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We propose that the emergent phenomenon know as ‘‘desakota,’’ the rapid urbanization of densely populated
rural populations in the newly developed world, particularly China, can be simulated using agent-based models
that combine bottom-up actions with global interactions. We argue that desakota represents a surprising and
unusual form of urbanization well-matched to processes of land development that are locally determined but
moderated by the higher-level macroeconomy. We develop a simple logic that links local household reform to
global urban reform, translating these ideas into a model structure that reflects these two scales. Our model first
determines the rate of growth of different spatial aggregates using linear statistical analysis. It then allocates this
growth to the local level using ‘‘developer agents’’ who determine the transformation or mutation of rural
households to urban pursuits based on local land costs, accessibilities, and growth management practices. The
model is applied to desakota development in the Suzhou region for the period 1990 to 2000. We show how the
global rates of change predicted at the township level in the Wuxian City region surrounding Suzhou are tem-
pered by local transformations of rural to urban land uses which we predict using cellular automata rules. The
model is implemented in the RePast 3 software and is validated using a blend of data taken from remote sensing
and government statistical sources. It represents an example of generative social science that fuses plausible
behavior with formalized logics matched against empirical evidence, essential in showing how novel patterns of
urbanization such as desakota emerge. Key Words: agent-based modeling, desakota, emergence, lower Yangtze River
Delta, rural-urbanization.

R
apid urban change often leads to patterns of
morphology, which are surprising in that they are
unanticipated, often counter to what is expected.

Regeneration and redistribution taking place in the in-
dustrial city, for example, have led to increasing spe-
cialization that manifests itself in phenomena as diverse
as the ‘‘edge city’’ and patterns of segregation that form
spontaneously among different population groups quite
content to live side by side, notwithstanding mild pref-
erences for adjacent locations. These patterns are often
described as ‘‘emergent,’’ reflecting processes that act
from the bottom up, producing growth and change that
are organic and unplanned in their genesis. A particu-
larly clear example is associated with the urbanization in
some newly developed countries, particularly in East
Asia. There, rural landscapes, usually within the hin-
terlands of large cities, are rapidly urbanizing, not
through rural depopulation to the cities with their sub-
sequent peripheral growth, but through a process of
change in which a majority of the rural population are
transforming their lifestyles and activities into urban
pursuits in situ. In these situations, the long-standing

migration of the population to large cities which has
historically marked third-world urbanization is much less
significant than the transformations that are taking place
as the rural population becomes urban without sub-
stantial movement to the cities. This phenomenon is
called ‘‘desakota.’’

Desakota is a pattern of settlement characterized by
an intensive mixture of agricultural and nonagricultural
activities that reveals itself as a close ‘‘interlocking’’ of
villages and small towns (Lin 2001). These patterns are
neither urban nor rural, but have demonstrated features
of both. The term desakota was first used by McGee
(1989, 1991), who identified these morphologies with
the Bahasa Indonesian word ‘‘desakota’’ from the words
for village (desa) and town (kota). He says ‘‘These zones
are characterized by high population densities, rapid
growth of nonagricultural activities, labor mobility, occu-
pational fluidity, and intense mixture of land with agri-
culture, cottage industries, industrial estates, suburban
developments and other uses’’ (McGee 1991, 16–17).

Desakota is an emerging urban form that interlocks
bottom-up rural urbanization with top-down urban
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expansion (Lin 1997, 2001; Wang 1997, 1998). It occurs
in traditional agricultural areas and brings urban func-
tions to rural villages and towns. Physically, desakota
consists of noncontinuous impervious patches that are
numerous and adjacent but small in size (Xie et al.
2006), located in rural areas distant from cities and town
centers. They are the direct evidence of spontaneous
economic growth motivated by village residents and
farmers. This bottom-up impetus represents China’s
economic vitality and is a primary factor sustaining
China’s continued rapid economic growth (Marton
2000). Moreover, much of China’s desakota growth has
taken place in economically advanced regions of the East
Coast, particularly where the influence of market re-
forms and globalization has been most strongly felt
(Wang 1998). The economic push and pull from large
cities are key driving forces to sustain desakota devel-
opment, which completes a dynamic cycle of top-down
urban expansion and bottom-up rural urbanization.

In one sense, it is easy to see why this pattern of
growth characterizes rapid urbanization in places like
China. Rural life has formed the bedrock of Chinese
society for many thousands of years, revealing itself in a
dense polynucleated quilt of villages and small towns
with close economic links to the larger cities. Unlike the
wholesale movement from the countryside to the towns
in the United Kingdom and other countries in the nine-
teenth century, modern technologies now make it pos-
sible to urbanize in situ, so to speak, with the network of
social and economic connections associated with an
urban society already largely in place. Some argue that
understanding this rural-urban nexus and its new land-
scape is a key to understanding China’s tremendous
social and economic transformation (W. Tang and
Chung 2000). Somehow these patterns are representa-
tive of China’s extraordinary economic vitality and
provide clues to its continuing social and political sta-
bility in the face of great economic upheavals (Lieberthal
1995). However the phenomena is by no means con-
fined to China; an equivalent of desakota has existed in
parts of urban Europe for the past half century as urban
growth has been accelerated on the polycentric network
of towns and cities established more than 500 years ago
(Kloosterman and Musterd 2001).

Emergence is a much more difficult concept to ex-
plain than to illustrate. One way to proceed is to build
models of such phenomena whose fundamental entities
or objects, sometimes called ‘‘agents,’’ interact with one
another from the bottom up (Parker et al. 2003). The
key to understanding emergent phenomena is to fully
understand the way the model’s agents influence one
another, usually over multiple time periods and across

extended spaces, where surprising patterns often emerge
as a consequence of nonlinear interactions between
agent behaviors through positive feedback. This is the
conventional wisdom underlying the rationale for com-
plex systems modeling. Once a satisfactory understand-
ing of such emergence has been gleaned, then it is an
open question whether the phenomenon is still to be
called ‘‘emergent.’’ Moreover, in terms of urban growth
and form, purely bottom-up explanations are unlikely to
reflect the range of processes and agents that generate
such spatial organization (Urry 2003), and therefore any
model of this process must reflect the local and the
global.

In the case of desakota, efforts to explain such phe-
nomenon are reflected in at least two schools of thought.
The first emphasizes the role of rural areas as the loca-
tions for development and gives priority to rural urban-
ization. Since Deng Xiaoping’s ‘‘reform and opening-up’’
policy, central control by the Chinese government on
rural areas has been relaxed and local cadres have as-
sumed responsibility for many resources and institutions
in the countryside. Townships and village officials have
sought to replace declining state revenues with taxes and
fees on local industries and have promoted and subsi-
dized collective and commercial enterprises, an approach
that has been widely adopted since the 1980s. This
viewpoint argues that, although large metropolitan cities
may provide markets and new technologies, much of the
energy and drive for production is not demand-driven
but comes from rural peasants and local cadres seeking
to improve their lives. This is truly a bottom-up process
reflecting local action (W. Tang and Chung 2000).

In contrast, the top-down view highlights the con-
tributions of China’s largest cities and coastal trade zones
that appear to have reinvigorated and internationalized
China’s economy, culminating in its recent entry into the
World Trade Organization (X. Li and Yeh 1998). This
viewpoint argues that it is only the metropolitan regions
that have supported the conditions for China’s social and
economic transformation to a modern economy consis-
tent with competitive labor markets, high worker mo-
bility, and free trade (Yeung and Zhou 1991; Yao 1992).
In fact, McGee’s (1991, 1998) model of desakota is a
hybrid, drawing on elements from both approaches,
wherein he implies that the resultant landscapes are
based on industrialization in rural areas but consistent
with a ‘‘friction of space’’ that privileges certain locations
up to 200 km beyond the largest cities or between ad-
jacent metropolitan areas (Oi 1999).

Desakota has been quite widely studied in a qualita-
tive sense, but to date the phenomenon has been mainly
identified and analyzed in descriptive terms, focusing on
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how the transformation of China in terms of the global
economy and its internal restructuring has sped up the
pace of this kind of urbanization. There have been at-
tempts to simulate incremental urban change in rural
areas using mainly physical models such as those based
on cellular automata developed by X. Li and Yeh (2000)
for the Pearl River Delta. There have been attempts at
measuring the resultant morphologies, which show par-
ticular patterns of fragmentation (see Sui and Zeng
2000), and there are approaches to detecting differences
between rural and urban in urbanizing regions using
ideas from fuzzy sets (Heikkala, Shen, and Yang 2003).
Xie et al. (2005) and Xie et al. (2006) have explored
how these processes have resulted in loss of agricultural
land and changes to the ecological balance. To date,
however, there have been no attempts to simulate the
way in which developers and entrepreneurs engage in
the process of land development, which is central to the
way rural activities are transformed to urban. We redress
this in this article by explaining the evolution of desa-
kota using an agent-based model that is embedded
within a land development process driven both from the
top down and the bottom up. We argue that desakota
regions emerge from a combination of (i) behaviors to-
ward the land and housing markets that reflect State and
City policies that are instituted from the top down, and
(ii) developer, entrepreneur, and consumer behaviors
that respond to local conditions from the bottom up.
Indeed, like A. Li et al. (2005), we argue that agent-
based modeling should not be restricted to processes
simulating growth and change from the bottom up.

In the next section, we describe how the processes
that lead to desakota can be simulated by a spatial logic
that meets both local and global conditions and con-
straints in the City of Wuxian, which surrounds Suzhou
City in the lower Yangtze Delta about 100 km northwest
of Shanghai. We outline the formal structure of the
model used to transform the landscape surrounding big
cities into desakota, emphasizing the way top-down
processes of social and economic development interact
with developer-agent behavior from the bottom up, thus
initiating various feedback effects that determine the
spontaneous transformation of land uses. We then de-
scribe the data we have for five-year periods from 1990
to 2000, showing how these data can be used to estimate
rates of urban change for the twenty-seven townships
that comprise the region and that determine the controls
on overall growth that take place over the observed
period. We outline the way the model works at a fine
spatial scale in the cells that agents occupy in making the
transformation from rural to urban. We show how well
this model simulates the observed trajectories of urban

change from 1990 to 2000 and then indicate how we can
use the model to make forecasts for the middle range
until 2010 and beyond. Our emphasis on using the
model in prediction is to show how agents operating
spontaneously at the fine spatial scale are influenced by
and influence policy at the global level, which is gov-
erned by the actions of policymakers in the townships.
We then conclude with ideas for further research and a
brief commentary on the suitability of this approach for
explaining unusual spatial patterns such as desakota.

A Logic for Modeling Spontaneous Urban
Change in China

Urban development everywhere is influenced by de-
cision making at multiple levels and scales. But for de-
sakota in China in general, and development in the
Suzhou City region in particular over the period from
1990 to 2000, we simplify the chain of development
decisions to two levels, local and global. The global level
is reflected in aggregate social and economic factors that
pertain to districts or townships within the region, and
that are used to define instruments that steer develop-
ment to favorable locations consistent with regional and
national economic policy. The local level involves the
decisions that households in rural villages and small
towns make to realize local-scale economies through the
transformation of their activities from rural to urban
pursuits or to a mix of these. We call this ‘‘two-front
growth’’ because it combines two different policymaking
levels, both of which contribute to the simultaneous
development of urban and rural areas by fusing ‘‘city-
leading-county’’ initiatives in the cities with the
‘‘household responsibility system’’ that has been intro-
duced in the countryside. City-leading-county initiatives
are not only geared to transforming collapsing State-
owned enterprises into private ownership but often
generating State-sponsored investments that reflect
China’s growing international trade and investment
through the gateway cities. These new developments are
initiated by local enterprises adjacent to large cities with
foreign investment, often appearing like ‘‘flying intrud-
ers’’ in what was once farming land (Wei 2002).

In contrast, at the more local level since the early
1980s, introduction of the household responsibility sys-
tem has dramatically changed rural areas through the
decollectivization of agriculture and a return to family-
centered crop production. The household responsibility
system has provided strong incentives for rural towns
and villages to diversify and grow their economies by
developing nonagricultural enterprises. In general, this
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kind of rural urbanization often involves small-scale,
individual, privately-owned, nonagricultural land use,
termed ‘‘rural construction’’ in official Chinese statistical
yearbooks (Wuxian City Statistical Bureau 2001), with
most construction registered as housing. But the func-
tional uses of such rural construction are diverse; many
individual houses are in mixed use, based on small fac-
tories, craft and other retail shops, restaurants, and re-
lated privately-owned and operated businesses. It has
been argued that this bottom-up impetus is core to
China’s economic vitality and is a primary factor sus-
taining China’s continued economic miracle (Marton
2000). Agent-based modeling is an ideal way of encap-
sulating this kind of institutional policymaking with local
physical responses in terms of land development and we
will fashion our model around this logic.

We have abstracted this process in Figure 1, where we
show the key feedbacks that appear to be plausible
drivers of the processes that determine the transforma-
tion of the rural landscape into desakota in the Lower
Yangtze Delta. At this point, we provide justification of
our approach to understanding desakota using agent-
based models as follows. As Page (2003) so cogently
argues: ‘‘our models become better, more accurate, if
they make assumptions that more closely match the
behavior of real people . . . ,’’ and to this end we con-
sider the processes described in Figure 1 to be close to
those we observe, albeit in a somewhat aggregate man-
ner. We will further translate this by approximating the
outputs of these processes by data when we come to

validate the model in a later section, but in terms of
verifying the model structure, we consider this structure
to be consistent with the wide literature on desakota
that has appeared so far. Before we specify the model
formally, we need to describe this structure in somewhat
more detail.

In abstracting in this manner, we assume that distinct
objects of interest can be defined as agents—whether
literally as individuals and/or households, or somewhat
more metaphorically as townships, districts, policy in-
struments, and the like. We also assume that the land-
scape on which and about which agents make their
decisions is geographical in the traditional sense of the
map. Agent-based models essentially simulate processes
in which agents interact with each other but also with
the landscape, where the assumption is that all possible
feedbacks between landscape and agent can, in princi-
ple, take place (Batty 2005). In this context, we have
already defined two levels, the local and the global, and
we can thus define two types of agents and two types of
landscapes associated with each of these levels. In terms
of agents, we define ‘‘developer agents’’ who act on
households, foreign investors, or even the State at the
local level, and at the global level, we assume that the
agents are townships. The associated landscapes are both
geographical, with the global being the twenty-seven
townships that exhaust the space of the Suzhou region
and the local landscape being a regular grid of cells,
which is the most neutral way of defining a geography
wherein no individual location has an a priori advantage
over any other.

These definitions map onto Figure 1 in the following
manner. In general, the socioeconomic drivers of change
are determined at the global township level where var-
ious policy instruments are exercised in terms of urban
reform. At the township level, regional and national
policies are determined, and in general this fixes the rate
of growth, at least in the medium term. At the local
level, household reform enables individuals and families
to transform their lives by adopting urban pursuits, both
to attract development and to initiate it themselves. In
this sense, developer agents act as ‘‘probes’’ that condi-
tion households to respond to local conditions such as
the costs and benefits of various types of accessibility as
well as the cost of land and top-down policies for growth
management. The interactions between these levels are
of course critical and Figure 1 implies a degree of
asymmetry in the processes just explained. Essentially
the outer loop in Figure 1 represents a slow process in
which socioeconomic conditions determine urban policy,
which in turn provides the conditions for development
to which households in the rural areas respond. In turn,Figure 1. The logic of desakota.
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these households initiate urban development on a much
faster cycle than the outer loop implies. This means that
at the local level, development takes place in the com-
paratively more stable context of wider global policy and
economy but can be more volatile due to feedbacks
posed by local conditions. The development that occurs
then changes the socioeconomic conditions to which
policy will respond in the longer term. Flow charts such
as Figure 1 could imply that everything is connected to
everything else, but in this context the chart shows that
the global level responds more slowly than the local
level. We will incorporate this feature somewhat bluntly
in our model by computing rates of change at the global
level over longer time periods that are used to activate
the developer agents that initiate urban development at
the local cellular level.

A Formal Statement of the Model

Many kinds of agents take part in the transition from
rural to urban growth, but in this model (and at the risk
of gross simplification) we define two distinct types:
developer agents such as individual entrepreneurs, small
corporations, town- and village-owned enterprises, and
privately-operated businesses at the microlevel, and
township agents at the macrolevel. Meso-level actors
such as town-village developers, municipality develop-
ers, external developers including investors from abroad
and other China municipalities, as well as national
policymaking agents, are lumped into the township
agents in the current model but in the future versions
these will be disaggregated. Formally, these two kinds of
agents are defined in terms of the set of townships Zk,
indexed spatially by location as k 5 1, 2, . . . , K, and the
set of developer agents, which we index as j 5 1, 2, . . . , J.
The developer agents move on a landscape of cells that
we index as i 5 1, 2, . . . , I. The township agents are
immobile and are directly associated with their equiva-
lent geographical space; that is, each township k occu-
pies an equivalent space k where the number of
townships is much less than the number of cells—that is,
K � I. There is also a strict nesting of cells within
townships, that is

P
k

P
i2Zk

di ¼ I, where the Kronecker
delta di simply indicates that we count i as 1 if it is part of
the township k. Just as cells are nested in townships, the
micro-time periods over which development takes
place from t to t11 . . . , are nested within more macro-
time periods from time T to T11, such that
DT 5 [T11]� [T] 5 t, where t is the number of micro-
time instants associated with the change between t and
t1t used to simulate local land development.

The model is specified at two levels. The key driver at
the global level is a function that determines the rates of
change in each of the townships measured by changes in
households which can be converted into developable
units. The rate of change in k, Rk(DT), is defined from
the function f( � ), which is specified as

RkðDTÞ ¼ f X1
kðTÞ;X2

kðTÞ; . . .
� �

; ð1Þ

where X‘
kðTÞ; ‘ ¼ 1; 2; . . . ; L are socioeconomic drivers

associated with economic development and regional
policy appropriate to the township level. Equation (1) is
in fact the basis for the estimation in a later section of
the importance of exogenous variables to the rates of
change fitted using linear regression methods, with these
rates determining the amount of growth over the macro-
time period DT. To generate a total for the end of such a
time period, they are applied straightforwardly to the
total households (as developable units) in k, Pk(T), as

PkðTþ 1Þ ¼ 1þ RkðDTÞ½ �PkðTÞ: ð2Þ

To anticipate the lower-level cellular allocation, then the
total households allocated at time T11, Pk(T11) will
always be the sum of the household population pik(T) at
the lower level; that is, PkðTþ 1Þ ¼

P
i2Zk

pikðTÞ, where
the households have already been aggregated over the
number of time periods t.

From equations (1) and (2), total households can be
counted at any scale and over any time period, but in the
model the rates of change are in fact applied at the local
level where all allocation takes place. If we define the
cumulative rate from equation (2) as

1þ RkðTÞ ¼
PkðTþ 1Þ

PkðTÞ
; ð3Þ

then we can factor this rate defined in equation (3) into a
rate per unit time period Dt 5 [t11]� [t] by discounting
the cumulative rate as

~rkðtÞ ¼
PkðTþ 1Þ

PkðTÞ

� �1
t

¼ 1þ rkðtÞ: ð4Þ

When applied cumulatively to the population PkðtÞ ¼
~rkðtÞPkðTÞ, equation (4) updates the totals at each time
period t to meet the constraint that Pkðtþ tÞ ¼ PkðTþ 1Þ.

In each macro time period DT, the total change
DPk 5 Pk(T11)� Pk(T) is broken into its finer temporal
parts using equation (4), and each subtotal DPk(t),
DPk(t11), . . . , DPk(t1t), forms the control for the
detailed urban development process at the cellular level.
At this level, the variables that determine location are
quite different from the global level in that it is access-
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ibilities, land cost reflected through suitability, and
growth management policies that determine the alloca-
tions. At this stage, we will define land suitability in the
fine cell i in township k as Cik(t), accessibility to eco-
nomic centers as Eik(t), and accessibility to transporta-
tion facilities as Tik(t). We also define a policy index
Sk(t), which is in effect a ‘‘Township Competition index’’
related to the rate of change in k, Rk(T), 8i,t. This
tempers the effects of accessibility and suitability with
respect to the growth management and economic poli-
cies set at the township level with the index being set in
proportion to the rate of growth of each township (see
Xie et al. 2005). We will specify these variables in more
detail when we validate the model, but in general these
factors are used to determine a probability for develop-
ment rik(t), which is a form of utility given as

rikðtÞ ¼ g TikðtÞ;EikðtÞ; SkðtÞf g: ð5Þ

In general, land is converted to urban uses by the de-
veloper agent j, who for each cell i in township k eval-
uates the probability of development, subject to the
suitability of the land in question as reflected in the
measure Cik(t). In principle, what each agent is doing is
converting the land in question to an urban use, to pik(t),
by maximizing rik(t) subject to the constraint posed by
the land suitability Cik(t).

Because this process is implemented algorithmically in
sequential form, the details differ from a pure optimiza-
tion. As we will explain below, at the start of each macro-
time period T in the first micro-time period t, we set up a
series of master agents that effectively seed the develop-
ment process in the periphery of existing urban develop-
ment. We define DPk(t) 5 Pk(t11)� Pk(t) such agents
and we locate these agents so they occupy the cells i with
the highest probability for development rik(t) using the
standard random (Monte Carlo) mechanism used in such
modeling (see Batty 2005). In fact, during this process,
because land suitability is taken into account, developers
will not develop a cell if the land suitability is less than a
certain threshold Xk(T)—that is, if Cik(t)oXk(T). The
reason for this initial allocation step, which is different
from the subsequent steps within the macro-time period,
is that between 1995 and 2000 there was a strong shift in
policy in this region and this needs to be reflected in the
initial placement, as we will recount in the discussion that
follows. We call this first process random allocation, but in
subsequent time periods the master developer agents are
used to ‘‘spawn’’ additional agents that add up to the total
required in subsequent micro-time periods. These agents
begin by considering development in the cellular neigh-
borhood of each master agent activating a process we
call neighborhood allocation. It is at this point that the

probabilities defined in equation (5) are considered in
neighborhood order; that is, the developer agent begins by
considering cells in the immediate band of eight cells
around the master agent—in the Moore neighborhood—
and if no suitable cell is found, then the agent considers
the next band of cells, and so on until a suitable cell is
located. The reason for this somewhat convoluted process
is to ensure that development remains ‘‘close’’ to existing
development, which reflects the need for connectivity in
the urbanizing system.

Once the process is concluded at the end of each
micro-time period, new development changes the ac-
cessibility to transport infrastructure and economic
centers as well as land suitability. In short, there are
positive feedbacks initiated at this lower level between
one time period and the next, as reflected in the direct
feedback loop between developers and households in
Figure 1. Formally, then,

Tikðtþ 1Þ ¼ z TikðtÞ; pikðtþ 1Þf g
Eikðtþ 1Þ ¼ q EikðtÞ; pikðtþ 1Þf g
Cikðtþ 1Þ ¼ h CikðtÞ; pikðtþ 1Þf g

9=
;; ð6Þ

and these changes defined in equation (6) reflect the
transition of cells from urban or rural to desakota. Feed-
backs at the higher level of course exist, although we have
not implemented any so far due to the nature of the es-
timation (described in the next section). Moreover, there
are many extensions that we might make to this model
with respect to increasing the connectivity between the
various elements. Nevertheless we consider that this
captures enough of the desakota process to mirror the
process of spontaneous development. In Figure 2, we il-
lustrate the crucial steps in this simulation from which it
should be clear to the reader how we might make addi-
tional connections and extensions to the model structure.

Urban Change in the Suzhou-Wuxian
Region

Suzhou-Wuxian is situated at the intersection of two
major economic belts defined around the Coastal and
Yangtze River Delta concentrations. The wider region is
under the jurisdiction of Suzhou Municipality, which
contains six county-level cities: Changshu, Zhangjia-
gang, Kunshan, Taicang, Wujiang, and Wuxian, with the
urban district (Shiqu) of Suzhou located within the ad-
ministrative territory of Wuxian. Suzhou Municipality
has a population of 5.84 million (Suzhou Municipality
Statistical Bureau 2003). Figure 3 shows the location of
the region centered on Suzhou City with the twenty-
seven townships within Wuxian. Unprecedented
changes in the local economy have taken place in recent
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Figure 2. Sequence of operations in the model.

Figure 3. Suzhou, Wuxian, and the township level.
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decades, and by the mid 1980s Suzhou provided a model
for the development of rural industries based on diver-
sified collective enterprises run by the local municipality
model (K. Tan 1986). Two factors have dictated Suzhou’s
rural growth: its rich agricultural traditions and its net-
work of preexisting towns and cities (Chen 1988; Marton
2000). Today agriculture still accounts for the employ-
ment of most of the rural labor force but provides less
than 15 percent of the total value of production. More
than 50 percent is provided by secondary industries, with
another 30 percent by tertiary (service) activities. There
is a demonstrable link between agricultural specializa-
tion, agricultural surpluses, and investments in nonfarm
enterprises (Kirkby 2000), which is the economic basis of
desakota. Moreover, due to loose and neglected protec-
tion of the environment, the consequences of uncon-
trolled rural industrialization are particularly serious.
Rapid loss of farm land and environmental deterioration
are typical concerns in Suzhou.

The data for this model were derived from diverse
sources. As population, household, and related socio-
economic data were not available at a scale equivalent to
land parcels or even census blocks, data on urban and
rural construction (which we assumed to be proportional
to household change) were generated from remotely
sensed imagery using Landsat (TM) images for 1990,
1995, and 2000. The pixel resolution of Landsat TM
images is 30 m. This resolution suffices to differentiate
urban construction patches since they are large and
continuous. Patches of rural construction have a non-
continuous impervious surface and are small in size.
Rural construction is a rather fuzzy type of land use,
based on the official Chinese statistical yearbooks
(Wuxian City Statistical Bureau 2001).

The functional uses of rural construction are diverse,
but most rural construction is registered for housing.
However, many individual houses have mixed uses, such
as small factories, craft shops, retail shops, restaurants,
and other village and privately owned and operated
businesses. Moreover, the output values from these vil-
lage and privately operated businesses account for in-
creasingly larger portions of the total gross domestic
production. Rural construction is the direct evidence of
spontaneous economic growth inspired by village resi-
dents and farmers. At a regional scale, many studies have
produced results promising enough to use Landsat data
for mapping land use (Wilkie and Finn 1996; Reese et al.
2002). We assumed that data on urban and rural con-
struction were proportional to household change and we
generated this using Landsat TM images for 1990, 1995,
and 2000. As population, household, and related socio-
economic data were not available at a scale equivalent to

land parcels or even census blocks, we used township
geography that is the finest administrative unit, on
which the Chinese government collects socioeconomic
statistics. We aggregated Landsat 30-m pixels over the
township boundary data layer to tabulate areas of various
land types and link the land use data to the townships’
socioeconomic data used to simulate causal relation-
ships.

These images were classified into a dozen land use
categories used to derive the transition matrices indi-
cating the amount of each land use that was converted
to any other use during the two periods in question, 1990
to 1995 and 1995 to 2000: T! T11 and T11!
T12. From these images, land parcel data were ex-
tracted and then converted to vector data sets, com-
plemented by data associated with topography,
geomorphology, vegetation, precipitation, and tempera-
ture used as the ancillary data in the interpretation
process. Further details are given in Liu, Liu, and Deng
(2002). The method adopted here to extract dynamic
changes in the vector land use datasets was based on
postclassification image comparison complemented by
field sampling to ensure quality control in the resulting
classifications (de Almeida et al. 2005). Control was
executed by checking the identities and the boundaries
of sample land use patches with manual adjustment to
decrease the incidence of major errors. The TM images
in 1995 were used to interpret the dynamic change
vector data by comparing them with the vector data
derived from interpreting TM images in 1990, and the
same method was applied for the period 1995 to 2000. In
fact, over both time periods comparing 1990 with 2000
data, the overall classification accuracy of measured ar-
eas of all land types was about 97 percent (Liu, Liu, and
Deng 2002), which gave us a high level of confidence in
the extracted change data and its allocation into land
use categories.

We will not show the complete transition matrix
among the thirteen categories of land use that we have
extracted at these three dates, for our focus is not on
how particular land uses are transformed into one an-
other per se but on the impact of urban development on
the range of land cover types. In Table 1 we show the
changes from an aggregated set of classes into urban and
rural construction (which we take to be urban/household
unit development in this context). The total construc-
tion was significantly reduced during the period from
1995 to 2000 (19 percent) and in particular urban
construction was dramatically trimmed down to around
64 percent. In contrast, rural construction increased 61
percent in 1995–2000 compared to the period 1990–
1995. This conversion confirms that the policy enacted
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in 1995 to protect agricultural land and curb the over-
heated economy had a notable impact on the desakota
process through subsequent land use changes and pat-
terns. Moreover, there has been a sharp increase in land
use being converted from paddy fields and a consequent
drop in conversion from drylands between the first and
second time periods. This indicates that the preferred
land supply—drylands—for urban development, has
been severely diminished, which in turn has forced
people to take more productive farmland—paddy fields.
Although strict measures for controlling investment and
urban expansion are noticeable, it has been hard for
government to discourage rural residents from building
more spacious houses due to increasing affluence.

Paddy fields and drylands completely dominate the
process of land development, forming some 98 percent of
the entire land use change in the first period and 88 percent
in the second period. As conversion from paddy fields is the
largest category in both periods, we can also examine the
extent to which paddy fields are converted to other land
uses. As shown in Table 2, urban and rural construction still
dominate, taking some 77 percent and 74 percent of paddy

field land in the two respective time periods, with factory
and transportation uses taking 4 percent and 7 percent,
respectively. The only other substantial transition is from
paddy field to reservoirs and ponds, which simply indi-
cates traditional changes in this kind of wetland agricul-
ture with no real significance for urbanization.

It is not meaningful in such a large region to examine
absolute volumes of change. Suffice it to say that
Shuzhou City’s population was some 0.84 m (million) in
1990 and this grew to 1.11 m in 2000, with Wuxian City,
the surrounding region, falling from 1.12 m to 0.96 m
people during this time. In fact in 1995, due to boundary
changes, the urban district of Suzhou incorporated five
townships from Wuxian (Shenpu, Weiting, Kwatang,
Xietang, and Fengqiao along with their 170,175 resi-
dents). However, the key point is that the entire region
grew only slowly from 1.97 m in 1990 to 2.03 m in 1995
to 2.07 m in 2000. As a matter of fact, Suzhou Munic-
ipality recorded negative natural population growth rates
in recent years (� 0.28 percent in 1998, � 0.22 percent
in 1999, 0.58 percent in 2000, � 0.39 percent in 2001,
and � 0.27 percent in 2002), which partially explains
the slow population growth in Suzhou (Suzhou Munic-
ipality Statistical Bureau 2003).

Nevertheless, there has been dramatic urbanization of
Wuxian during this period, which is quite evident from
analysis of the imagery. In terms of land area, some 60
percent of Wuxian is permanent lake. Paddy field is the
next largest use at about 25 percent of the area in 1990,
but paddy fields have reduced by 5 percent in each of the
five-year periods (dropping by roughly 1 percent per
year) and now constitute some 22 percent of the region.
This loss has been taken up by rural construction, which
was 3 percent of the region’s area in 1990 and 4 percent
in 2000, growing by some 25 percent in the first period
and 46 percent in the second. Urban construction
(within Wuxian) grew even more dramatically by some
18 percent in the first period and a staggering 240 per-
cent in the second. The scale of this growth is quite
characteristic of desakota with the boundary between

Table 1. Percentage conversion of land use to urban and rural construction over the two macro-time periods

Land use cover type 1990–1995 1995–2000

Converted hectares of urban and rural construction 4,228 ( 5 269211536) 3,433 ( 5 96312470)

Shrub and loose forest 0.09 2.08
Other forest including orchards 0.2 3.37
Highly-covered grassland 0 1.24
Lake, reservoir, and pond 1.17 1.88
Shoal 0 0.03
Hill and plain paddy field 50.84 77.13
Hill and plain drylands 46.69 10.85

Table 2. Percentage conversion of paddy fields to other land
uses over the two macro-time periods

Land use cover type 1990–1995 1995–2000

Lost hectares of paddy fields 3816 3498

Dense forest 0.12 0.00
Shrub forest 0.03 0.00
Sparse forest 0.19 0.00
Orchard 0.14 0.48
Dense grassland 0.05 0.83
River 0.12 0.00
Lake 2.66 0.00
Reservoir and pond 14.02 17.73
Shoal 0.01 0.00
Urban construction 39.33 32.96
Rural construction 38.10 40.91
Large factory and transportation 3.51 6.93
Plain dry land 1.72 0.16
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what is defined as rural and urban becoming entirely
blurred (Heikkala, Shen, and Yang 2003). Figure 4 shows
the distribution of land uses taken from the remote
imagery for 1990, 1995, and 2000, the differences be-
tween each of these dates, and the difference from 1990
to 2000, which indicates the degree of overall change. It
is from these different maps that we compute the urban
change used to drive the model from the township level.

Estimating Rates of Urban Change

The rates of change at the township level that are
applied to the total land use change extracted from the
remote imagery at 1990 and 1995 are generated from a
linear statistical model whose independent variables are
based on socioeconomic data reflecting economic con-
ditions and policy imperatives. Two rather different

Figure 4. Land use types at 1990, 1995, and 2000 and first differences associated with modeling urban change.
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models resulted from the estimations in each macro-time
period: the first based on simple demographic variables,
the second on new data reflecting income and tax. This
is simply due to the stepwise procedure used to identify
significant independent variables in the model rather
any differences in data. The fact that the models from
the two periods are different in structure reflects quite
distinct differences between the political and economic
regimes dominating development in the Suzhou region
over the past decade. During this period, there was a
strong shift to economic issues associated with income
and taxation in contrast to the earlier period when de-
mographic factors appeared stronger. In making fore-
casts, we will use the rate model from the second period
because it has variables that can be more directly asso-
ciated with policy.

In general the rate of urban change in township k,
Rk(DT), defined above in equation (1), can be estimated
from the following linear form:

RkðDTÞ ¼ aðTÞ þ
X
‘

b‘kX
‘
kðTÞ þ ekðTÞ; ð7Þ

where b‘k are weights on X‘
kðTÞ; ‘ ¼ 1; 2; . . . ; L, the L

independent socioeconomic variables defined at the
township level k, a(T) is a constant, and ek(T) are the
associated error terms. In the period 1990–1995, a
stepwise regression using the large data set in Table 3,
which includes a series of population and employment-
labor force variables, resulted in the following equation

being judged to be the most parsimonious with the best
fit of equation (7) for the period 1990–1995:

Rkð1990! 1995Þ ¼ 15:68þ 0:627 RPkð1990Þ þ 7:69Pkð1990Þ
ð0:89Þ ð2:48Þ ð4:54Þ
� 5:02 Ekð1990Þ
ð�3:49Þ

9>>>=
>>>;
;

ð8Þ

where RPk(1990) is the rural (nonurban) population,
Pk(1990) the urban population, and Ek(1990) the em-
ployment (labor force) total, all at 1990. The t statistics
(bold) under each weight and variable make clear that
the parameters b‘k are all significantly different from zero
at the 5 percent level. The amount of variance explained
by this equation is 72 percent, which is acceptable for
driving the simulation from its start point.

In the second period, 1995–2000, other variables
from the database, based on the same twenty key
economic and demographic variables used in the 1990–
1995 calibration, appeared. The dataset included out-
put by employment sector, fixed asset values, incomes
in different sectors, revenue, and taxable receipts. As
in the first time period, we cycled through a step-
wise regression procedure that ultimately converged on
an equation with a larger and very different set of
independent variables, much more related to policy
instruments such as taxation. The form of equation (7)
for the period 1995–2000 is

Table 3. Demographic and socioeconomic variables considered in the stepwise regressions

Description Unita

Agricultural population IND
Nonagricultural population IND
Total population IND
Land area in cultivation MU
Total output value of agriculture, forestry, animal husbandry, and fishery MY
Gross domestic product value MY
Gross product value of primary and secondary industries MY
Gross product value of tertiary industries MY
Total value of fixed assets investment MY
Total income of rural economy MY
Income in agriculture, forestry, animal husbandry, and fishery MY
Income in nonagriculture, nonforestry, non–animal husbandry, and nonfishery MY
Total expense in rural economy MY
Total income of the farmers MY
Total value of industrial assets MY
Net value of the fixed assets MY
Number of factories CNT
Number of employed people at the year’s end IND
Total tax value MY
Sold ratio of the product value Percentage
aIND 5 individual count of all people; MU 5 1 mu 5 1/15 ha 5 1/6 acre; MY 5 million Chinese yuan; CNT 5count of all factories.
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Rkð1995! 2000Þ
¼ 0:99þ 0:24 TAXkð1995Þ � 0:28 INAkð1995Þ
ð0:17Þ ð8:58Þ ð�4:65Þ
þ 0:17 GDPkð1995Þ � 0:14 FAkð1995Þ þ 0:25 REk

ð4:35Þ ð�4:04Þ ð2:37Þ

9>>>>>>=
>>>>>>;
;

ð9Þ

where TAXk(1995) is the total tax levied, INAk(1995) is

income in the nonagricultural sectors, GDPk(1995) is gross

domestic product, FAk(1995) is the net value of fixed total

assets, and REk(1995) is the expenditure in the rural econ-

omy, all at 1995, and defined in each township k. The t sta-

tistics (bold) under each variable imply that the

b‘k parameters are all significantly different from zero at the

5 percent level. The variance explained by this equation is

88 percent, which is particularly high given the aggregation

and uncertainties posed by the quality of the data.

Equations (8) and (9) are used in the global model,
and in terms of the simulation they provide the param-
eters determining the overall rates of change from 1990
to 1995 and 1995 to 2000 in the twenty-seven town-
ships. These are used to compute the rates input to
equation (2), which in turn is used to factor the total
urban change into its constituent components. The
amount of the change is then allocated to the cells by
the lower-level agent model. Note that the calibration of
the global model is accomplished outside the overall
model framework as represented in Figure 2.

Before we deal with more detailed questions of sim-
ulation, it is worth noting that the difference between
the two major periods 1990–1995 and 1995–2000,
which are used to calibrate two rather different aggregate
models, is related directly to policy changes. A major
policy change regarding the agricultural land protection
was enacted in the mid-1990s. China’s policy from 1990
to 1995 was prioritized to promote socioeconomic de-
velopment and to improve living standards. As a result,
rapid economic growth brought about rapid urban ex-
pansion with an increasing proportion of affluent rural
residents consuming arable land for residence and ser-
vices. Dramatic demands for construction resulted in
land degradation, deforestation, habitat fragmentation,
and biodiversity loss. The overheated economy forced
the Chinese government to issue new policy directives in
the mid-1990s (Jones 2002). The new farmland pro-
tection law stipulates tough rules on fixed-asset invest-
ment, urban construction, and farmland (paddy field)
loss, but less strict regulations on marginal lands (dry
plain and shrub lands, in particular) that are less pro-
ductive (but environmentally sensitive).

Under these different policies, socioeconomic factors
clearly interact in different ways with distinct changes in

land use cover. From 1990 to 1995, rural and urban
population and employment were the critical factors
driving rural urbanization. However, in the period from
1995 to 2000 the most important drivers for rural in-
dustrialization and commercialization were the total tax
levied in each township, income from the nonagricul-
tural sectors, gross domestic product in each township,
the net value of fixed total assets, and the expenditure in
the rural economy. Production, revenue, profit, and ef-
ficiency thus play much more significant roles than the
sheer sizes of population and employment.

Agents in a Cellular Landscape: Simulating
Growth and Change in Wuxian City

The cellular level used to allocate urban change
generated at the global level is based on defining prob-
abilities of transition from whatever use the cell has at
the start of the simulation at time t to urban use at
time t11. These probabilities were defined generically
in equation (5), where it was argued that they depend
on accessibility to economic activity in town centers
Eik(t) and accessibility to transport infrastructure Tik(t).
The other factor, which we have called the Township
Competition index Sk(t), is related to the rate of growth
at the township level; it cements the local and global
levels together not only by controlling the amount of
growth but also by inputting the influence of the town-
ship on the local level. We will now detail how these
factors are used to define the probabilities of urban
change.

Economic accessibility is based on distance to town
centers. It is determined through a GIS operation, buf-
fering the town centers at five successive distances in 0.5
km increments (at 0.5 km, 1.0 km, 1.5 km, . . .) from
their physical centroids and then recoding the distances
as 1 (o0.5 km), 2 (0.5–1.0 km), 3 (1.0–1.5 km), and
so on. We refer to the areas created as economic op-
portunity zones. Transportation accessibility to the main
roads is computed by buffering at the same ranges of
distance and then scoring the successive buffers in the
same way.

These simplifications are required so that the hun-
dreds of thousands of interactions between cells in the
model can be computed efficiently. The way this works
in the model is as follows. When an agent considers
accessibility to transport or to town centers, in the ab-
sence of any detailed information at the cellular level the
model assumes that with decreasing distance to the town
center, more and more economic opportunities are
accumulated, and this is then weighted against the index
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score so that an opportunity surface is established. This is
similar to gravitational notions in terms of intervening
opportunities weighted against distance and it enables an
accessibility score to be computed for each of the ac-
cessibilities in question. The Township Competition
index is also computed by transforming township attri-
butes into scores. Townships are sorted from high to low
according to how many urban agents are associated with
the urban change predicted for the township in question.
We simply order the towns in terms of growth rates, from
largest to smallest, and assign priority orders of 1 to the
townships ranked from 1–5, 2 from 6–10, 3 from 11–15, 4
from 16–20, and 5 for townships ranked 420. The ele-
ments then used to compute the probabilities are di-
mensionless. The probability equation is set up in linear
form as

rikðtÞ ¼ mTikðtÞ þ lEikðtÞ þ cSikðtÞ; ð10Þ

where each variable ranges from 1 to 5 with the entire
range being between 1 and 15. The parameters m, l, and
c are those that enable the model to be calibrated at the
local level, a process we will describe shortly.

One last feature of the local allocation needs to be
established before we briefly describe how we calibrate
the model and then consider its use in forecasting. This
involves land suitability, which we earlier formalized as a
constraint on the optimization of the probability of urban
development. In fact, we use a strict priority ordering for
the transition of land to urban use. The urban agents will
try to occupy dryland first, then paddy fields, forest,
reservoirs and ponds, and finally grassland.

The land suitability process is initiated in the first
micro-time period when the random allocation of master
agents to locations is made. We outlined this process
earlier but at this point we need to be crystal clear about
how the whole microsimulation is implemented. This is at
the heart of the process of generating spontaneous urban
growth in the countryside, which is the essence of the
way desakota emerges. Each cell is 100 m� 100 m and
there are roughly 687,000 cells in total allocated to the
twenty-seven townships. In each macro-time period of
the simulation from T! T11, there are about 50,000 to
60,000 urban developer agents {j} that roam the cellular
landscape {i} looking for cells to transform from rural to
urban. These of course are discounted back to about
9,000 to 12,000 for each micro-time period t! t11. The
transformation process that they initiate is different from
the usual cellular automata model structure in which cells
change state from rural to urban dependent on land
suitability and accessibility rules, for the urban developer
agents are essentially mobile. Strictly speaking, for a
model to be agent-based, it must contain agents that can

move, for if the agents are passive and simply in one-one
correspondence with cells, then the agent layer is re-
dundant (Batty 2005). In this case at the microcellular
level, the agents act as ‘‘probes’’ searching the landscape
for cells that are suitable for transformation from rural to
urban and their movement on the landscape reflects the
process of searching for suitable sites (cells).

As noted earlier, the process of allocation consists of
randomly allocating the first round of agents to cells that
have the highest probability of development based on
equation (10), subject to the land suitability ordering,
when t 5 T or t1t11 5 T11 (i.e., in the time period
1990–1991 or 1995–1996). These agents are the mas-
ter agents; they then seed all subsequent allocations
of agents using the neighborhood allocation rules in
the remaining time periods of the microsimulation,
1992–1993, 1993–1994, and so on, until the end of the
second macro-time period in 2000. In the second micro-
time period, an appropriate number of new urban agents
associated with the master agents in each township area,
but at the cellular level, are generated and then allo-
cated using the neighborhood allocation rules. This in-
volves these new agents assessing the suitability and
probability of land for urban development in the
neighborhood of the master agents. If these agents are
unable to find suitable land for conversion in these im-
mediate neighborhoods (which will always be the case
because the number of agents being generated is likely
to far exceed the available cells in these restricted
Moore neighborhoods), the search is widened and the
agents move to the next band of cells, continuing in
this way until all the agents associated with township
in that micro-time period are allocated. At this point,
these new agents become master agents seeding the
next round of conversions in the next micro-time
period until all the urban agents associated with that
macro-time period have been allocated. This process is
akin to a process of continual mutation of land uses until
enough urban development has been generated to meet
the control totals consistent with the rates of change
that are simulated at the township level using the linear
model.

The local level model, which is essentially the struc-
ture pictured in Figure 2, is implemented in the open
source modeling language RePast 3 (Collier, Howe, and
North 2003; and http://repast.sourceforge.net/). Our
implementation is unusual in that we have a very large
cellular landscape and thousands of agents and it is one
of the first ‘‘realistic’’ implementations of RePast for
spatial agent-based simulation, as the results presented
below will show. The details of the simulation process
need not concern us, other than noting that there is
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another layer of time within the operation of the simu-
lation, which is referenced as ticks. These ticks do not
match the real times t and T for they are essentially used
to track the movement of agents across the space as they
search for suitable cells to transform and, as such, they
reflect the various iterations that are used to achieve the
control totals from the global level. It is also important to
note that the search process for an urban agent is not
confined to the cells associated with a particular town-
ship. The agents are free to search over the entire space.
In fact, one major measure of fit that we use is to
compute how many units of development are generated
in each township.

We have run the model in two ways: first we cali-
brated the model from 1990 to 2000 in terms of the local
parameters m, l, and c associated with the probability of
development in equation (10); and second, having
chosen these best parameter values, we ran the model
from 2000 to 2010 using the global parameters from the
regression model in equation (9). To calibrate the local
level model, we should choose a range of values for each
parameter and run the model over all significant com-
binations of values in these ranges.

For each combination, we compute the goodness of fit
of the model in terms of the number and location of cell
conversions from rural to urban land, and then choose
that combination of values that is closest to what we
observe in the overall period from 1990 to 2000. The
values of the three parameters m, l, and c are arbitrary
as the scoring used in forming their variables makes
them comparable and thus it is their relative values that
are important. This is a very standard method of
searching for best-fit parameters in intrinsically non-
linear models, and one that goes back many years (see
Batty 1976), although what we have actually done is to
sample the phase space in a systematic way rather than
sweeping the entire space in comprehensive fashion. In
extensions to this model, we will selectively sample and
search the space hierarchically as we have done in other
agent-based models we have been working with (Xie and
Batty 2005).

The goodness-of-fit criterion that we are currently
using is based on the difference between the urban cells
that have been converted from rural predicted by the
model with respect to those observed from the remote
imagery maps shown earlier in Figure 4. This is for the
entire period from 1990 to 2000 but aggregated to the
twenty-seven townships. Although the townships act as
the control on total growth at the global level, urban
development at the local, cellular level is not restricted
to particular townships as we noted earlier; that is,
agents are free to search the entire space. Formally this

criterion is:

F m; l;cð Þ ¼
X27

k¼1

PkðT! Tþ 2Þ �
X10

t¼1

X
i2Zk

pikðtÞ
" #2,

27;

ð11Þ

where the temporal summations are over the period from
1990 to 2000 and the spatial summations are over the
number of cells in each township.

To get the best parameter values, we first developed a
very crude sweep of the phase space, choosing four
values of each parameter and focusing on the area of the
space that seemed to yield the lowest goodness of fit.
This was the area around 25 � m � 35, 1 � l � 10, and
1 � c � 10. We searched one dimensionally across each
of these parameters, computing the goodness of fit, F (m,
l, c), through varying m, then l, then c with the re-
spective other two parameters held constant in each
case. In Figure 5 we show variations in the goodness of
fit, which represent transects through the three-dimen-
sional phase space. The best values ultimately identified
were m � 30, l � 5, and c � 5, and Figure 5 shows that
these give a point of minimum difference between pre-
dictions and observations with respect to this local area
of the phase space. Short of sweeping the entire phase
space at this level of detail, which would involve running
the model thousands of times, we consider this to be as
good as we are likely to get at this initial stage. This may
not be the optimum optimorum but we are also certain
that there are no such global optima within phase spaces
associated with models of this kind. Nevertheless we are
confident that the parameter values identified produce
good simulations, for these revealed patterns of growth
are close to those that we observe over the calibration
period 1990–2000.

It is important to examine these spatial results directly
as statistics such as those in equation (11) are not spa-
tially weighted in any way. When we look at the pre-
dictions from 1990–1995 and 1995–2000 in Figure 6, we
see that the model produces rather plausible patterns of
desakota, quite consistent with what we have extracted
as observed urban development from the remote imag-
ery. The patterns show that there is spontaneous growth
into the hinterland of Suzhou in all townships as land is
converted to urban. In fact, a much clearer picture of
what is happening and the ability of the model to gen-
erate in situ growth and change is given in the snapshots
from the animation that is shown in Figure 7 where we
plot the actual change in urban development from 1990
to 2000. This is then extended as a forecast to 2010
using the 1995 to 2000 global parameters in fixing the
amount of urban change over this future ten-year period.
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These figures speak for themselves in illustrating how
urban development pops up all over the region, not-
withstanding the modest population growth in the area
which was very close to only 1 percent per annum
through the decade from 1990 to 2000. The web site
http://www.casa.ucl.ac.uk/desakota/ gives access to an
animation of this process from which these snapshots are
taken.

Conclusions: Findings and Next Steps

We have extracted a few findings about the desakota
development in the Suzhou–Wuxian region in China.
First, rapid rural urbanization and the emergence of
market towns are apparent in the study area. In addition
to the significant expansion of Suzhou City, many of the
twenty-seven towns witnessed noticeable urban growth.
Second, comparing the observed urban growth (Figure
4) with the growth predicted by the agent-based mod-
eling (Figure 6) shows the observed desakota sites to be
more aggregated and clustered and the predicted desa-
kota areas to be relatively evenly dispersed among the
twenty-seven townships. Though this finding may indi-
cate that additional attention should be given to the
calibration process, it has exposed the complex nature of
spatial dynamics of desakota growth. As we pointed out
earlier, key to desakota development is the integration of
commercial and industrial functions in agricultural
landscapes. In other words, desakota is associated with
significant increases in nonagricultural population, rural
economy revenue, and tax, which are the explanatory

variables that we used here to estimate the growth rates
of urban agents at the level of the township geography.
Apparently the desakota phenomenon demonstrates a
more complicated relationship that cannot be simply
explained by the linear associations between these so-
cioeconomic driving factors at the level of township
aggregation. Nevertheless our findings do reveal the
need for considering the township competitiveness from
the regional perspective.

We have also illustrated a number of features about
the agent-based models. First we have designed a rela-
tively large-scale model of urban growth and change that
is agent-based in terms of its local simulation, with the
agents being used as probes to convert land use from
rural to urban development. Agents are used as devices
to search the space, and in future versions we will give
these objects a more realistic form by dividing them into
urban entrepreneurs/developers and farmers, elaborating
the search process as one of profit maximizing where the
various accessibility and land suitability attributes are
considered as relevant to the market process (Xie and
Batty 2005). Second, our use of agents in this fashion is
rather innovative as the agents are designed to be
‘‘change agents’’ rather than literal households or indi-
viduals, thus enabling the dynamics of the agent-based
software we have used to be configured not only for
temporal change but for change associated with search
and optimization within the model structure. Third, to
our knowledge this is one of the first applications of
agent-based modeling that uses large datasets fusing
remotely sensed imagery with socioeconomic data.

Figure 5. Optimizing the goodness of fit within the search space defined by local parameter values.
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Fourth, we are firm in our belief that agent-based models
do not simply apply to disaggregate systems but can be
used to integrate different levels and scales essential to
simulating what at first sight appears to be a bottom-up
phenomenon such as desakota. Of course, enabling
agents to search and to extract information beyond their
locality is a challenging task. Our handling of the agents
at the local neighborhoods and at the level of the
townships in this article is a considered attempt to un-
derstand the interactions of geographic agents at differ-
ent scales. However, as we pointed out earlier, the

consideration of agents acting in a competitive envi-
ronment both from regional and national perspectives in
a world of economic globalization leads to more realistic
simulations.

Many features of our simulations are rough around
the edges and require considerable refinement. We are
also aware that in calibrating such models to match real
data, we are hardly testing the model in its widest sense.
But this is little different from the movement in sci-
ence and social science to embed plausible behavioral
assumptions into our models, which we consider to be

Figure 6. Predicted land use and changes in land use 1990 to 2000.
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important to explanation but are often, indeed usually,
absent from more parsimonious model structures. The
new quest for generative modeling in the social sciences
is illustrated rather well in the model developed here
(Epstein 1999). The idea that we need to demonstrate
how our assumptions can generate plausible outputs is
encapsulated in the idea of growing our systems through
various forms of dynamics, temporal and otherwise. As
Page (2003, 344) notes: ‘‘the generative claim that ‘if

you didn’t grow it, you didn’t show it’ should be ignored
at our peril . . .’’ The example of desakota is rather a
good test bed on which to illustrate this argument.

We are planning a number of extensions of this model.
We need to develop a much stronger link from the global
to the local and vice versa which will be based on
strengthening the feedback loop between development
and socioeconomic drivers illustrated in Figure 1. We
need to generate several different types of agents at

Figure 7. Snapshots of urban development through the micro-time periods 1990 to 2010 (For the complete animation, see http://www.
casa.ucl.ac.uk/desakota/.)
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different scales for the rural and urban regimes in our
model and we need to consider transitions other than
those between rural and urban. In this way, we plan to
extend our model to examine impacts on the environ-
ment and the extent to which the kind of desakota
appearing in China is sustainable. We intend to calibrate
the model at the fine cellular scale and to develop
strategies for multilevel calibration, a relatively new
feature of agent-based modeling occasioned by our use of
more than one scale of agent. And last but not least, we
intend to improve the detailed measurement and simu-
lation of accessibilities in the model relating the alloca-
tion process to capacities on land as well as its suitability.
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