
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 58, NO. 2, MAY 2011 347

Achieving High Robustness in Supply Distribution
Networks by Rewiring

Kang Zhao, Member, IEEE, Akhil Kumar, Member, IEEE, and John Yen, Fellow, IEEE

Abstract—In this paper, we propose a new rewiring approach
for distribution networks called randomized local rewiring (RLR).
We evaluate the robustness of original and rewired distribution
networks using new metrics and show that the choice of a net-
work topology can affect its robustness considerably. Some supply
and distribution networks exhibit characteristics similar to those
of scale-free networks. Simulation results show that applying RLR
to such distribution networks can improve the network robustness
on the supply availability and network connectivity metrics when
both random and targeted disruptions are likely to occur. A unique
feature of our model is a tunable rewiring parameter, which makes
it possible to design networks with the same performance on the
supply availability, network connectivity, and average delivery ef-
ficiency metrics in the presence of both types of disruptions. This
paper will describe the robustness metrics and the new approach,
illustrate the experimental results in the context of a military lo-
gistic and a retailer’s distribution network, and discuss the in-
sights gained about choosing the right topology for achieving higher
robustness.

Index Terms—Complex network, disruption, rewiring, robust-
ness, supply distribution network, topology.

I. INTRODUCTION

OUR daily lives rely heavily on the distribution of goods
and services, such as groceries, water, and electricity,

through supply chains. With globalization and the development
of information technology, supply-chain systems are becoming
more complex and dynamic. Today’s supply-chain systems of-
ten feature a network of interacting entities of different types,
such as suppliers, manufacturers, retailers, and customers. Sup-
ply chains, which represented linear flows of goods from sup-
pliers to customers, are evolving into supply networks [1]. Since
entities may take different forms in various application domains,
we refer to them simply as nodes in a network. Here, we con-
sider a supply network as a graph of nodes, where the nodes
are generally of two types: supply (or supplier) and demand (or
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requester) nodes. In this sense, these networks have heteroge-
neous nodes as opposed to conventional networks, where all
nodes are of one type, and hence, homogeneous. Most research
in the area of complex networks has focused on homogeneous
networks. However, it is important to note that notions of net-
work connectedness are different in these two types of networks.
Therefore, metrics of connectedness, such as path length and the
size of the largest component, may mean something different in
a heterogeneous supply network than they do in a homogeneous
network. Whereas connectedness in a homogeneous network is
measured by how a given node is connected to other nodes, in a
supply network, connectedness should focus on how a demand
node is connected to any supply node. For instance, if a demand
node is connected to other demand nodes only but isolated from
a supply node, then it should not be considered as connected
because no supplies can reach the demand node.

Moreover, large global supply chains or networks are often
embedded in dynamic environments and may face disruptions,
such as natural disasters, economic recessions, unexpected ac-
cidents, or terrorist attacks. A disruption may initially affect
or disable only one or a few entities in the system, but its im-
pact may propagate, sometimes even with amplifications [2],
among interconnected entities. Such cascading disruptions will
thus affect the normal operations of many other entities. Occa-
sionally, failures in a small portion of the system may cause the
catastrophic failure of the whole system [3]. Those events may
seriously disrupt or delay the flow of people, goods, informa-
tion, and funds, leading to higher costs or reduced sales [4] and
affecting a company’s long-term stock performance [5]. There-
fore, designing supply chains that are robust against disruptions
is a high priority concern, and it has drawn a lot of attention
from managers, shareholders, and researchers [6], [7].

Traditional research on supply-chain disruptions often adopts
the risk management perspective and focuses on strategies and
technologies to identify, assess, and mitigate risks and problems
caused by disruptions [4], [6], [7]. However, even though re-
search has revealed that the topology of a supply network will
affect its robustness [8], subsequent research in this direction is
lacking.

In this paper, we will adopt the complex-network view of
supply chains and study the robustness of heterogeneous dis-
tribution networks, i.e., the downstream part of a supply net-
work whose main goal is to distribute goods or services, from
a topological perspective. In particular, we are interested in un-
derstanding how the network topology affects various metrics of
connectedness in a distribution network in the presence of both
random and targeted disruptions. In addition to developing new
metrics for supply networks, another goal in this research is to
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find a network design that can perform well under both random
and targeted disruptions.

A “full-spectrum” supply network is a large “ecosystem”
with many actors, such as raw material providers, manufactur-
ers, warehouses, distribution centers (DCs), and retailers. In
this research, we will focus mainly on the distribution net-
work in which manufacturers, distributors, and retailers have
close interaction with each another. Thus, the managers of these
organizations often have good knowledge of, as well as con-
trol over, the network’s structure. Therefore, compared with
the network from other parts of a supply network such as the
procurement network, it is easier to change the topology of
this part of an existing network or implement another network
design.

We believe that the topological perspective can help man-
agers quickly evaluate the effectiveness of strategies to build a
resilient1 distribution network. While building a new distribu-
tion network from scratch is often a response to major disrup-
tions [9], such as the Haiti earthquake and Hurricane Katrina,
an organization may also take initiatives in rebuilding its supply
network because today’s corporations have to respond to very
dynamic global markets. In order to be competitive, they may
need to “burn themselves down every few years and rebuild their
strategies, roles, and practices” [10]. This includes rebuilding
the corporation’s supply network [11]. Such active rebuilding of
supply networks has been found in online retailers, chain retail
stores, apparel manufactures, etc. [12]–[14]. The overhaul often
aims at saving cost, improving responsiveness, raising customer
satisfaction level, and so on.

The remainder of the paper is organized as follows. We first
briefly review related research on the robustness of complex
networks and distribution networks. Section III first proposes
a new set of robustness metrics for heterogeneous distribu-
tion networks. This section will also introduce a new rewiring
approach for distribution networks called randomized local
rewiring (RLR). Through computational simulations of a mil-
itary logistic network and a retailer’s distribution network, we
evaluate how our new model can help to improve the robustness
of a distribution network in Sections IV and V. The paper will
conclude with directions of future research.

II. RELATED WORK

First we briefly review related research on complex networks.
Complex networks are defined as networks whose “physical or
logical structure is irregular, complex, and dynamically evolv-
ing in time” [15]. Research on complex networks has drawn
growing interest during the past decades [16]–[18]. Researchers
found that real-world networks, such as online social networks,
the World Wide Web, and biological cellular networks, often
have nontrivial and complex topologies that are different from
lattice or random graph structures (with a Poisson degree dis-
tribution). Scale-free [19] and small-world [20] are two well-
known network structures that were proposed to represent the
topologies of many real-world complex networks. Moreover,

1Note that the terms resilience and robustness are used interchangeably in
this paper. We do not distinguish between them.

Fig. 1. Hierarchical distribution network.

some supply networks also show characteristics similar to those
of a scale-free network [21], [22]. Thus, in this paper, we will
study whether our new model can improve the robustness of
distribution networks with the two types of topologies.

Specifically, the robustness of complex network topologies
against normal failures and attacks has been analyzed. It has
been found that scale-free networks, which are a kind of complex
networks where the degree distribution follows a power law,
have very high tolerance against random failures, but are fragile
to disruptions that target the most connected nodes [23], [24].
Compared with scale-free networks, random networks [25] are
less robust against random disruptions, but often have better
performance when important nodes fail. Grubesic et al. [26]
provided a review of approaches to assess network vulnerability
and robustness.

The research of Thadakamalla et al. [8] introduced the topo-
logical perspective into the study of the robustness of distri-
bution networks. The research argued that traditional supply
chains with hierarchical topologies are subject to disruptions.
For example, in the hierarchical distribution network in Fig. 1,
the failure of a single distributor disconnects about 25% of
the retailers from supplies. Using a military logistic network
as an example, the study compared the performance of distri-
bution networks with various complex network topologies in
two types of node-removal attack scenarios. The simulation re-
sults showed that the survivability of distribution networks is
improved by concentrating on the network topology. However,
the new network design proposed in this research is an ad hoc
model for military logistic networks only. Our research will fur-
ther extend this study and try to find a general design to improve
the robustness of distribution networks.

III. PROPOSED APPROACH

In this section, we first present the new taxonomy of robust-
ness metrics for distribution networks. It includes system- and
topology-level metrics, which reflect the heterogeneous roles of
different types of entities in distribution networks. Then, we in-
troduce a parameterized model that generates new distribution
network topologies by rewiring an existing one and evaluate
multiple distribution networks’ performance against disruptions
using our new metrics.
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Fig. 2. (a) and (b) Two sample distribution networks with the same number of
supply (S) and demand (D) nodes and edges. Network in (a) can maintain flow
of supplies better than the network in (b).

A. New Robustness Metrics

Robustness of a network is its ability to maintain opera-
tions and connectedness when some structures or functions are
lost [27]. A robust distribution network, whose main function
is to deliver supplies in response to demands, should be able
to maintain the flow of these supplies despite disruptions. Take
the two illustrative networks in Fig. 2 as examples. There are
two supply nodes, four demand nodes, and six edges in both
networks. A demand node can get supplies from either sup-
ply node. However, the two networks have different robustness
against disruptions. For instance, if a supply node, say S2, fails
because of disruptions, all demand nodes in the network shown
in Fig. 2(a) can still access supplies from S1. Meanwhile, in the
network shown in Fig. 2(a), the failure of S2 will interrupt the
delivery of supplies to demand nodes D3 and D4.

To measure the robustness of a complex network, we must
first develop appropriate metrics. In most earlier research on
the robustness of complex networks and supply networks, the
evaluation of robustness often focuses on the largest connected
component (LCC) in which there is a path between any pair
of nodes [8], [23]. Most of the existing network metrics are
standard topological metrics from graph theory, including char-
acteristic path length, size of the LCC, average path length in
the LCC, and the maximum path length in the LCC. Costa et al.
provided a comprehensive survey of existing measurements for
complex network [28]. Table I explains some of the commonly
used metrics.

These metrics assume that entities in a distribution network
perform homogeneous roles or functions. However, in real-
world distribution networks, different types of entities play dif-
ferent roles in the system. Often times, the normal functioning of
downstream entities may be highly dependent on the operations
of upstream entities. As mentioned earlier, one of the fundamen-
tal purposes of a distribution network is to deliver supplies from
the supplier to the consumer. This type of “Supply–Demand”
connection is the prerequisite for the flow of goods and services,
and is critical for maintaining the operation of the distribution
network.

Take the military logistic network in [8] as an example. The
network consists of battalions and support units, including for-
ward support battalions (FSBs) and main support battalions
(MSB). Support units play a different role from battalions in
this network. Naturally, battalions cannot perform their military
duties for long without receiving supplies from support units.
Thus, a large connected component, in which there is no sup-
port unit, or even where battalions are far from support units,
should not be considered robust, as there is none or limited

supply flow in such a subnetwork. Similarly, the distance be-
tween battalion and support units is generally more important
for a robust distribution network than the distance among bat-
talion units. Therefore, the heterogeneous roles (as supply and
demand nodes) of different types of entities in a distribution
network must be recognized when evaluating the robustness of
the distribution network. Although Albert et al. considered the
roles of power plants and substations in a power-grid network
when defining their connectivity metric [29], more systematic
formalization and analysis are still needed to find metrics to
reflect the robustness of distribution networks from more than
one perspective. Also, in their research, only the robustness of
a power grid was analyzed without offering any remedies.

The proposed taxonomy consists of system- and topology-
level metrics. Neely et al. proposed to use quality, flexibility,
time, and cost as four major performance metrics for supply
chains [30]. Although relying on topological measures, our met-
rics can also reflect some aspects of those four performance
metrics.

First, we introduce supply availability as a critical robust-
ness metric for distribution networks because it shows whether
entities in the network can get its requisite supplies to main-
tain normal operations. The inability to deliver goods to those
who need them is a failure, which will affect the quality of the
distribution network [31]. At the topological level, availability
can also be interpreted as supply availability rate, which is the
percentage of demand nodes that have access to supply nodes
through the network.

Consider a supply network as an undirected, unweighted
graph G(V,E) with node set V and edge set E, where ei,j ∈ E
denotes an edge between nodes vi, vj ∈ V . As shown in (1),
V is the union of two nonoverlapping subsets of demand and
supply nodes (sets VD , VS ), assuming a node cannot play both
roles in the supply distribution network. Then, (2) defines the
set of demand nodes that have access to supply nodes in the
network, where pathi,j denotes a path between nodes vi and vj .
Thus V ′

D is the set of demand nodes that have access to supply
nodes through the supply network. Consequently, the supply
availability AV for a distribution network is the ratio between
the cardinalities of sets V ′

D and VD [see (3)]

V = VD ∪ VS , where VD ∩ VS = φ (1)

V ′
D = {vi ∈ VD | ∃ vj ∈ VS : ∃ pathi,j} (2)

AV =
|V ′

D |
|VD | . (3)

The second metric we introduce is network connectivity.
Clearly, the connectivity of the whole network is very important.
On one hand, a well-connected network provides better access
flexibility [32] because there are more options for routing, or
rerouting, the delivery of goods to more customers, if supply
or demand patterns change or unexpected events occur. On the
other hand, flows of goods or services are often limited and less
fluid in networks that are partitioned into small components. In
complex network research, network connectivity is usually mea-
sured by the size of the LCC in which there is a path between
every pair of nodes. Here, we incorporate the idea of availability
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TABLE I
SOME STANDARD METRICS FOR NETWORK ROBUSTNESS

into this metric and use the size of the largest functional sub-
network instead of the size of the LCC. For the supply network
G(V,E), its largest functional subnetwork is defined as the node
set Vsub . Nodes in the largest functional subnetwork satisfy the
following two requirements

∀vi, vj ∈ Vsub : ∃ pathi,j and ∃ vk ∈ Vsub : vk ∈ Vs. (4)

The difference between the old and the new metrics is that
there must be at least one supply node in the largest functional
subnetwork. A subnetwork of a distribution network cannot
function or maintain the supply flow without a supply node in it.
When nodes fail during disruptions, a distribution network that
features a larger functional subnetwork can maintain a higher
level of connectivity, and is considered more robust.

The third and fourth new metrics are both related to delivery
efficiency. While availability describes whether supplies can be
delivered to a demand node from a supply node, it does not mea-
sure how “efficient” the delivery is, in terms of lead time and
transportation cost. One way to measure delivery efficiency is
by the distance between supply and demand nodes. Intuitively,
a shorter distance often means that goods can be delivered faster
and cheaper, and thus, the network is more efficient. For net-
works with homogeneous nodes, Latora and Marchiori [33]
proposed the network-efficiency metric that is based on char-
acteristic path length. However, in a heterogeneous distribution
network, the distance between demand nodes is not as important
as the distance between supply nodes and demand nodes.

Consequently, we propose two new delivery-efficiency met-
rics, which are based only on supply-path lengths, rather than
all path lengths as in [33]. In a distribution network, a supply
path for a demand node refers to the path between this demand
node and a supply node. Then, the average (across all demand
nodes) of a demand node’s shortest supply-path length to its
nearest supply node, defined as AVG DIST in (5), is a measure
of how fast supplies can be delivered to demand nodes across
the distribution network. We use the reciprocal of the average
as a metric for efficiency [defined as BEST DEF in (6)] so that
a higher value corresponds to supplies being nearer and the
network being more efficient.

AVG DIST =
1

|V ′
D |

|V ′
D |∑

i=1

min{distance(vi, vj ),∀vj ∈ VS},

where vi ∈ V ′
D (5)

Fig. 3. (a) and (b) Two simple supply networks with supply nodes (denoted
with S) and demand nodes (denoted with D). Each edge represents a distance
of 1.

BEST DEF =
1

AVG DIST

=
|V ′

D |
∑|V ′

D
|

i=1 min{distance(vi, vj ),∀vj ∈ VS}
,

where vi ∈ V ′
D . (6)

Efficiency BEST DEF answers the question “how far away
are the nearest supply nodes from demand nodes in the net-
work?” This is essentially the best case scenario for a demand
node to access supplies. What about the average case, since all
demand will clearly not be filled by the nearest source of sup-
ply? Perhaps, one might be tempted to consider the average of
shortest supply-path lengths between all pairs of connected de-
mand nodes and supply nodes. However, such an average fails
to capture the number of supply nodes that are accessible from
a demand node. In fact, with this average, demand nodes that
can access more supply nodes often look worse than those that
can access fewer supply nodes, as illustrated in the following
example.

Fig. 3 shows two simple distribution networks. In the net-
work shown in Fig. 3(a), demand node D1 has access to two
supply nodes S1 and S2, with supply-path length of 1 and
2, respectively. D2 is in the same situation. In the network
shown in Fig. 3(b), both demand nodes D3 and D4 can ac-
cess only one supply node S3 with supply-path length of 1.
There are four demand–supply pairs in the network shown in
Fig. 3(a), namely, D1–S1, D1–S2, D2–S1, and D2–S2. The av-
erage shortest supply-path length is (1 + 2 + 2 + 1)/4 = 1.5.
In the network shown in Fig. 3(b), there are two such pairs,
D3–S3 and D4–S3, with an average shortest supply-path length
of 1. Although the network shown in Fig. 3(a) has a longer av-
erage supply-path length, its supplies are often considered more
“accessible,” because if a demand node is able to access more
supply nodes, it clearly suggests that average delivery efficiency
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TABLE II
TAXONOMY OF THE NEW ROBUSTNESS METRICS FOR DISTRIBUTION NETWORKS

is greater. Of course, there is a tradeoff between having access
to two supply nodes, each at a distance of 10 (or 100), versus
one supply node at a distance of 1.

Thus, we introduce a new metric called average delivery
efficiency that combines both the number of supply nodes that
can be accessed by a demand node and also the distance at which
each supply node is located. It is based on inverse supply-path
length calculation. For demand node Di , its average delivery
efficiency AVG DEFDi

is defined in (7), where k is the total
number of supply nodes that Di can access. The supply nodes
are sorted based on their shortest distance to the demand node,
ties being broken arbitrarily. Thus, disti,j represents the shortest
path length from Di to its jth nearest supply node. For example,
disti,2 is the shortest supply-path length from demand node
Di to its second nearest supply node. The exponent f(j) is a
weighting factor to specify the relative importance of shortest
supply paths j among the k shortest supply paths to k supply
nodes

AVG DEFDi
=

k∑

j=1

[(
1

disti,j

)1/f (j )
]

. (7)

While one could define a weighting factor f(j) in many ways,
it is reasonable to argue that f(j) should be a nonincreasing
function of j, because the distance to a nearer supply node is
often considered more important than that to a farther supply
node. As 1/disti,j ≤ 1∀i, j, the lower the exponent f(j) is, the
lower the (1/disti,j )1/f (j ) is. For example, if f(1) = f(2) = 1,
then equal importance is assigned to both the first and second
shortest supply paths. However, if f(2) is reduced to 0.5 and
f(1) is kept as 1, then it suggests that the weighting factor for
the second path is lower, reflecting the lesser importance of
the second shortest path as compared to the shortest one. In
general, different f(j) may be customized for different supply
networks in various domains. For example, the function f(j)
may vary from an exponential to a linear or sublinear decreasing
function. (see Appendix A for desirable properties of a metric
like AVG DEF.)

Consequently, the average delivery efficiency for the whole
distribution network, defined as AVG DEF in (8), is the average
of AVG DEFDi

over all demand nodes in the network. Naturally,
a higher AVG DEF value corresponds to greater efficiency.

AVG DEF =
1

|VD |

|VD |∑

i=1

AVG DEFDi
. (8)

Here, we show how AVG DEF is calculated for the network
in Fig. 3(a). We use f(j) = 1/j, thus f(1) = 1 and f(2) = 0.5.
Then, AVG DEF = (1 + 0.52 + 1 + 0.52)/2 = 1.25.

Overall, these metrics reflect the heterogeneous roles of dif-
ferent types of entities in distribution networks and improve our
ability to measure supply network robustness. Thus, we believe
the new taxonomy is more systematic and realistic as compared
to the metrics used in [8]. Table II summarizes our new metrics.

One might also combine these metrics into a single objec-
tive function in order to optimize the overall performance of a
network, if the context in which a specific distribution network
operates is known. For instance, a weighted linear combination
of the four metrics may serve as an overall robustness metric.
However, we decided to use multiple separate metrics instead
of a single composite one so as to gain a better understanding
of a supply network’s performance from different perspectives.

B. New Rewiring Approach for Distribution Networks (RLR)

Different ways to connect nodes in a network (often called
network growth in the literature) will lead to different network
topologies [34]. For example, preferential attachment of new
nodes with an existing node generates the scale-free topology
[19]. Connecting any two randomly chosen nodes in the network
with a predefined probability will create an Erdos–Renyi random
(ER-random) network [25]. Thadakamalla et al., also presented
a military logistic network model that uses arbitrary numbers
of edges and ad hoc attachment rules for battalions and support
units [8].

Our new model, based on the rewiring of a distribution net-
work, is called RLR. To rewire a distribution network using
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Fig. 4. Pseudocode for the algorithm to generate the RLR network topology.

RLR, we iterate through all edges, and consider the pairs of
nodes at both ends of an edge. With a predetermined rewiring
probability pr , an edge will disconnect from one of its two
endpoints—the one with higher degree. Then, the other end-
point of the rewired edge will rewire the edge to connect with
a randomly chosen node within a radius of dmax . Unlike the
Thadakamalla model [8], this model does not require spe-
cial attachment rules for different types of military units and
may be applied to existing distribution networks with various
topologies.

The rewiring probability pr essentially determines how much
rewiring will occur. On one hand, if pr = 0, no rewiring will
take place and the network remains unchanged. On the other
hand, if pr = 1, all edges will go through this random rewiring
process. The other parameter, maximum rewiring radius dmax ,
imposes a practical constraint for rewiring. In the context of a
distribution network, a node may not be able to connect to any
randomly selected node at will because the establishment of a
connection between two nodes is often associated with cost.
Connecting two nodes that are closer to each other is gener-
ally more economical. Thus, the upper limit on the rewiring
radius reflects this preference on locality. When implementing
the algorithm, the radius can be either physical distance (say, in
miles), or topological distance (in number of hops/edges).

In general, the rewiring process aims at adding randomness in
a controlled way to a distribution network. A higher pr value will
lead to more rewiring, and thus, introduce more randomness,
while a lower dmax will impose more control over rewiring.
Fig. 4 shows the pseudocode for rewiring a network with RLR.
It uses a function called “Rewire” that disconnects an edge from
an existing node, and reconnects the remaining node (vtoKeep )
of the edge to a new node (vnew ) chosen at random, provided
vnew is not a direct neighbor of vtoKeep .

C. Simulation-Based Approach

Lacking access to a large real-world distribution network that
can be rewired and disrupted at will for experiments, we must
rely on computational simulations. The simulation enables us to
generate different distribution networks with various topologies
and configurations and to apply the RLR approach to various
network topologies to see whether rewiring can help to improve
the robustness of distribution networks.

We also need a model to simulate disruptions. In the literature
on network robustness, two types of disruption scenarios based
on node removal are commonly studied: random and targeted.
In random disruptions, each node has the same probability of
failure. This scenario often corresponds to accidents (e.g., fires
and power outrage), and unexpected economic events (e.g., re-
cessions and bankruptcy). To simulate random disruptions, we
randomly remove nodes from the network. Edges that are con-
nected to them are also removed.

On the other hand, in targeted disruptions, important nodes are
more likely to be disrupted than unimportant ones. Examples
of targeted disruptions include terrorist and military attacks,
which often target critical entities in the system such as network
hubs. Among many metrics to measure a node’s importance in
a network, we chose the widely used degree centrality in line
with the earlier research [8] [23]. In other words, we assume
that the higher the node degree is, the more important it is. The
reason for picking degree as the indicator of importance is that
node degree is easier for attackers to find. High-degree nodes
are often more visible because they are in contact with many
other nodes [35]. Other centrality measures, such as closeness,
betweenness, and eigenvector centrality [36], require knowledge
of the network topology, which is usually difficult for attackers
to obtain. To simulate targeted disruptions, we remove nodes
in the order of decreasing node degree. In addition, because
the removal of one node will affect the degree of some other,
we recalculate the degrees of remaining nodes after each node
removal. This dynamic update ensures the removal of the node
with the highest degree in the remaining network.

Note that the focus of our study is the robustness of distri-
bution networks, and hence, we only consider disruptions at
the supply nodes, or supply disruptions. Disruptions at demand
nodes are not relevant for our purposes.

IV. EXPERIMENT FOR A MILITARY LOGISTIC NETWORK

In this section, we analyze how a RLR rewiring affects the
robustness of distribution networks with the well-known, scale-
free, and small-world topologies. Using an experiment for a
military logistic network, we describe our method for evaluat-
ing and comparing the robustness of different military logistic
network topologies using simulations. The results will be illus-
trated and discussed.

A. RLR Scale-Free Networks

1) Simulation Setup: The simulation scenario is based on
the military logistic network example in [8]. In this network,
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Fig. 5. Snapshots of simulated 70-node, 120-edge supply networks with various topologies. (Supply nodes are denoted in black and demand nodes are in white.)
(a) ER-random supply network. (b) Scale-free supply network. (c) RLR scale-free supply network (pr = 0.25).

demand nodes are battalions. We also consider MSBs and FSBs
as supply nodes for simplicity. The supply network consists of
1000 nodes, including 166 supply and 834 demand nodes. The
supply–demand ratio was estimated from a real-world military
logistic system [8]. RLR rewiring is performed with different
probabilities and the robustness of the so called RLR scale-free
networks is analyzed. To better illustrate the robustness of dif-
ferent distribution networks, we will also include an ER-random
network in the comparison. For each supply network topology,
we will first construct the network using the military logistic net-
work configuration. Then, we will simulate disruptions to those
networks and observe their responses on our aforementioned
robustness metrics.

We did not include the Thadakamalla model [8] in the com-
parison because it often makes battalions the network hubs, i.e.,
nodes with very high degrees, in the resulting supply network.
This is not desirable because although a battalion can occasion-
ally forward supplies to other battalions, it is not the primary task
of a battalion, and a battalion should not forward supplies more
than MSBs and FSBs do. Thus, we expect such a configuration
to be rarely used in real-world military logistic systems.

When RLR rewiring the military logistic network, we assume
that all the military units are deployed in a battlefield and close
to each other. Thus, when generating a RLR scale-free network,
the distance between units is not a significant factor for se-
lecting nodes as rewiring destinations. In other words, we set
the maximum rewiring radius in the RLR approach to infinity
(dmax = ∞) so that a rewired edge can randomly select a new
destination node among all other nodes.

For illustrative purposes, we show the snapshots of three
70-node, 120-edge military logistic networks with ER-random,
scale-free, and RLR scale-free (with pr = 0.25) topologies in
Fig. 5(a)–(c). Fig. 6 illustrates the Ln–Ln degree distributions
of the three networks.

In our simulation, we remove eight nodes, about 5% of all
the supply nodes, between successive observations. Because
most attacks in a real-world network will disrupt only a rela-
tively small number of nodes, we simulate disruption scenarios,
where the percentage of supply nodes removed lies in the 0%–
20% range. During the process of node removal, we track the
robustness metrics for each network topology. When evaluat-
ing the average delivery efficiency of supply networks, we use
f(j) = 1 for (7), i.e., assigning equal importance to all sup-
ply paths. This experiment is repeated for various topologies in
order to facilitate a comparison among them. To ensure a fair

Fig. 6. Distribution of the three simulated supply distribution networks with
1000 nodes each.

comparison, each network topology will have the same number
of nodes and edges. The average degree is kept at 3.6 edges per
node in our simulations so as to correspond with the military
supply network in [8].

2) Simulation Results for Random Supply Disruptions:
Fig. 7 shows the responses to random disruptions of six net-
work topologies, including scale-free, ER-random, and four
RLR scale-free networks with various pr . The horizontal axes
denote the percentage of supply nodes removed, while the ver-
tical axes are values of the topology-level robustness metrics
proposed earlier in this paper. As one would expect intuitively,
the performance of all networks decreases when nodes are re-
moved from the network. The ER-random has the least value for
all four metrics, with small slopes and lower initial values. The
scale-free supply network excels in delivery efficiency (both,
best and average). Higher rewiring probabilities for RLR scale-
free networks lead to better availability and connectivity, but at
the cost of delivery efficiency.

Surprisingly, we find very good performance from the totally
rewired scale-free network, i.e., RLR scale-free with pr = 1,
which incorporates some level of random attachment in all its
edges. Fig. 7(a) and (b) reveals that random disruptions to 20%
of its supply nodes have negligible impact on its supply avail-
ability, which hardly decreases even 1%. Network connectivity
is also well preserved as almost all the remaining nodes are still
connected in one functional subnetwork.

3) Simulation Results for Targeted Supply Disruptions: Ar-
guably, robustness against targeted disruptions is more im-
portant than against random disruptions because targeted dis-
ruptions are usually more damaging than random ones. Also,
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Fig. 7. Various military logistic networks’ responses to random supply disruptions. Average of 20 runs. (a) Supply availability. (b) Network connectivity.
(c) Best delivery efficiency. (d) Average delivery efficiency.

Fig. 8. Various military logistic networks’ responses to targeted supply disruptions. Average of 20 runs. (a) Supply availability. (b) Network connectivity.
(c) Best delivery efficiency. (d) Average delivery efficiency.

military logistic networks often face more targeted than random
attacks from opponents. Fig. 8 shows the responses of the six
network topologies to targeted disruptions. Similar to Fig. 7, the
horizontal axes denote the percentage of supply-node removal,
while the vertical axes are the topology-level robustness metrics.
As expected, robustness of all the four supply networks suffers
different levels of deterioration when compared with the case of
random disruptions.

For the scale-free network, its supply availability and net-
work connectivity deteriorate very rapidly. Although the scale-
free network still maintains the highest efficiency at the early
stage of disruptions, the deterioration rates on the two efficiency
metrics are higher than for the other topologies. For example,
scale-free networks have the highest average delivery efficiency
when no disruption occurs, 47% higher than that of the ER-
random network. However, as supply nodes are removed, the
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Fig. 9. Various military logistic networks’ responses to random supply disruptions. Average of 20 runs. (a) Supply availability. (b) Network connectivity.
(c) Best delivery efficiency. (d) Average delivery efficiency.

average delivery efficiency falls the fastest for scale-free, which
is a major drawback. When 10% of the supply nodes are re-
moved, scale-free already has lower average delivery efficiency
than ER-random. An additional 10% removal will make the av-
erage delivery efficiency of scale-free 27% lower than that of
ER-random. Generally, the performance of scale-free seems to
confirm earlier research that it is very fragile to targeted disrup-
tions [23].

At the other end of the spectrum, the ER-random network
deteriorates slowly with increasing failure rate on all the four
metrics, but it still suffers from poor initial values. For instance,
even though its rate of decrease in best delivery efficiency is
much lower than for the scale-free and several RLR scale-free
networks, 20% supply node removal is still not enough for the
ER-random to catch up with the other topologies on the delivery-
efficiency metrics.

As for the RLR scale-free supply network, it still offers better
availability and connectivity than scale-free. Its availability and
connectivity also increase when using higher rewiring proba-
bility pr . The supply availability and network connectivity of
the RLR scale-free network with pr ≥ 0.5 are also higher than
ER-random when 0%–20% of the supply nodes are removed. In
terms of the efficiency metrics, its performance generally lies in
between the scale-free and the ER-random, although the RLR
scale-free with pr = 1 slightly outperforms the ER-random in
average delivery efficiency. Although higher pr leads to a lower
initial delivery efficiency values, it helps to slow deterioration
rates. Take average delivery efficiency as an example. At the
very beginning, the scale-free (pr = 0) has the highest aver-
age delivery efficiency and the ER-random the least. Most RLR
scale-free networks fall between the two, and rewired scale-free
with higher pr have better initial efficiency than those with lower
pr . As supply nodes are removed, the gaps in average delivery

efficiency get smaller. After 10% of supply-node removal, the
RLR scale-free with pr = 1 actually has the best average de-
livery efficiency, better than the scale-free, the ER-random, and
other rewired scale-free with lower pr .

B. Rewiring Small-World Networks With RLR

As we mentioned earlier, besides the scale-free topology, an-
other popular complex network topology is the small-world [20],
which features high clustering coefficients and low character-
istic path length. The degree distribution of a small-world net-
work is also more uniform than the highly skewed power law
distribution. Adopting the simulation settings in Section 4-A1,
we generate a small-world military logistic network using the
model proposed in [20], apply RLR to the small-world network,
and compare the robustness of the original small-world logis-
tic network with that of the rewired ones (referred to as RLR
small-world networks).

Fig. 9 illustrates the robustness of the military logistic network
with the small-world topology and RLR small-world networks
with various pr when random disruptions occur. RLR small-
world networks dominate the original small-world networks on
all four metrics. Higher rewiring probability pr generally leads
to better performance. The advantage of RLR small-world net-
works mainly lies in their good initial performance, especially
on the metric of best delivery efficiency. In terms of the rates
of performance deterioration when supply nodes are removed,
RLR small-world networks are only slightly slower than the
small-world network on the metrics of network connectivity
and average delivery efficiency.

The five networks’ robustness against targeted disruptions
(shown in Fig. 10) is similar to that against random disrup-
tions. Although the performance of all the distribution networks
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Fig. 10. Various military logistic networks’ responses to targeted supply disruptions. Average of 20 runs. (a) Supply availability. (b) Network connectivity.
(c) Best delivery efficiency. (d) Average delivery efficiency.

deteriorates slightly faster than in random disruptions, more
rewiring still helps RLR small-world to become more robust
than small-world.

C. Discussion

According to our simulation study, rewiring a distribution
network with RLR will affect its robustness in different ways.
We first discuss the case when RLR is applied to a military
logistic network with the scale-free topology. Comparing the
scale-free distribution network with rewired RLR scale-free net-
works, we found that there is no optimal network topology that
dominates all others on every metric in both supply disrup-
tion scenarios. Some earlier conclusions about the robustness of
scale-free networks still hold in our heterogeneous military lo-
gistic networks. For example, while a scale-free network is able
to maintain good average delivery efficiency in random disrup-
tions, its robustness against targeted disruptions is unacceptable
with low supply availability and network connectivity. Although
its initial delivery efficiency values are better than other topolo-
gies, they deteriorate rapidly when high-degree supply nodes are
disrupted.

Now, we turn to RLR scale-free networks. Recall that the
rewiring probability pr is tunable: a lower pr will retain more
aspects of the original topology, while higher pr will add greater
randomness. One advantage of RLR scale-free with high pr , say
0.75 or 1, is that very high supply availability and network con-
nectivity are maintained in both random and targeted disruptions
(even as high as 20%). However, its delivery efficiency is often
not as good as for the other topologies, even with a low rewiring
probability, in both disruption scenarios. While topologies such
as scale-free and ER-random are usually robust against one type
of disruption but fragile to another type, RLR scale-free networks

have the unique property that their behaviors on all four met-
rics are relatively consistent in both types of disruptions, which
gives rewired scale-free balanced robustness against both types
of supply disruptions.

In addition, for RLR scale-free networks, better performance
on availability and connectivity is often gained at the cost of
delivery efficiency. This tradeoff, together with the tunable
rewiring probability, provides another way to balance a dis-
tribution network’s robustness. If availability or connectivity is
more important than delivery efficiency for a distribution net-
work, an RLR scale-free distribution network with high rewiring
probability will be preferred. Conversely, for networks in which
delivery efficiency is critical, an RLR scale-free distribution net-
work with low rewiring probability may offer a better choice.

Another interesting issue pertains to the RLR scale-free net-
work with pr = 1. Since it randomly rewires every edge in
the scale-free network, one might expect it to approach a ran-
dom network. However, the ER-random network, which is con-
structed in a purely random manner, does not demonstrate
its well-known robustness against targeted disruptions in our
heterogeneous distribution networks. Although the ER-random
network generally features low performance deterioration rates
when supply nodes are removed (in both random and targeted
disruptions), it is outperformed by the RLR scale-free network
with pr = 1.

Then, what are the differences between the two supply net-
work topologies? The experimental results suggest that the ad-
vantage of RLR scale-free with pr = 1 mainly lies in its initial
performance. In an ER-random network, edges between any
pair of nodes are established based on a predetermined proba-
bility. We fear this growth model may leave some nodes with
no connection at all.
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Fig. 11. Degree distributions of simulated supply distribution networks (pr =
1 for the RLR scale-free supply network. All networks have 1000 nodes and
1815 edges).

To confirm our conjecture, we drew the degree distributions
of simulated ER-random, scale-free, and RLR scale-free with
pr = 1 networks in Fig. 11. All three simulated networks have
1000 nodes and 1815 edges. The horizontal axes denote the
degree of nodes, while the vertical axes reflect the probability
of finding a node with a given degree. One might observe in
Fig. 10 that some nodes have degree 0 and are thus isolated from
other nodes in the ER-random network. Such isolation directly
affects its initial values on the metrics. As a comparison, the
simulated scale-free network has almost no zero-degree node,
but features few nodes with very high degrees. The RLR scale-
free network takes some advantage of the scale-free network’s
good initial performance by using a scale-free network as the
basis for rewring. As a result, the RLR scale-free has few, or
none, disconnected nodes.

Moreover, the degree distributions of simulated RLR scale-
free networks are in accord with our theoretical analysis in
Appendix B. Compared with the simplified RLR scale-free net-
work with pr = 1 in Appendix B, the simulated rewired one with
pr = 1 in Fig. 11 has a much shorter right tail and exhibits a
near-Poisson degree distribution. The degree distribution of the
simulated RLR scale-free supply network and its performance
in the simulations also validate our earlier hypothesis regarding
its networks’ topology and robustness. In addition, some may
notice that the degree distribution of the scale-free network in
Fig. 11 features fewer 1-degree nodes than 2-degree nodes. This
is different from the monotonically decreasing distribution of
the scale-free network in Appendix B. The low probability for
1-degree nodes can be explained by the simulation setting: each
new node initiates an average of 1.8 edges in the simulation,
and thus, very few nodes have only one edge in the resulting
network.

In contrast with the tradeoffs between scale-free and RLR
scale-free, when RLR rewiring is applied to a military logistic
network with small-world topology, its impact is very positive.
RLR small-world networks can help to improve the original net-
work’s robustness against both random and targeted disruptions,
reflected by their very good performance on all four robustness
metrics. Meanwhile, similar to RLR scale-free, the performance

Fig. 12. Ln–Ln degree distribution of the retailer’s distribution network in
California. It has two scale-free parts. Hence, we call it quasi-scale-free.

of RLR small-world distribution networks is also consistent in
random and targeted disruptions.

In sum, when applied to scale-free networks, RLR rewiring
is able to represent both the preferential and random attach-
ment networks at the extreme rewiring probabilities pr = 0 and
pr = 1, respectively. Varying pr between 0 and 1 generates
intermediate supply networks that can balance the robustness
between scale-free and random distribution networks. When ap-
plied to small-world distribution networks, RLR can improve the
robustness against both random and targeted disruptions, with
higher pr leading to better performance.

V. EXPERIMENT FOR A RETAILER’S DISTRIBUTION NETWORK

To further evaluate the performance of the RLR approach, we
conducted another experiment and applied the model to a com-
mercial distribution network—a leading retailer’s distribution
network in the state of California. Different from the synthe-
sized scale-free or small-world military logistic networks, the
retailer’s distribution network does not conform to any estab-
lished complex network topology, and thus, provides a more
realistic test bed for RLR.

A. Simulation Setting

The distribution network consists of 185 nodes, including 2
warehouses (both are located in southern California), 7 DCs, and
176 stores. We also have the address of each node, and are able to
calculate the physical distance between any two nodes. As this
three-level structure is also quite similar to the military logistic
network in the earlier experiment, we consider warehouses and
DCs as supply nodes, and stores as demand nodes. On the ba-
sis of the retailer’s rule of building a distribution network, we
are able to generate a distribution network with the following
realistic configuration: 1) the two warehouses are connected;
2) each DC randomly connects to one or two warehouses and
two other DCs; 3) each store uses preferential attachment to
connect to a one or two DCs within a radius of 300 miles. Ten
percent of all stores are able to connect directly to a warehouse.

The degree distribution of the retailer’s distribution network
(shown in Fig. 12) is a combination of two power laws. This is
because the roles of nodes in the somewhat hierarchical distribu-
tion network polarize the node degrees. Lower in the hierarchy,
stores’ degrees are in the range of 1–3, and follow the power
law distribution (on the left), while DCs and warehouses gen-
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Fig. 13. Various retail distribution networks’ responses to random supply disruptions. Average of 30 runs. (a) Supply availability. (b) Network connectivity.
(c) Best delivery efficiency. (d) Average delivery efficiency.

erally have degrees higher than 12, and their node degrees are
reflected in the power law distribution on the right. Even though
this network is not a scale-free or small-world network, we can
still apply the RLR approach and rewire it.

As California is very large and the retailer’s facilities are
located all across the state, our RLR approach in this experi-
ment will consider the radius limit when rewiring edges. While
robustness is important, the cost to operate the distribution net-
work is also a major concern for the retailer. It is expensive to
rewire an edge and connect a store in southern California, an
area with several DCs, to a DC in northern California 600 miles
away. In this experiment, we set the maximum rewiring radius
dmax = 300 miles so that an edge’s rewiring destination must
be within a physical distance of 300 miles from the node that
the edge currently attaches to.

In the experiment, we also consider both random and tar-
geted disruptions to the distribution network. While random
disruptions can happen in any distribution network, this re-
tailer’s distribution network may also face targeted disruptions.
As a major retailer with hundreds of billions of annual sale
around the world, the company is a strategic target for terrorist
attacks and cyber attacks [37], which tend to aim at warehouses
and DCs that play more important roles in the network. Also,
some of the retailer’s highly connected warehouses and DCs
are located near the coast of southern California, an area that is
more subject to earthquakes and tsunamis than other areas in the
state.

In our simulation, we removed five supply nodes (out of
nine)—one at a time between successive observations. During
the process of node removal, we track the robustness metrics
for each network topology. While evaluating the supply net-
works, we also set f(j) = 1 in (7) for average delivery effi-

ciency. We apply the RLR approach with four different rewiring
probabilities (pr = 0.25, 0.5, 0.75, and 1) to the original net-
work (pr = 0) and compare the robustness of rewired networks
(referred to as RLR retail networks) with the original one.

B. Experimental Results

Figs. 13 and 14 show the performance of the five distribution
networks against random and targeted disruptions, respectively.
The horizontal axes denote the number of supply nodes that
have been removed, and the vertical axes are the topology-level
supply-network robustness metrics. As one can see, the results
are similar to those for the military logistic network.

The original distribution network is able to maintain very
good delivery efficiency in both types of disruptions. Its deliv-
ery efficiency does not change when supply nodes are removed
because, as noted earlier, nodes in the network generally follow
a hierarchical structure. Stores only connect to DCs or ware-
houses, but do not connect to other stores. Thus, if a store can
still access a DC or a warehouse after disruptions, the clos-
est DC or warehouse is always the store’s immediate neighbor.
However, when disruptions happen, the network is fragmented
easily and many stores lose access to DCs or warehouses, as
shown by its very fast deterioration in network connectivity and
supply availability, especially in targeted disruptions.

In summary, the experiment on the retailer’s distribution net-
work also reveals that no network topology can dominate all
others on every metric, but it is important to understand the
tradeoffs that are involved. The experiment also validates the
advantage of RLR retail networks on supply availability and
network connectivity, as well as its stable performance in both
random and targeted disruptions.
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Fig. 14. Various retail distribution networks’ responses to targeted supply disruptions. Average of 30 runs. (a) Supply availability. (b) Network connectivity.
(c) Best delivery efficiency. (d) Average delivery efficiency.

As mentioned earlier, some retailers may adjust or rebuild
their distribution networks to adapt to the changing market con-
ditions. Our approach offers a simple yet effective heuristic
strategy to improve the distribution network’s robustness on
supply availability and network connectivity. A manager of the
distribution network can add some controlled randomness into
the existing network by rewiring edges. The manager can select
new destination of a rewired edge among nodes that are not
too far away from the remained node of the edge. The tunable
rewring probability and the maximum rewiring distance also
allow the retailer to balance the distribution network’s availabil-
ity/connectivity and delivery efficiency on the basis of robust-
ness requirements and the operation budget.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the robustness of heterogeneous distri-
bution networks against supply disruptions from the perspective
of complex network topologies. We first propose the new tax-
onomy of distribution-network robustness metrics to reflect the
fact that nodes play heterogeneous roles in a distribution net-
work, which is not the case for many other networks. Hence, the
notions of robustness change. The taxonomy consists of system-
level metrics, including supply availability, network connectiv-
ity and delivery efficiency, and corresponding topology-level
metrics. The second contribution of this paper is the new RLR
approach, which is based on probabilistic and localized rewiring
of a distribution network. Such rewired distribution networks
rewired with the RLR approach with various rewiring probabil-
ities have some nice robustness properties under both random
and targeted supply disruptions. In our experiments, we ap-
ply the model to military logistic networks with scale-free and
small-world topologies and the retailer’s distribution networks

to compare the robustness of original and rewired networks in
detail using computational simulations. The results suggest that
the rewired distribution networks generally have stable robust-
ness against both types of disruptions.

We found that the choice of distribution network topology
affects its robustness, and the proposed RLR approach can im-
prove the robustness of a distribution network in supply avail-
ability and network connectivity, and is a good option in situa-
tions where both random and targeted disruptions can occur. We
also compared the effect of varying the rewiring probability pr

on the performance. Increasing pr , i.e., bringing more controlled
randomness into the network, generally leads to better supply
availability and network connectivity, but at the cost of delivery
efficiency, if the original network has a nonuniform or skewed
degree distribution. This is intuitively meaningful. To decide
the optimal value for pr , a designer or manager should consider
the tradeoff between the higher costs of accessing supply nodes
because of longer distances when pr is high versus the cost of
stock outs, if some nodes cannot obtain supplies when pr is low.

Although we use a military logistic network and a retailer’s
distribution network as two case studies from different indus-
tries, the taxonomy of robustness metrics and the RLR approach
may also provide insights to the study and design of robust dis-
tribution networks in other domains or industries. Specifically,
our approach provides a simple strategy for supply-chain de-
signers or managers to adjust or fine-tune existing distribution
networks and get balanced robustness on the four new metrics
when both random and targeted disruptions are likely to happen.
Our simulation platform also provides the basis for the future
development of a decision support tool. Such a tool will help
managers to: 1) evaluate the robustness of an existing supply
network; 2) assess how possible rebuilding strategies affect the
resulting network’s robustness; and 3) quickly make rewiring
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decisions when disruptions occur. In addition, the research may
also be applicable in other complex networks whose operations
rely on the delivery of people, information, goods, or services
between entities with heterogeneous roles. Example networks
with similar features may include communication networks such
as the Internet (with servers and clients), and infrastructure net-
works such as power grids.

There are several areas that we would like to address in fu-
ture. First, in our simulation of disruptions, we only consider the
removal of nodes, which corresponds to the failures of entities
in a supply network. Actually, a real-world supply network may
also face disruptions of connections, e.g., a road block may force
a manufacturer to find an alternative path to deliver the goods.
Thus, it would be useful to study the removal of edges from
the supply network. Second, our analysis of robustness in this
paper is only on the topological level. Nevertheless, the design
of supply networks in the real world needs to consider more
operational level factors and constraints, such as the capacities
of supply nodes, the needs of demand nodes, and the cost of
transportation. Thus, we also plan to apply network optimiza-
tion techniques to robustness analysis so that this research can
provide better decision support.

Third, as suggested in earlier research [38], we would also
like to study the effect of adaptive behavior, such as increased
capacity and new delivery routes, on the distribution network
robustness in the presence of disruptions. Fourth, this research
classifies nodes in a distribution network into two roles: sup-
ply and demand nodes. While this classification is simple and
straightforward, it may overlook the diversity of node roles in
a supply network. By incorporating more heterogeneous roles
into this research, we will be able to improve the validity of
our conclusion. Other possible research directions include a
more analytical study of the robustness of networks rewired
with RLR, and the cascading failures of nodes caused by load
redistribution [39].

APPENDIX A

PROPERTIES OF A GOOD METRIC FOR AVERAGE

DELIVERY EFFICIENCY

The average delivery efficiency metric must integrate in the
evaluation both the number of accessible supply nodes and the
length of supply paths to those supply nodes. For demand node
Di , its average delivery efficiency AVG DEFDi

must satisfy the
following three requirements (under the reasonable assumption
that higher average delivery efficiency is better).

1) If two demand nodes can access the same number of
supply nodes, the metric should favor the one with
shorter supply-path length. For example, given two de-
mand nodes Dp,Dq ∈ VD , both nodes can access m sup-
ply nodes S1 , S2 , . . . , Sm ∈ VS with shortest supply-path
lengths lp,1 , lp,2 , . . . , lp,m and lq ,1 , lq ,2 , . . . , lq ,m , respec-
tively. Then, the average delivery efficiency value of the
two demand nodes must satisfy the following equation:

If ∀i ∈ [1,m], lp,i ≤ lq ,i ,

then AVG DEFDp
≤ AVG DEFDq

. (9)

2) The metric should provide some reward to a demand
node that can access more supply nodes. For instance,
demand node Dp ∈ VD can only access supply nodes
S1 , S2 , . . . , Sm ∈ VS with shortest supply-path lengths
lp,1 , lp,2 , . . . , lp,m . Demand node Dq ∈ VD can also ac-
cess these m supply nodes, with shortest supply-path
lengths lq ,1 , lq ,2 , . . . , lq ,m , respectively. However, Dq can
also access k, where k ≥ 1, additional supply nodes
Sm+1 , . . . , Sm+k ∈ VS with shortest supply-path lengths
lp,m+1 , . . . , lp,m+k . Then, the following equation must
hold:

If ∀i ∈ [1,m] : lp,i = lq ,i ,

then AVG DEFDp
< AVG DEFDq

. (10)

3) The metric must be able to handle the situation when a
demand node is not connected to any supply node, i.e., its
shortest supply-path length to any supply node is infinity.
If demand node Dp ∈ VD cannot access any supply node,
then AVG DEFDp

= 0.

APPENDIX B

THEORETICAL ANALYSIS OF THE DEGREE DISTRIBUTION FOR

SIMPLIFIED RLR SCALE-FREE NETWORKS

In networks with homogeneous nodes, degree distribution is
often closely related to the network’s robustness [23]. Now, let
us briefly look at the degree distribution PRL(k) of a simplified
RLR scale-free network with n nodes and m edges. Assume
P (k0) = k−r

0 is the degree distribution of the scale-free net-
work generated with the preferential attachment model [19].
The maximum node degree is D and the rewiring probability
is pr . Then, we have (11), where Pdiscon(x, k0) is the prob-
ability that x edges are disconnected from a node with degree
k0 ; Pnew (k − k0 + x,mpr ) is the probability that among all the
mpr edges to be rewired, k − k0 + x connect to the same node.
Both probabilities are based on binomial distributions

PRL(k) =
D∑

k0 =0

P (k0)

[ k0∑

x=0

Pdiscon(x, k0)Pnew (k − k0 + x,mpr )
]
. (11)

For the purpose of simplicity, we assume that when rewiring
an edge, we randomly choose one end to disconnect and set
dmax = ∞. Using this simplified rewiring, we have

Pdiscon(x, k0) =
(

k0

x

) (pr

2

)x (
1 − pr

2

)k0 −x

(12)

Pnew (k − k0 + x,mpr )

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
mpr

k − k0 + x

)(
1

n − 2

)k−k0 +x(
1 − 1

n − 2

)mpr −k+ko −x

,

if k − k0 + x ≥ 0

0, otherwise.

(13)
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Fig. 15. Inferred degree distributions of scale-free and three simplified RLR
rewired scale-free networks.

The expected value of Pdiscon(x, k0) is E(Pdiscon(x, k0)) =
k0pr/2. This means that a node with degree k0 in the
scale-free network will on average lose k0pr/2 edges in
the rewiring process. The expected value of Pnew (k − k0 +
x,mpr ) is E(Pnew (k − k0 + x,mpr )) = mpr/(n − 2). As
n � 2, E(Pnew (k − k0 + x,mpr )) ≈ mpr/n, where m/n =
〈k0〉 is the average degree in the network. We can then infer
that a node in the original scale-free network will, on aver-
age, get 〈k0〉 pr new edges in the rewiring process. As a result,
a node with original degree k0 will on average have degree
k0 + 〈k0〉 pr − k0pr/2 after rewiring. In the rewired network,
a node with original degree k0 > 2 〈k0〉 will most likely have
lower degree, while a node with original degree k0 < 2 〈k0〉will
generally get higher degree.

Using (11)–(13), we can infer the degree distributions of sim-
plified rewired networks. In Fig. 15, we draw the inferred degree
distributions of three simplified rewired networks, each with
different rewiring probabilities. The horizontal axes denote the
degree of nodes; the vertical axes reflect the probability that a
node has a given degree. As a comparison, we also include the
scale-free network with degree distribution P (k) = k−2.9 [19].
Each network has 1000 nodes and 1815 edges. The maximum
node degree D is set to 70, but Fig. 15 only shows probabil-
ities for node degrees up to 12, because the probabilities for
still higher degrees nodes is very small. As the figure shows, a
higher rewiring probability for the simplified rewired network
will lead to fewer high-degree nodes and more nodes with low
and medium degrees. The degree distributions of rewired net-
works generally become less skewed than that of the scale-free
network. As the rewiring probability increases, the degree dis-
tribution of a simplified rewired scale-free network gradually
approaches a Poisson distribution.

Recall that in the RLR approach, instead of randomly choos-
ing which node to disconnect, we actually disconnect an edge
from the node with higher degree, which means high-degree
nodes would lose and low-degree nodes would gain more edges
in the rewiring process. As a result, the degree distribution of a
RLR scale-free network should be more homogeneous than that
of a simplified rewired network with the same rewiring proba-
bility, which means a RLR scale-free network will have many
nodes with medium degrees and few nodes with high or low

degrees. Earlier research on networks revealed that robustness
in the presence of targeted failures increases when nodes have
similar degrees [23]. Thus, we hypothesize that RLR scale-free
should have better robustness than scale-free networks in tar-
geted supply disruptions. We will validate this hypothesis with
our simulations of specific distribution networks.
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