MEASURING NATIONAL POWER

KELLY M. KADERA

Department of Political Science
University of Iowa
Iowa City, IA 52242-1409

GERALD L. SOROKIN

Hillel Foundation
Iowa City, IA 52245-1730

Power’s central role in international relations theory is unsurpassed, yet considerable debate persists over the quality of its most commonly used indicator, the Correlates of War project’s Composite Indicator of National Capabilities (CINC). At issue is whether CINC’s main feature, its ability to measure a nation’s power relative to other nations’ power levels, inadvertently creates errors when membership in the comparison group fluctuates. Using mathematical proofs and an empirical investigation of the major power system, we show that Organski and Kugler (1980) and Gleditsch and Ward (1999) are correct: changes in the comparison group do create errors in CINC. In particular, CINC inadvertently mismeasures dyadic power distributions. Using power transition theory as a context within which to evaluate CINC, we find that it creates artificial power transitions, masks actual transitions, changes the timing of transitions, alters the magnitude by which one state overtakes another, and produces spurious relationships between transitions and conflict. We also offer a viable alternative measure, called the Geometric Indicator of National Capabilities (GINC), and demonstrate how its use of the geometric mean retains CINC’s notion of systemically-based relative power and immunizes it from the problems afflicting CINC. GINC is strongly recommended for dyadic analyses, especially when membership in the comparison group fluctuates frequently.

Received for publication August 2003.

*Previous versions of this paper were presented at the annual meeting of the International Studies Association, March 18–22, 1997, Toronto, ON, and at the annual meeting of the ISA-Midwest, October 18–20, 1996, St. Louis, MO. We thank Daniel Morey and Ronald Schwenn for their research assistance and Stuart Bremer, Mark Crescenzi, Paul Diehl, Douglas Dion, Paul Hensel, James Lindsay, Doug Lemke, Karen Nelson, Megan Shannon, and anonymous reviewers for their comments on earlier drafts. All errors remain ours.

Address correspondence to Kelly Kadera, Department of Political Science, 341 Schaeffer Hall, University of Iowa, Iowa City, IA 52242-1409, USA. E-mail: kelly-kadera@uiowa.edu
Because power’s central role in international relations theory is unsurpassed, confidence in its most commonly used measure, namely the Correlates of War (COW) project’s composite indicator of national power (CINC), is crucial to theoretical advancement. Considerable debate over CINC’s performance persists (cf. Organski and Kugler, 1980; Gleditsch and Ward, 1999; Kim, 1989; and Houweling and Siccama, 1996). The purpose of this paper is to settle this debate by closely examining CINC. We are particularly concerned with whether CINC’s main feature, its ability to measure a nation’s power relative to other nations’ power levels, inadvertently creates errors when the number and identity of states in the comparison group fluctuates. Our findings support Organski and Kugler’s and Gleditsch and Ward’s conclusion that CINC exhibits validity problems, and we demonstrate the ramifications within the context of a popular theoretical framework. A viable alternative measure, called GINC, is proposed.

The paper is organized as follows. First, we review power’s role in international relations theory and the debate over whether CINC is prone to measurement errors. Second, we assess the frequency with which the suspected sources of error occur. Third, we resolve the debate over CINC’s susceptibility to mismeasurement by mathematically analyzing its functional form. Here, we use power transition theory as an applied context within which to evaluate CINC’s validity. We show that CINC inadvertently mismeasures dyadic power distributions: it produces artificial transitions, masks actual transitions, changes the timing of transitions, and alters the magnitude by which one state overtakes another. We also offer a remedial measure and demonstrate its immunity to these problems. Fourth, we show how CINC’s errors affect substantive conclusions, again using power transition theory as an example. Last, we summarize our findings and make recommendations about when scholars should use GINC.

RELEVANT LITERATURE

Numerous theories of international relations heavily rely on the concept of power. Realism, the dominant paradigm, focuses so strongly on power that it is often called *power politics*. In addition, the fierce debate between balance of power theorists and power transition scholars has long centered on the conflictual effects of two rival nations’ relative power levels (DiCicco and Levy, 1999). Power is also instrumental to expected utility models of war, which rely on it to calculate the likelihood of victory (Bueno de Mesquita, 1981; Bueno de Mesquita and Lalman, 1992; Powell, 1996). Polarity theories (Singer et al., 1972; Mansfield, 1992), hegemonic stability theory (Gilpin, 1981 and 1988), long cycle theories (Modelski, 1978, Modelski and Thompson, 1989; Rasler and Thompson, 1994), and relative power cycle theory (Doran, 1989; Doran and Parsons, 1980) also give power a “determining role” (DiCicco and Levy, 1999, p. 679). Power has also been used as a control variable for empirical investigations of many other substantive issues such as the normative and structural determinants of democratic peace (Maoz and Russett, 1993), regime change and alliance shifts (Siverson and Starr, 1994), and the role of regime type in the
settlement of disputes (Dixon, 1994).

Despite the centrality of power in the study of world politics, scholars disagree on the merits of its most common indicator, CINC. At the crux of this debate is the question of whether CINC’s use of a baseline comparison group makes a nation’s score sensitive to variation in the membership of that group. CINC is based on two indicators each of military, industrial, and demographic dimensions. The six resulting indicators are each expressed as a proportion of all group members’ capabilities on that dimension. The six proportions are then averaged to create a mean share of capabilities, representing how well a state performs relative to its peers. Are these average shares sensitive to variation in which states are included in the ratios’ denominators and when they are included?

Intuitive ideas about the effects of changes in the comparison group on the CINC measure vary widely. Organski and Kugler criticize CINC’s sensitivity to fluctuations in group members’ capabilities (1980, p. 36). When a state enters or exits the relevant system, the group’s overall capabilities fluctuate more dramatically than they would from a simple shift in one’s capabilities. Therefore, entries and exits make this sensitivity even more acute. Gleditsch and Ward make a similar claim, arguing that changes in membership mean that “proportional system characteristics, such as the CINC measure…differ over time by construction, particularly after the First World War” (1999, p. 397). In contrast, Kim, citing “simple arithmetic,” proposes that a state’s CINC score is immune to changes in the group of states included in the calculation (1989, p. 262, n. 8). Houweling and Siccama concur with Kim, reasoning that as long as a composite measure is used for dyadic purposes, changes in system membership have no effect (1996, p. 109).

These two assessments of the effect of the entry and exit of states are at odds. One tells researchers that entries and exits make CINC’s use of a comparison group problematic. The second, apparently based on sound mathematical reasoning, assures us there is nothing to worry about because two nations’ scores relative to one another will remain constant regardless of membership in the comparison group. Confident, noted scholars offer both assessments. Who is right? We will mathematically demonstrate that Organski and Kugler’s and Gleditsch and Ward’s intuition is correct: a nation’s CINC score does inadvertently reflect the composition of the comparison group at a particular point in time. Before doing so, we address the question of whether or not group membership changes are sufficiently common to present serious problems for CINC.

THE REALITY OF GROUP MEMBERSHIP CHANGES

How often does group membership actually change? In any comparison group, shifts can occur: 1) when states are born or when they die, 2) when data become available or unavailable, 3) as states qualify or disqualify as a member of the selected group, and 4) when scholars alter membership rules. Examples follow.

Let us look at states’ movement in and out of the entire international system, a common comparison group (e.g., Kim, 1989; Bennett, 1997; Bremer, 1992 and 1993; Mitchell et al., 1999). Changes primarily result from the birth and death of actors and whether or not those actors qualify as states according to the heavily used COW
Interstate Membership list (Small and Singer, 1982). Figure 1 shows the frequency of state births (e.g., the establishment of Israel) and deaths (e.g., the disintegration of Yugoslavia and the USSR and the subsuming of states as in the Balkans). At least 1 birth occurs in 47.8 percent of the years since 1816, and at least 1 death occurs in 14.3 percent of the years. The aggregate number of states in the system shifts (up or down) from one year to the next over 54 percent of the time. The notable spike in membership at 1920 is largely due to the COW alteration in membership rules after 1919.1 Sudden upward shifts are also seen during the post World War decolonization in Asia, Africa, and the Middle East and in the early 1990s following the dissolution of the Soviet Union. Generally, membership changes are very common; at least 1 birth or death occurs in 56.6 percent of the years.2

If entries and exits inadvertently affect states’ power levels, then modifications of the coding rules for system membership also have serious implications. Several studies propose nontrivial amendments to the COW criteria for statehood (Bennett and Zitomersky, 1982; Gleditsch and Ward, 1999; Fazal, 2000). For example, switching from the COW guidelines to Fazal’s adds 19 states to the system, revises the entry date for 24, and increases the proportion that experience death from 22.86 to about 30 percent (2000).

Appraisal of a specialized subset of states as a referent group is also instructive. The most commonly analyzed subgroup consists of the “major powers” (e.g., Goertz

Figure 1. Entry to and Exit from the International System.
Figure 2. Major Power System Membership and Data Availability.
and Diehl, 1995; Huth et al., 1993; Kadera, 2001; Mansfield, 1992 and 1994), states that are “involved in the bulk of the system’s diplomatic and martial activities” and that “set the tone for other nations’ interactions” (Small and Singer, 1979, p. 65).

Figure 2 illustrates the frequency of entries and exits in this elite comparison group, according to the COW rules. The composition of the major power system changes 12 times in 170 years, and the arrangement often lasts for only a handful of years.

Sustained membership is prevalent from 1816 to 1859 and from 1950 on. Four states—Japan, Italy, France, and Austria-Hungary/Austria—disappear completely for one or more years, and missing data for Japan and China are especially problematic. Therefore, exits and entries occur frequently in common analysis sets. Seemingly innocuous issues such as which set of coding rules is used, the birth and death of states, the qualification and disqualification of states as members of a stylized group, and data availability are all culprits. In the following section, we demonstrate how these entries and exits affect CINC’s measure of national power and dyadic power distributions.

PROBLEMS AND SOLUTIONS

This section focuses on formal reasoning based on the functional form of the CINC score. After introducing some mathematical notation, we discuss CINC’s measurement of power transitions and the errors that are introduced by its averaging procedure. Then we propose an alternative composite measure and demonstrate how it remedies CINC’s shortcomings.

Measuring Power with a Composite Indicator

We establish the following notation for CINC’s six national capabilities indicators:

\[
ME_i = \text{nation I’s military expenditures},
\]

\[
MP_i = \text{nation I’s military personnel},
\]

\[
IS_i = \text{nation I’s iron and steel production},
\]

\[
NRG_i = \text{nation I’s energy consumption},
\]

\[
UPOP_i = \text{nation I’s urban population},
\]

\[
TPOP_i = \text{nation I’s total population}.
\]

The first step in building a CINC score is to determine the group of nations comprising the relevant system of analysis. Next, a single nation’s system share of a particular capability is computed. For example, in a 3-nation system, X’s share of total military expenditures, \(\%ME_x\), is given by:

\[
\%ME_x = \frac{ME_x}{ME_x + ME_y + ME_z}
\]

A similar calculation determines nation X’s share of each of the five remaining aspects of national power, producing values for \(\%MP_x\), \(\%IS_x\), \(\%NRG_x\), \(\%UP_x\), and
Each proportion ranges from 0 to 1. Averaging combines the proportions into a single indicator:

$$CINC = \frac{\%ME_x + \%MP_x + \%IS_x + \%NRG_x + \%UP_x + \%TP_x}{6} \quad [2]$$

This procedure is followed for each nation in the system for each year. The entry and exit of additional states into the referent group is the suspected source of errors, so let:

$$CINC_i = \text{nation I's power level before nation Z enters the system, and}$$

$$CINC_i^* = \text{nation I's power level after nation Z enters the system.}$$

Unintended Consequences of CINC

Numerous scholars use CINC, or similarly constructed composite measures, to measure dyadic power relationships. In fact, a JSTOR search revealed over 40 such studies since 1985 (see, e.g., Bueno de Mesquita et al., 1997; Geller, 1993; Sample, 1998). We caution researchers about the possibility of erroneous findings stemming from CINC’s mismeasurement. To demonstrate CINC’s errors, we consider their effects within a specific theoretical context, namely power transition theory (Organski, 1958; Organski and Kugler, 1980). Many tests of this theory also use CINC (e.g., Kim, 1989 and 2002; Lemke and Werner, 1996). Our choice was based on the prominence of the theory (DiCicco and Levy, 1999, p. 675). A handful of power-centric theories do not focus on power distributions (e.g., Powell, 1996 and 1999; Werner, 1999); but the many that do typically predict peaks in conflict near power transitions, although there is some disagreement about whether this happens before, during, or after a transition (cf., Bueno de Mesquita and Lalman, 1992; Geller, 1992; Kadera, 2001; Kim and Morrow, 1992; Organski, 1958; Organski and Kugler, 1980). Even those that consider other power-based factors such as the speed of change and the capabilities contributions of allies also include the power transition itself as a key predictor of heightened hostilities (e.g., Kim, 1989 and 2002; Lemke and Werner, 1996). More importantly, we emphasize that the focus on one particular theory is merely for purposes of demonstration. Our finding, that the entry and exit of states inadvertently affects CINC, applies to all endeavors to measure dyadic power relations, which has broad-based implications.

Power transition scholars are interested in: 1) whether two opponents’ power levels are equal or unequal, 2) whether one opponent is overtaking the other, and 3) when such takeovers, or power transitions, occur in relationship to conflict (Organski and Kugler, 1980, p. 36). These questions guide our investigation of CINC’s performance. Hence, consider the relationship that signals an empirical power transition between X and Y:

$$CINC_x = CINC_y \quad [3]$$
Equivalently:

\[CINC_x - CINC_y = 0 \] \[\text{(4)} \]

which can be rewritten in terms of the six indicators:

\[\frac{ME_x - ME_y}{ME_x + ME_y} + \frac{MP_x - MP_y}{MP_x + MP_y} + ... + \frac{TP_x - TP_y}{TP_x + TP_y} = 0 \] \[\text{(5)} \]

Some of the fractions on the left-hand side of Equation 5 will be positive, indicating that nation X holds the advantage over nation Y for those particular dimensions. Other fractions will be negative, indicating that nation Y holds the advantage in those domains. When a transition is underway, the magnitude of the sum of the positive fractions is exactly equal to the magnitude of the sum of the negative fractions:

\[\Sigma \text{ nation X’s advantages} = \Sigma \text{ nation Y’s advantages} \] \[\text{(6)} \]

In the hypothetical example given in the first two columns of Table 1, nation X holds the advantage in iron and steel production and energy consumption while nation Y holds the advantage in military expenditures, military personnel, urban population, and total population. Nation Y enjoys the overall advantage because:

\[\Sigma \text{ nation X’s advantages} < \Sigma \text{ nation Y’s advantages} \] \[\text{(7)} \]

That is,

\[\frac{IRST_x - IRST_y}{IRST_x + IRST_y} + \frac{NRG_x - NRG_y}{NRG_x + NRG_y} < \frac{ME_x - ME_y}{ME_x + ME_y} + \frac{MP_x - MP_y}{MP_x + MP_y} \]

\[\frac{UPOP_x - UPOP_y}{UPOP_x + UPOP_y} + \frac{TPOP_y - TPOP_x}{TPOP_y + TPOP_x} \] \[\text{(8)} \]

Given the inequality in Equation 8, the hypothetical example does not represent a transition. Could the entry of nation Z cause an artificial transition to appear? The

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Hypothetical Dataset for Calculating Relative Power</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspect of Power</th>
<th>Nation</th>
<th>System Total</th>
<th>Revised Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Military Expenditures</td>
<td>50</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Military Personnel</td>
<td>17</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Iron & Steel Production</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Energy Consumption</td>
<td>65</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>Urban Population</td>
<td>15</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Total Population</td>
<td>40</td>
<td>45</td>
<td>35</td>
</tr>
</tbody>
</table>
hypothetical dataset yields the following \(CINC \) scores for X and Y with and without Z as a group member:

\[
\begin{align*}
CINC_x &= .48 & CINC^*_x &= .37 \\
CINC_y &= .52 & CINC^*_y &= .40
\end{align*}
\]

Nations X and Y experience a transition neither with nor without Z’s inclusion in the calculation. While the difference between their scores decreases from .04 to .03, it does not become 0. Similarly, the ratio of the two scores increases from .923 to .925, thereby moving closer to, but not becoming 1. Nor does X take the lead. Is this universally true for all cases? In other words, if the difference between two rivals’ \(CINC \) scores is not 0, can it speciously become 0 simply due to an additional actor?

We answer this question by investigating the impact of a third actor on both sides of the inequality (Eq. 8). Nation Z’s capabilities, \(ME_z, MP_z, IS_z, NRG_z, UP_z \), and \(TP_z \), are added to the denominators, and each fraction becomes slightly smaller. Both nation X’s advantages and nation Y’s advantages diminish.

\[
\begin{align*}
\frac{IRST_x - IRST_y}{IRST_x + IRST_y + IRST_z} + \frac{NRG_x - NRG_y}{NRG_x + NRG_y + NRG_z} < \frac{ME_x - ME_y}{ME_x + ME_y + ME_z} + \\
\frac{MP_x - MP_y}{MP_x + MP_y + MP_z} + \frac{UPOP_x - UPOP_y}{UPOP_x + UPOP_y + UPOP_z} + \\
\frac{TPOP_y - TPOP_x}{TPOP_x + TPOP_y + TPOP_z}
\end{align*}
\]

Does the inequality hold? In the hypothetical example, it does. Nation Y maintains its advantage, albeit a smaller one. The general answer can be found in the sizes of Z’s six indicators relative to those of the other two nations. In order for X to gain the advantage after Z’s entry, Z’s iron and steel production and energy consumption capabilities must be very small compared to X’s and Y’s; while its military expenditures, military personnel, urban population, and total population must be very large. This would make the fractions on the left-hand side of inequality [8] diminish by much less than the fractions on the right-hand side, so that:

\[
\begin{align*}
\frac{IRST_x - IRST_y}{IRST_x + IRST_y + IRST_z} + \frac{NRG_x - NRG_y}{NRG_x + NRG_y + NRG_z} > \frac{ME_x - ME_y}{ME_x + ME_y + ME_z} + \\
\frac{MP_x - MP_y}{MP_x + MP_y + MP_z} + \frac{UPOP_x - UPOP_y}{UPOP_x + UPOP_y + UPOP_z} + \\
\frac{TPOP_y - TPOP_x}{TPOP_x + TPOP_y + TPOP_z}
\end{align*}
\]
Nation Z’s entry brings about a transition if its capabilities are bifurcated in a particular way. Values for one subset of the six indicators must be especially high, and this subset must match the group for which the previously stronger state (Y in the example) held the advantage. Values in the second subset must be low, and this subset should match the group for which the challenger (X in the example) held the advantage. In other words, the new system member must compete almost exclusively with the stronger state for shares of the group’s capabilities. For example, let us examine what would happen if nation Z’s capabilities are changed to the values in the last column of Table 1. The scores for X and Y become $CINC^x = .281$ and $CINC^y = .275$. This new calculation reveals an artificial power transition, since X surpasses Y solely because Z enters the picture.8

Not only do scholars need to know when power transitions are brought about by the entry of a third nation, they also need to know when the exit of a nation might lead to the avoidance of a transition. Under what conditions might this happen? Suppose that while nation Z is a member, Y surpasses X. Accordingly, we would observe:

condition 1: Σ nation X’s advantages $<$ Σ nation Y’s advantages \hfill [12]

What happens instead if nation Z exits just before we take stock of the two states’ relative advantages? If nation Z’s exit causes X and Y to avoid a transition they otherwise would have experienced, then we would observe:

condition 2: Σ nation X’s advantages $>$ Σ nation Y’s advantages \hfill [13]

For condition 2 to occur when Z leaves, X’s power level must grow by much more than Y’s does. This means that the capabilities removed from the denominators of the fractions where X had the advantage should be much larger than the capabilities removed from the denominators where Y had the advantage. That is, the departing nation must have been competing for resources most vigorously with the potential power transition loser (X), and ineffectively with the potential transition winner (Y).

Until now, this discussion on the inadvertent effects of $CINC$ on power transitions has focused on those measured by the difference between X and Y’s scores. It can be demonstrated that transitions measured by the ratio of their scores are similarly affected. Suppose $\frac{CINC^x}{CINC^y} < 1$. What would artificially cause the inequality to reverse when Z enters the system? Nation X would gain the advantage if Z were most competitive on dimensions where Y had enjoyed an advantage and least competitive on those where X was previously strong. And what would artificially cause an in-process transition to be masked? Just as was the case for the difference-measured transition, it would be nation Z’s strengths vying primarily with the erstwhile loser’s strengths.9

So, nation Z’s entry will artificially cause a transition and its exit will artificially
avert a transition only if its scores across the six indicators are dichotomized such that the values for one subset of indicators are unusually high while the values for the remaining subset are unusually low. A bifurcation in Z’s capabilities can also manifest two nuanced versions of artificial or masked transitions: 1) changing their *timing* by hastening or delaying them and 2) changing their *magnitude* by augmenting or ameliorating the amount by which the weaker overtakes the stronger. One example from major power data demonstrates both. Without the United States’ entry into the major power system, Russia overtakes Germany in 1905. It does so with a CINC score that is 119.65 percent of Germany’s. In 1907, Germany regains the lead. The scenario is quite different if the United States enters the major power system in 1898, as prescribed by the COW system membership rules. With the United States in the system, Russia still overtakes Germany in 1905, but this time with a much larger ratio over Germany’s CINC score, namely 151.43 percent. In addition, Germany reestablishes its lead much later, not until 1916, or 11 years later than it would have had the United States not entered the system.

One caveat concerning the dichotomous capabilities culprit is in order. Such dichotomies among the major powers, a common focus group, should be relatively mild. Major powers are precisely those actors who are strong across many dimensions. If a nation has an uncommonly low score on one or more dimensions, it would be less likely to be included as a major power. For regional powers, however, this may not be unusual. Egypt, with high values for population and military personnel but low industrial scores, is a good example. The entry or exit of such a state would have a pronounced effect on the CINC values of Middle Eastern and North African states. Although we later demonstrate that entries and exits among the major powers do indeed produce transition measurement errors, such errors are likely to be more severe for regional groups of states.

An Alternative Composite Indicator: GINC

Unlike the arithmetic mean, the geometric mean does not affect dyadic power relationships when membership in the baseline group changes. Therefore, we design *GINC*, a measure of nation I’s power based on the geometric mean:

\[
GINC_i = \sqrt[6]{\frac{ME_i \times MP_i \times \ldots \times TP_i}{ME_{total} \times MP_{total} \times \ldots \times TP_{total}}} \quad [14]
\]

Using \(GINC_i^*\), to represent I’s score when Z is in the referent group, we consider how Z’s entry affects the power distribution between X and Y:

\[
\frac{GINC_x^*}{GINC_y^*} = \sqrt[6]{\frac{ME_x \times MP_x \times \ldots \times TP_x}{ME_x + ME_y + ME_z \times MP_x + MP_y + MP_z \times \ldots \times TP_x + TP_y + TP_z}} \quad [15]
\]
This reduces to:

\[
\frac{ME_x \ast MP_x \ast \ldots \ast TP_x}{ME_y \ast MP_y \ast \ldots \ast TP_y}
\]

which is equivalent to the ratio of X and Y’s GINC scores before Z enters the system.

It can generally be shown that:

\[
\frac{GINC_x^*}{GINC_y^*} = \frac{GINC_x}{GINC_y}
\]

Because dyadic power relationships are unaffected by entries and exits when the geometric mean is used; artificial, masked, magnified, minimized, and mistimed transitions are impossible with GINC.

Although membership changes alter a state’s GINC score (\(GINC_x^* \neq GINC_x\)), they do so in a predictable manner that is identical across all states. That is:

\[
\frac{GINC_x^*}{GINC_y^*} = \frac{GINC_x^*}{GINC_y^*} = \frac{GINC_i^*}{GINC_j^*}
\]

GINC maintains several of CINC’s advantages. First, it conveniently uses the COW capabilities data as inputs. Second, it offers a relative measure of national power. An additional advantage of the geometric mean is that it is conceptually appealing for measuring percentage changes (University of Toronto Mathematics Network, 1997), a useful feature for scholars interested in how power shifts affect conflict. Third, GINC reflects the performance of an individual state or a pair of states within the context of a relevant system. Each state’s score conveniently translates as its share of group capabilities. For example, Britain’s GINC score can be calculated as a share of global, regional, or major power capabilities. In settings where states can have “multiple enemies” (Bennett, 1996), it is conceptually appealing to make power share comparisons for each possible or politically relevant dyad. This approach, which assesses numerous dyads within a broader, sometimes global, structure, is taken by a variety of scholars investigating the connection between power distributions and hostility (e.g., Bennett, 1996; James, 2002; Kim, 2002; Organski and Kugler, 1980).

AN APPLIED COMPARISON OF MEASURES

Does the technique for measuring national power affect substantive results? In this section, we consider practical consequences for measuring dyadic power relationships and their relationship to militarized conflicts. For reasons outlined above, our focus is on the questions derived from power transition theory, but the procedure can be applied to other theoretical investigations as well.\(^{12}\)
We compare GINC and CINC in two universes of cases: the major powers and a special subset of them—the three or four most powerful—known as the “contenders” (Organski and Kugler, 1980, pp. 44–45). As explained above, major powers are the group least likely to manifest artificial or masked transitions produced by the traditional CINC indicator. Therefore, we have biased the analyses against confirming our mathematical demonstration of CINC’s problems. Within the two universes, we gather all cases of dyadic power transitions, which occur whenever one state’s power score becomes equal with another’s and then overtakes it by at least 10 percent. In other words, the stronger to weaker power ratio must be at least 1.1.

For war cases, we use level 5 militarized disputes from the dyadic version of the militarized interstate dispute (MID) dataset (Jones et al., 1996). Because some empirical investigations of power transition theory consider its application to lower levels of conflict as well (Kadera, 2001; Geller, 1993; Bueno de Mesquita et al., 1997), we also consider the occurrence of all levels of MIDs. Conflicts are considered to be associated with power transitions if they occur within five years of the transition. Occasionally, the resulting 10-year window encompasses another power transition between the same pair of major powers. In such cases, we average the date of the transitions, count them as a single transition, and look for associated conflicts in the span running from five years before the earliest transition to five years after the latest.

Power Transitions and the Occurrence of War

Because a central prediction of power transition theory is that power transitions are associated with wars, we compare how often each power measure results in transitions associated with war, as reported in Table 2. The difference between GINC and CINC is statistically significant for neither major power nor contender dyads.

In the process of aggregating information to construct Table 2, we regularly noticed distinctions between a dyad’s record according to one measure versus that according to another. These differences, when aggregated, appear to wash out. In order to examine the differences at the dyadic level, we look at the magnitude of the difference between war rates for each dyad, and then calculate the average dyadic difference between the two indicators. For contenders, the difference (21.67 percent) is not statistically significant because it involves such a low number of cases ($n = 8$). However, the difference for major powers, 17.54 percent, is statistically significant.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Transitions and War</td>
</tr>
<tr>
<td>Percent of power transitions associated with ≥1 war</td>
</tr>
<tr>
<td>GINC</td>
</tr>
<tr>
<td>Major powers</td>
</tr>
<tr>
<td>Contenders</td>
</tr>
</tbody>
</table>
at the .05 level. Thus, a sizable discrepancy in war rates results from the two methods of measuring national power and detecting dyadic power transitions. Switching from CINC to GINC can raise or lower a transitioning, major power dyad’s war rate by an average of 17.54 percent. Because this value is significant, we conclude that changing from CINC to GINC results in drastically new estimates for war risks associated with dyadic power transitions. The pronounced difference at the dyadic level should lead researchers to be concerned about CINC’s effect on empirical findings when the unit of analysis is the dyad.

Power Transitions and the Occurrence of MIDs

Turning to an analysis of all MIDs associated with power transitions, we report the results for the probability that a transition will have at least 1 associated MID and the rate of MIDs per transition in Table 3. As in the systemic study of wars, none of the differences between values in Table 3 is statistically significant.

Strong dyadic differences, however, are found in Table 4. Discrepancies in the propensities for at least 1 MID are large and statistically significant, consistent with our casual observation of the dyadic data. We notice, for instance, that among the

<table>
<thead>
<tr>
<th>Percent of power transitions associated with ≥1 MID</th>
<th>Rate of MIDs per power transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINC</td>
<td>CINC</td>
</tr>
<tr>
<td>Major powers*</td>
<td>60.61%</td>
</tr>
<tr>
<td>Contenders</td>
<td>55.0%</td>
</tr>
</tbody>
</table>

*Delaying Japan and Germany’s exit from the major power set from 1939 until 1945 changes the proportions in this row only slightly and does not affect the conclusions.

<table>
<thead>
<tr>
<th>CINC vs. GINC: Average Dyadic Differences for MIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity for ≥ 1 MID associated with power transitions</td>
</tr>
<tr>
<td>(t values)</td>
</tr>
<tr>
<td>Major powers</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Contenders</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*p < .05, **p < .02, ***p < .01
contenders, only 2 of the 8 dyads have the same probability of at least 1 associated MID for both methods of power transition detection. For both major powers and contenders, using CINC instead of GINC changes a dyadic power transition’s propensity for at least 1 MID by over 30 percent. Dyadic sensitivity to power measures is even greater for all MIDs than it is for wars alone. Dyadic differences in the number of MIDs per power transition are also large and significant. Switching power indicators results in the average gain or loss of almost 1 MID per transitioning major power dyad. For the contenders, it produces an average shift of more than 1 MID per transitioning dyad. Confidence intervals for both estimates are well within acceptable limits. Clearly, the level of analysis has a great impact on the assessment of MID risks associated with transitions measured by the two indicators.

The Timing of Wars and MIDs vis-à-vis Power Transitions

Power transition theory specifies not only that power transitions make wars more likely, but also that these wars will occur preceding the transition (Organski, 1958, p. 333; Organski and Kugler, 1980, p. 60). How do GINC and CINC compare in terms of the timing of wars? Table 5 conveys information about the distribution of all MIDs and of wars within the five years before and the five years following transitions. Negative values indicate that conflicts typically precede the power transition, and positive values indicate that they tend to follow it. Differences between timing averages are not statistically significant for wars or MIDs. Even so, an important substantive difference between CINC and GINC results emerges from the war cases. GINC’s negative war timing results are consistent with power transition theory’s expectation of conflict preceding the transition. In contrast, CINC-detected transitions are always associated with conflict afterward.

A dyad-by-dyad assessment of conflict timing is problematic because so few transition dyads experience conflict within the ±5 year window for both power measures. Lack of militarized conflict makes it impossible to compare timing according to the two measures.17 For example, France and Italy have several MIDs associated with transitions detected using CINC, but no MIDs associated with transitions detected using GINC. Therefore, we cannot compare the timing of MIDs using CINC
with the timing of MIDs using $GINC$. In principle, there is actually an enormous difference in timing because $CINC$ produces Franco-Italian transitions that experience MIDs 3.67 years afterward, whereas $GINC$ produces transitions that never experience associated MIDs. We simply have no meaningful way of mathematically expressing this difference so that it can be compiled with other timing differences. At most, there are only a handful of existing comparisons that can be made between timing results, certainly not enough for statistical analysis.

FINAL RECOMMENDATIONS

Power plays a central role in international relations theory, and $CINC$ is ubiquitously used to measure it. Mathematical reasoning and empirical application both demonstrate that shifts in group membership, common and seemingly innocuous phenomena, inadvertently affect $CINC$’s measurement of national power and dyadic power relationships. Specifically, errors in $CINC$ can result in artificially revealed or masked power transitions, alterations in the magnitude of transitions, and shifts in their timing.

A single indicator, such as GDP, might seem like a useful alternative to $CINC$. Data limitations, such as the availability of annual GDP values only after World War II, often prevent scholars from using a single indicator. Or, a single indicator may not always be useful. For example, Saudi Arabian and Venezuelan oil give those states large GDPs without much correlation to their respective regional shares of power using $CINC$ (Kadera and Sorokin, 1997; Taber, 1989). Theoretical focus might also require a composite indicator. A measure of power based only on military expenditures, for example, might be an excellent referent for the probability of winning a head-to-head combat, but a poor predictor of a nation’s overall influence in world affairs. For these reasons, several scholars recommend $CINC$ over single indicators (de Soysa et al., 1997; Sample, 1998; Senese, 1997).

The $GINC$ indicator, which is based on the geometric rather than arithmetic mean, is a superior alternative. It allows researchers to retain the advantages of a composite indicator while avoiding the pitfalls inherent in $CINC$. $GINC$ is immune to entry and exit effects on dyadic power relationships, maintains a systemically-based idea of relative power, and uses the readily available COW data. For major power dyads, replacing $CINC$ with $GINC$ changes a transitioning dyad’s rate of war by over 17 percent; modifies a dyad’s propensity for at least 1 MID by over 30 percent; and shifts the average transition time to after wars, which yields additional support for power transition theory. We therefore recommend $GINC$’s use, especially when dyadic power relationships are important to the study at hand and especially for analysis groups with frequent membership changes.

Embedded in this paper are many suggestions for further study. If $CINC$’s use matters for power transition theory, it might also matter for other power-centric theories and for studies that use power as a control variable. $CINC$ might produce errors in additional power-based variables such as CON, a common indicator of the concentration of power in the international system (Singer et al., 1972); security (Bennett, 1997), which accounts for the relationship between a state’s power level, those of its allies, and those of its enemies; or the velocity of capability change, which measures
the speed of power ratio shifts (Schampel, 1993). And if CINC errors make a difference for the major power system, the manifestations will be more pronounced for less stable groups such as regional sub-systems. Last, if CINC’s problems result from its functional form, then other composite indicators based on the arithmetic mean will exhibit similar pitfalls.

In sum, when CINC mismeasures power, the inferences we draw are, in part, artifacts of indicator construction. GINC eliminates this problem by providing a more reliable measure and less specious statistical tests of power-centric theories. Using GINC will advance our understanding of power’s role in international relations.

NOTES

1. Tanisha Fazal kindly pointed this out to us.
2. The various types of state birth and death and their causes (e.g., revolution, annexation, conquest, unification, dissolution, regime collapse, and economic failure) are interesting subjects, but they are beyond the scope of this paper. Readers interested in these matters should consult the numerous sources that deal directly with them (e.g., Small and Singer, 1982; Gleditsch and Ward, 1999; Fazal, 2000; Bennett and Zitomersky, 1982).
3. A regional comparison group is another type of specialized subset. See, for example, Lemke’s (1995) and Lemke and Werner’s (1996) study of South American dyads or Kim’s (2002) study of East Asian dyads.
5. It can be easily shown that although they can produce changes in the magnitude of a power difference, single indicators are immune to producing speciously revealed or hidden transitions. Nonetheless, depending on the question at hand, researchers sometimes prefer composite indicators due to other problems with single indicators, such as data availability and validity issues for certain states.
6. For example, CINC errors are not restricted to measurement of time-dependent phenomena.
7. For our purposes, we have greatly simplified power transition theory. In fact, the theory is more nuanced and includes additional elements such as states’ satisfaction with the status quo. See Organski (1958), Organski and Kugler (1980), and Kugler and Lemke (1996) for richer expositions on power transition theory.
8. A straightforward dyadic comparison that ignores Z’s capabilities altogether would avoid this problem entirely. If a comparison group is theoretically irrelevant to the dyadic power distribution, and if there is no need to assess individual states’ performances outside the dyad, we recommend that researchers simply use the head-to-head calculation.
9. Explicit mathematical proofs for ratio-detected transitions are available from the authors.
10. A state’s entry into the referent group can cause transitions and its exit can mask transitions in a way unrelated to the CINC measure itself (see de Soysa et al., 1997).
11. In the mid 19th century, Jevons similarly argued that the geometric mean was best suited for isolating changes in prices due to shifts in the value of gold (1865, p. 122).
12. We leave for future research an analytic discussion of the econometric effects of predicting conflict with the error-prone CINC power measure. We suspect that such an analysis is complex because although some elements of the measurement error are systematic (predictable based on CINC’s functional form), others are random (e.g., based on the idiosyncrasies of coding schemes) or mimic randomness (systematic errors that sometimes mask transition and sometimes reveal artificial ones or sometimes hasten transitions and sometimes delay them). A fuller discussion of how these types of measurement error in explanatory variables produce inefficient estimates and weaken statistical relationships can be found in King et al.’s (1994) work.
1985; and Japan, 1895–1945 (Singer and Small 1972; Small and Singer 1982).

14. No power transition is associated with more than 1 war.

15. Difference of proportion tests produced low z-scores.

16. $df = 22, t = 2.46$

17. This was not a problem for the occurrence assessments because the non-entries were substantively equivalent to zeros. That is, conflict did not occur. We cannot make that inference here; a non-entry is not associated with any particular amount of time passing between a power transition and a conflict.

REFERENCES

James, Patrick (2002). *International Relations and Scientific Progress: Structural Realism Reconsidered*, Columbus, Ohio: The Ohio State University Press.

Singer, J. David, Stuart Bremer, and John Stuckey (1972). “Capability Distribution, Uncer-

