Inaccessible or Unstable? Further Applications of the IA Model

Carolyn Wilshire
School of Psychology, Victoria University of Wellington, New Zealand

Thanks to...

Caroline Fisher
Leonie Keall
Liz Stuart
Royal Society of New Zealand
Types of Impairments in the IA Model

- Dell et al (2003); Foygel and Dell (2000): weakened S->L and/or L->P connections
- Result = reduced/slowed transmission of activation
 - Weakened S->L connections: lexical nodes under activated, so can’t access correct word
 - Weakened L->P connections: phonological nodes underactivated, so can’t access correct phonemes

- Martin, Dell, Safran & Schwartz (1994): Increased decay rate of nodes
- Consequently, representations are “accessed” but activation not stable over time
- Predicts different error patterns: stronger influence of feedback = more formal paraphasias

BUT an alternative type of impairment is possible....
“Decay” Impairments

- Martin et al (1994): Global increase in decay rate (all nodes affected)
- Produces Deep dysphasia:
 - Frequent formal paraphasias in naming and speech
 - Can’t do tasks requiring maintenance of activation:
 - word repetition (semantic and other errors)
 - nonword repetition
 - short-term memory
- This idea of “unstable” or “fast fading” info not new (e.g. Michel & Andreevsky, 1983)
- BUT, IA model provides a formal framework for describing this idea.

“Decay” Impairments

- Later work: group study varied global decay impairments and global connection strengths (Dell, Schwartz, Martin, Saffran & Gagnon, 1997).
- Variation in these two parameters explains some differences between individuals, but not as many as S-P model
Our Research

- Perhaps we need to consider both dimensions:
 - Not only *locus* of impairment (lexical or phonological)
 - But also *nature* of impairment (weak connections or decay)

- Two fluent aphasic individuals: MS and GE

- For both, phonemic paraphasias are main error type in naming
 - i.e. both have same *locus* of impairment

- BUT performance of the two differs qualitatively, suggesting *nature* of impairment is different.

Case Descriptions

Patient MS
- CVA; small lesion in left posterior parietal lobe; 12 months post stroke
- Speech is well-articulated, grammatical, but many phonological errors
- Comprehension impaired
- Can’t repeat words/sentences, zero performance on nonwords repetition
- BDAE: Borderline Wernicke’s/Conduction Aphasia

Patient GE
- CVA; moderately large lesion in left parietal lobe; 4 months post stroke
- Speech well-articulated, grammatical but hesitant; many phonological errors
- Comprehension preserved
- BDAE: Conduction Aphasia
Performance in Naming and Repetition

<table>
<thead>
<tr>
<th>Response type</th>
<th>Naming</th>
<th>Repetition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MS</td>
<td>GE</td>
</tr>
<tr>
<td>Correct</td>
<td>47.3</td>
<td>21.7</td>
</tr>
<tr>
<td>Phonemic paraphasia</td>
<td>19.5</td>
<td>33.3</td>
</tr>
<tr>
<td>Formal paraphasia</td>
<td>13.6</td>
<td>7.2</td>
</tr>
<tr>
<td>Semantic paraphasia</td>
<td>4.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Unrelated word</td>
<td>6.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Neologism</td>
<td>4.1</td>
<td>12.2</td>
</tr>
<tr>
<td>Other</td>
<td>4.2</td>
<td>12.8</td>
</tr>
<tr>
<td>Word Length Effects</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Word Frequency Effects</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Auditory Comprehension

Patient MS:
- Phoneme discrimination (e.g. cub - cut): 75%
- Auditory lexical decision: 79%; missed many real words
- Word-picture matching with semantic distractors (e.g. crab-octopus) 100%
- Word-pic matching with with phonological distractors (e.g. comb-cone) 58%

Patient GE:
- Phoneme discrimination (e.g. cub - cut): 85%
- Auditory lexical decision: 85%
- Word-picture matching with semantic distractors (e.g. crab-octopus) 94%
- Word-pic matching with with phonological distractors (e.g. comb-cone) 80%
Summary

- Both patients produce phonemic paraphasias as main error type
 - can’t correctly access phoneme nodes
- BUT

<table>
<thead>
<tr>
<th>PATIENT MS</th>
<th>PATIENT GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many formal paraphasias</td>
<td>Few formal paraphasias</td>
</tr>
<tr>
<td>Repetition << naming</td>
<td>Repetition > naming</td>
</tr>
<tr>
<td>No length effects are weak</td>
<td>Strong length effects</td>
</tr>
<tr>
<td>Phonological input processing esp. poor</td>
<td>Phonol. input processing still weak, but better than MS</td>
</tr>
</tbody>
</table>

The Phonological “Decay” Hypothesis

These differences suggest:
- Problem at same locus, but nature is different

Our hypothesis:
- GE = weak L->P connections
- MS = fast decay in phonological nodes
Predicts

- MS’s will produce a high rate of formal paraphasias
- MS will perform poorly on tasks requiring maintenance of phonological information, such as word (and especially nonword) repetition
- If network is used in both production AND comprehension, then MS will also have comprehension difficulties (fast decay means fast “fading” of phonological input)

Conclusion

- One type of impairment - weak connections - not enough to capture actual differences between cases
- An ideal model of aphasic word production needs to consider both “accessibility” and “stability” of linguistic information
- IA model provides ideal framework for describing dynamic impairments such as this