lessened the impact of those extreme
cases without actually removing them from our data set.

Also note the confidence limits provided are on the log scale. In order to obtain a more interpretable
interval we need to exponentiate them.
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4 Wilcoxon rank-sum test

Another approach that is also better than throwing away outliers is to use a rank-based method
like the Wilcoxon rank-sum test (also known as the Mann-Whitney test). The rank-sum test is
analagous to a two-sample t-test.

The procedure for doing this is SAS is the rather awkwardly named PROC NPAR1WAY; the “npar”
part refers to the idea that this is a nonparametric approach . . . unfortunately there is not a short
explanation for the “1way” part of the name. In R, this test can be carried out via wilcox.test.
These procedures have exactly the same syntax as the t-test procedures:

SAS: R:

PROC NPAR1WAY DATA=diarrhea;

CLASS Group;

VAR Stool;

RUN;

wilcox.test(Stool~Group)

SAS outdoes itself here and gives you about 10 times more information than you really want. Hunt
through the pages of output until you come to the part about the “Wilcoxon Two-Sample Test”.
When people refer to the “Wilcoxon rank-sum test”, they generally mean the one that uses the
normal approximation. So, in this case, we would get a p-value of .0056 (which is almost identical
to the p-value we got from analyzing the log-transformed data).

Note about the different “Wilcoxon” tests: SAS offers several different approximations of the exact
answer, any of which are fine to use in this class. The exact answer can be obtained using an
EXACT WILCOXON statement. The same can be done in R using exact is TRUE.

5 Wilcoxon signed-rank test

If the data you are analyzing is matched/paired the signed-rank test is a non-parametric procedure
that takes in to account the relatedness between the two groups. The signed-rank test is analagous
to a paired t-test.

To do the Wilcoxon signed-rank test in SAS you need to create a variable for the difference between
the two groups. PROC UNIVARIATE will do the test and provide the results. In R, you can do the
test using the wilcox.test function with the argument Paired = TRUE

As an example we will use the oat bran and corn flakes cholesterol data that we have previously
looked at in several homework assignments.
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SAS: R:

DATA oatbran;

SET oatbran;

diff = cornflakes - oatbran;

RUN;

PROC UNIVARIATE DATA = oatbran;

VAR diff;

RUN;

wilcox.test(CornFlakes, OatBran, paired = TRUE)

Recall that the paired t-test resulted in a p-value of 0.005, compare this to results from the above
approach.

Note: R does an exact test here when n<50 and approximate test otherwise. SAS does an exact
test when n<20.

The bottom line of this lab: when you’ve got continuous data, don’t just blindly apply a t-test.
Look at the data, and if it’s skewed or contains large outliers, consider a transformation or a
rank-based method instead.

4


