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Abstract

We introduce a new model-based clustering design using product partitions. This Bayesian specification

simultaneously incorporates substantive clustering and model-fit subclustering on random effects from a

Dirichlet process prior. The estimation algorithm directly includes variable context within clusters into a

general clustering model that detects latent clustering effects pervasive in social science datasets based on

posterior probability. The analysis of terrorist groups shows how this tool reveals important features in a

dataset that are otherwise undetectable.
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1 Objectives and Significance

The analysis of social science data is often difficult for reasons that tend to affect other fields less substantially.

Such problems include: high levels of measurement error, governments that falsify or withhold information,

collection in difficult or even violent areas, embargoed information based on privacy concerns, well-known

survey response issues, overlapping explanatory power in model variables, the fluidity of political and social

institutions, as well as the willingness of individuals to conceal information from researchers. This has led

to many important modeling innovations as a way to meet these challenges. In particular, one problem that

is difficult to handle with traditional statistical models is deliberately withheld information that correlates

strongly with phenomena of interest. For example, Gill and Casella (2009) used a generalized linear mixed

model with an ordered probit link to estimate levels of stress in presidential political appointees as a means

of understanding their surprisingly short tenures. In order to obtain open and honest responses, the collectors

of these data (Mackenzie and Light ICPSR Study Number 8458, Spring 1987) embargoed key information,

such as agency employer, that would have helped researchers but identified these government executives. As a

way to draw subtle information out of the data that sheds light on the bureaucratic classification, a Bayesian

approach was developed where the random effects are modeled with a Dirichlet process mixture prior. Such

information can be thought of as latent clustering in the data, but do not constitute actual clustering in the

since the criteria for their creation produces too many categories.

This work addresses the issues of latent clusters in the data, but still including the groupings that result

from a Generalized Linear Mixed Dirichlet Model (GLMDM), and improves the current state of model-based

clustering algorithms. Here we adapt GLMDM models to estimate the probability of alternative posterior

cluster arrangements that account for both differing responses to

covariate information as well as non-parametric individual level random effects. Because this approach

models two types of latent heterogeneity, it can help us better understand clustering effects that are pervasive

in social science datasets, notably with empirical studies of terrorism as shown here. This unique application

will improve our understanding underlying commonality and distinctiveness in terrorist groups.

Terrorism has existed since humans first built weapons, and probably before. Naturally, the academic study

of terrorism increased after September 11, 2001, and this is now a very active research area. Unfortunately,

the empirical analysis of terrorist groups and terrorism events is hampered by the poor quality of the data.

Insufficient work has been done using conventional statistical tools, since such data are always more messy and

interrelated than in other related areas, such as criminology and international relations. The key underlying

problem is that a set of diversely organized covert and violent operatives do not cooperate with data collection

efforts. So the resulting information is usually incomplete, sparse, and difficult to model with parametric

forms. Normally, such a state of affairs would drive away researchers and shelve projects until the quality of

the data changed. However, since the safety of millions depends on understanding terrorist organizations, this

is not a viable path. We seek to improve this problem with the model-based clustering tool described here.

1



2 Background

There are often structures in social science data such as: unexplained clustering effects, unit heterogeneity,

autocorrelation, or missingness, that cast doubt on the notion of homogeneous effects of estimated coefficients

in a given model. Heterogeneity can be modeled in many ways, and here we describe our approach, and its

relation with another popular method.

2.1 Modeling Unobserved Heterogeneity As Clusters

As an example, consider voting in a congressional election where the Democratic candidate favors pulling

soldiers out of Afghanistan and the Republican candidate advocates continued military action there. Normally

the standard set of explanatory variables from survey research (partisanship, ideology, race, age, education,

etc.) are well-justified and powerful determinants of this vote choice, but perhaps not in the same way for a

conservative respondent who has a relative in the military based in Afghanistan or a liberal who is a recent

veteran of the armed forces. Such issues are not normally covered by questions asked in standard academic

or journalistic surveys, but may be an unmeasured strong causal reason for this vote. Here we are concerned

with latent clustering that, if not accounted for, adversely affects the quality of the model, since unmeasured

explanatory phenomena still affect the modeled relationship. This is a very general problem since these clusters

can be described in many ways.

Most literatures in the social sciences have a collection of explanatory phenomena that need to be included

because the theories supporting them are very strong. In many cases the resulting decision is simply which

measured version of the phenomenon should be used as a right-hand side variable. Leamer (1978) called these

“inside the horizon” variables since their value is so well-established. In the above case of a voting choice

model these are: partisanship, ideology, sex, race, age, and education. The game, according to Leamer, is

specifying an additional set of “over the horizon” variables that may provide new knowledge. Often the first

type of variables are included in the final specification even if they are not found to be statistically reliable

because there is a history of this variable contributing to model specifications in the relevant literature. It

is not widely recognized that the effect of such variables can be altered by latent clusters. That is, for some

individual cases in the data, a variable could be a strong determinant of the outcome variable, but its effect is

sufficiently heterogeneous across individuals that it does not appear statistically reliable in the model. Thus,

accounting for latent clusters as proposed here, can affect how an explanatory variable is assessed in model

summaries. The model would identify clusters of individuals where the effect of the variable would differ

between clusters.

2.2 Dirichlet Process Mixtures Models

We are concerned with how nonparametric priors can enhance the increasing use of Bayesian models in the

social sciences, particularly in the (near ubiquitous) presence of latent clusters. As a clarification, we are

concerned with accounting for an unknown number of unseen clusters in the context of building a statistical
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model. We are not working in the general area of spatial clustering with known coordinates.

One effective strategy for dealing with unmeasured grouping phenomena is to use random effect terms,

denoted ψi here, to capture such underlying clustering information. The distribution of the ψi is unknown,

by the researcher, but can be determined by custom or intuition. Frequently it is chosen to be a normal

distribution, even in the absence of evidence that this provides a good fit. As the random effects, unlike error

terms, cannot be checked (there are no corresponding residuals), the normal assumption is justified only as

a convenience. A better alternative is a nonparametric Bayesian approach that draws ψi from more flexible

class of distributions:

(Y1, . . . , Yn) ∼ f(y1, . . . , yn | β, ψ1, . . . , ψn) =
∏

i

f(yi|β, ψi), ψi ∼ G, i = 1, . . . , n, (1)

where f is taken as normal in the conventional regression setting, and a popular choice for G is the

Dirichlet Process (DP)

ψi ∼ G ∼ DP(λ, φ0), i = 1, . . . , n, (2)

with base measure φ0 and precision parameter λ. In particular, the observations are modeled as

Yi = Xiβ + ψi + ǫi, ψi ∼ DP(φ0, λ), i = 1, . . . , n, (3)

where the ǫi are independent normal random variables (note that the addition of a link function, g−1(),

turns this into a generalized linear mixed model). Since the ψi are drawn from a DP distribution, they are

not necessarily unique and thus can be represented by a K-vector, η, where K ≤ n. Thus, the model can be

succinctly written as

Y
n×1

= X
n×p

β
p×1

+ A
n×K

η
K×1

+ ǫ
n×1

(4)

where ψ = Aη and A is an n×K matrix of zeros with a single one in each row which denotes the particular

ηk assigned to ψi (Kyung et al.2010).

Dirichlet process models were introduced by Ferguson (1973), who defined the process and investigated the

basic properties. Blackwell and MacQueen (1973) showed that the marginal distribution is that of the nth step

of a Polya urn process. Other work that characterizes the properties of the Dirichlet process includes Korwar

and Hollander (1973) and Sethuraman (1994). Work that has particular importance for our development is

that of Lo (1984), who derives the analytic form of a Bayesian density estimator, and Liu (1996), who derives

an identity for the profile likelihood estimator of λ. The implementation of the Dirichlet process mixture model

has been made feasible by modern methods of Bayesian computation and efficient algorithms. The work of

Escobar and West (1995) and MacEachern and Müller (1998) developed estimation techniques and sampling

algorithms. Neal (2000) provides an extended and more efficient Gibbs sampler.

The model specified in (1) is actually a classical semiparametric random effects model, and with further

Bayesian modeling of the parameters, lends itself to a Gibbs sampler. Unfortunately the presence of the

Dirichlet term makes the use of the Gibbs sampler somewhat complicated in non-conjugate situations, which
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is the algorithm that was developed in Gill and Casella (2009). They found that this approach can model

difficult data and produce results that existing alternative methods fail to discover. In that work they were able

to account for important latent clustering structures that do not necessarily reflect confounding variables, but

still provide information about agency environment that was not explicitly available. The Dirichlet process

produces clusters due to the fact that any realization of a Dirichlet process is discrete. However, the Dirichlet

process is really providing a non-parametric estimation of the distribution of the individual level random

effects.

2.3 Cluster Analysis

Model-based cluster analysis has a long and rich history, and recent developments using MCMC methods

and hierarchical models are relevant to our work. For recent examples, Zhong and Ghosh (2003) develop a

bipartite graph approach that identifies clusters as distinct probabilistic models. Pan and Shen (2007), as

well as Xie et al.(2008), are concerned with model selection in the presence of unknown clustering and focus

on a penalized likelihood approach to get a parsimonious number of elements. Maugis et al.(2009) are also

concerned with model selection in this context, but they develop a procedure to separate variables that are

relevant to clustering, variables that are not relevant to clustering but are dependent of some that are, and

variables not relevant at all to clustering. In the next section we describe key papers that inform our approach.

There are two basic approaches to cluster models that have been used in the literature, those based on an

underlying mixture model, and those based on a product partition model (also called classification likelihood).

Quintana and Iglesias showed that the DP model is actually an example of a product partition model. For

reasons given in Section 2.3.3 we choose not to use the DP model for substantive clustering and develop an

alternative product partition model in Section 2.4.

2.3.1 Mixtures and Product Partition Models

This section contrasts the finite mixture model for reflecting latent heterogeneity with the product partition

model, an alternative approach that we recommend and develop. Commonly applied mixture models begin

with the assumption that Y = (Y1, . . . , Yn) are realizations of n independent and identically distributed (iid)

random variables from the m-component mixture density:

f(·|θ1, . . . ,θm) =

m
∑

ℓ=1

ωℓ fℓ(·|θℓ) , (5)

where m is a fixed positive integer, 0 ≤ ωℓ ≤ 1,
∑m

ℓ=1 ωℓ = 1 , and fℓ(·|θℓ) is the density of the ℓth component

of the mixture and depends on the parameter θℓ. The mixture model does not account for clustering of the

data directly. A partition of the data is typically obtained as a byproduct of the use of the EM algorithm.

A different way to think about latent heterogeneity, the product partition model, starts by conditioning on a

given partition, and then determines the posterior probabilities of these partitions using Bayes’ rule. Given a

partition C of Nn := {1, 2, . . . , n} that has m clusters denoted by C1, . . . , Cm, the data are a realization from
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a density of the form:

f(Y|θC , C) =

m
∏

ℓ=1

∏

i∈Cℓ

fℓ(Yi|θℓ) . (6)

where fℓ(·|θℓ) is the density associated with the ℓth cluster and depends on parameter θℓ. Unlike the mixture

model (5), model (6) recognizes a parameter, C, that is directly connected to the basic clustering problem.

This model was developed by Hartigan (1990) (see also Barry and Hartigan 1992, Crowley 1997) as a product

partition model.

McCullaugh and Yang (2008) and Booth et al. (2008) argue strongly in favor of the product partition

model, the latter noting that not only does the mixture model lack a parameter that defines the clusters, the

inference is sometimes confounded with the common application of the EM algorithm. That is, even if the

parameters of the model are known, there needs to be some way of generating a latent variable to identify

clusters. Park and Dunson (2010) create a related generalized product partition model such that the partition

process is predictor-dependent and computationally efficient. The key here is that the mixtures model is also

a marginal model, and our perspective is that real interest is in the conditional model as shown in (6).

McCullaugh and Yang (2008) also argue that the mixture model is not appropriate for determining clusters.

A further deficiency is that the model needs to be run with a fixed m; the typical strategy is to run a selection

of m values and choose the one with the best BIC. Conversely, the product partition model clearly identifies

the parameter that determines the cluster, and has no restriction on m, the number of clusters. A stochastic

search algorithm, such as one used by Booth et al. (2008), can move between different size partitions at each

iteration.

Lastly, the mixture model is also prone to a label switching problem, where modes cannot be identified

and thus ergodic averages cannot be computed without further processing. See, for example, Stephens (2000),

Jasra et al.(2005), Sperrin et al.(2001). Various solutions include: creating an ordering constraint (Richardson

and Green 1997), fixing some of the cases to clusters (Chung et al.[2004], as well as the software solution

from Grün and Leisch 2009), assigning loss functions that are label-invariant (Celeux 1998), and relabeling

using the “maximum a posterior” estimate (Marin et al.2005). All of these approaches require additional

uncomfortable assumptions or restrictions. Such problems with clustering models are our starting point, and

the Section 2.4 describes a solution for recovering estimates of substantive clusters in social science data. In

particular, since the product partition model is label-free (the clusters are all defined by unique partitions of

Nn = {1, 2, . . . , n}), we can easily identify mappings of cases to clusters.

2.3.2 Classifying Approaches To Model-Based Clustering

We can classify related previous work according to the model used for the clustering, and the model used for

the random effects. Clustering based on mixture models was used by Fraley and Raftery (2002), estimating the

allocation probabilities and the model parameters with the EM algorithm, and using the Bayesian Information

Criteria (BIC) for determination of the number of clusters. Mixture models with Dirichlet random effects

(or latent variables) were used by Dahl (2006) for microarray expression data, Kim, et al. (2006) for both

variable selection and clustering (updating Tadesse et al. 2005), and Rodriquez, et al. (2008), who used a
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nested Dirichlet process structure.

The product partition model, which explicitly searches for the best cluster, was used by Heard et al. (2006)

and Booth et al. (2008), the latter using a substantive objective function to drive the search. Specifically, they

evaluated the posterior probability of each partition Cm, using this probability as the target in a Metropolis-

Hasting search algorithm. With the product partition model and Dirichlet random effects, Quintana and

Iglesias (2003) proposed a Bayesian clustering algorithm that minimizes a posterior loss, which is similar to

the approach of Lau and Green (2007), who minimized a misclassification loss.

2.3.3 Bayesian Nonparametric Cluster Strategies

It is important to understand the clustering strategy that has previously been used in applications of the

Dirichlet random effects model. In particular, consider a standard linear model, where a subject is modeled

with covariates and a random effect. A typical strategy is to use the Dirichlet to generate a very large number

of candidate “clusters,” which are actually subclusters (fractions of clusters), then choose the best of these by a

post-hoc scheme that processes the MCMC output through some objective function to find the best grouping.1

Therefore, the supposed-clusters that are produced only by the MCMC repeated realizations in each iteration

of the Dirichlet process are:

• not substantive in any way,

• not able to reflect any real cluster structure driven by the covariates,

• temporary random effect assignments to make the model fit better in the context of the sampler.

Figure 1: Dirichlet Subclustering from the Political

Executive Data (Gill and Casella, 2009). Histogram De-

scription of the Last 3, 000 Iterations

Furthermore, since there is no over-fitting

penalty in the Dirichlet process, we can expect

there to always be more subclusters than actual

substantive clusters in the data. For example, in

the analysis of the tenure of political appointees

(Gill and Casella 2009), there were 512 cases

and therefore a maximum of 512 “restaurant ta-

bles” or subclusters from the Dirichlet process.

A iteration of the Gibbs sampler reportedly had

an average of 278 of these subclusters, and no

scholar of the Federal bureaucracy would make

the claim that there are 278 fundamentally dif-

ferent agency environments, so there is evidence

that these are not the substantive clusters de-

sired. Furthermore, Figure 1 is a replication of

1We have used the term subcluster in previous work to differentiate these from actual clusters in the data, since the Dirichlet
random effects model merely uses these imposed categories to improve the fit of the model rather than to imply actual underlying
clustering in the data.
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their sampler that shows in the left panel a histogram of the subcluster assignments across 3, 000 draws where

the mean is obvious. The right panel histogram shows that the average number of cases per subcluster is

around two, across these 3,000 draws, further supporting the point that these are not substantive clusters.

This is because the Dirichlet subclustering produces partitions with a large number of clusters with the ob-

jective of reducing model variation, not finding meaningful covariate-based groupings. This distinction is the

motivation for the model produced in this paper.

2.4 Substantive Clustering Strategy

We introduce a model that combines clustering using a product partition model and non-parametric estimation

of random effects through the Dirichlet process in the context of Gaussian linear models. Conditioned on a

particular partition C with clusters Cℓ, ℓ = 1, . . . ,m and random effect subcluster assignment matrix A with

k rows (as well as the necessary parameter values), the data Y are assumed to be normally distributed within

clusters. In particular let Yℓ be a vector of length nℓ containing the Yi in cluster Cℓ. Informally, the data in

cluster Cℓ are described by,

Yℓ = Xℓβℓ + Aℓη + ǫℓ (7)

where Xℓ and Aℓ are composed of the rows corresponding to the Yi in cluster Cℓ and ǫℓ ∼ N
(

0, σ2
ℓ Inℓ

)

. The

parameters βℓ and σ2
ℓ are specific to cluster Cℓ, and we assume σ2

ℓ is unknown. The parameter η = (η1, . . . , ηk)

is common between the clusters and the ηj are iid draws from φ0.

This model incorporates clustering in the data in two distinct ways. First, it utilizes DP random effects

to model latent clustering in the data that relates to model fit. Second, the product partition model, using C,

provides substantive clusters to the data that serve to provide insights into how the data can be broken into

groups that have different behavior (e.g. different reactions to the covariates). Note that these groupings do

not need to nest, and so observations in the same cluster Cℓ can belong to different subcluster defined by the

columns of A, and vice-versa since observations in different clusters can be in the same subcluster. In contrast

to the usual conditional independence assumption of the product partition model (Hartigan and Barry 1992),

the introduction of the DP random effects produces a correlation between individuals both within the same

cluster and in different clusters.

The model is formally defined by providing a hierarchical Bayesian specification, including priors for the

cluster specific parameters as well as the parameters of the Dirichlet process random effects. Formally, the

model is defined by

Y|C,βC ,σ
2
C ,A,η ∼

m
∏

ℓ=1

N (Yℓ|Xℓβℓ + Aℓη, σ
2
ℓ Inℓ

) (8)

where we assume the priors

βℓ|σ
2
ℓ ∼ N

(

β0, σ
2
ℓS

−1
)

and σ2
ℓ ∼ IG

(

aσ2

2
,
bσ2

2

)
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and Aη = ψ ∼ DP(φ0, λ). The model is completed by providing priors for the hyper parameters, which are

assumed to be

φ0 = N
(

0, τ2
)

τ2 ∼ IG
(

a
τ2

2 ,
b

τ2

2

)

λ ∼ G
(

aλ

2 ,
bλ

2

)

β0 ∼ N (0, σ2
βS−1) σ2

β ∼ IG

(

a
σ2

β

2 ,
b

σ2

β

2

)

S ∼ W(V −1, aS)

V = Diag(v1, . . . , vp) vi ∼ G
(

av

2 ,
bv

2

)

and the definition of the prior for C is treated later. We have defined the model in this way so that the

distribution of Y|C,β0,S,A,η, obtained by integrating out βC and σ2
C
, is given by a product of multivariate

t distributions with the same form. In particular

Yℓ|Xℓ,β0,S,Aℓ,η ∼ MVT nℓ

(

Xℓβ0 + Aℓη,
(

Inℓ
+ XℓS

−1X′
ℓ

) bσ2

aσ2

)

(9)

This provides a sampling distribution for Y, marginalized over (βC ,σ
2
C
), of

f(Y|X,β0,S,A,η, C) =

m
∏

ℓ=1

f(Yℓ|Xℓ,β0,S,Aℓ,η, C) (10)

where each f(Yℓ|Xℓ,β0,S,Aℓ,η, C) is the appropriate multivariate t density.

2.4.1 Cluster Prior Probabilities

The specification of a prior for C requires special attention in order to obtain reasonable posterior inference for

the partitions of the data. Because we are adjudicating partitions C of Nn using their posterior probabilities,

it is important to develop the prior on the set of partitions so that it distributes mass in a reasonable way.

Numerous priors have been defined for the clustering problem, and we discuss two of them here; the Ewens-

Pitman prior (EPP) and the hierarchical uniform prior (HUP). We aim to understand the priors in two ways.

One, we want to determine the prior probability of the set of partitions that have m clusters as n→ ∞. Two,

we consider the random variable F = (F1, . . . , Fm) =
(

n1

n
, . . . , nm

n

)

conditioned on the set of partitions that

have m clusters. We want to determine the distribution of F as n→ ∞.

First, we fix some language and notation. We will refer to the number of clusters in the partition C as the

size of C. For each choice of m, the choice of (n1, . . . , nm) such that 0 < nm ≤ nm−1 ≤ n2 ≤ n1 ≤ n and

n1 + · · ·+ nm = n represents a specific type of partition. The function b(n,m) counts the number of partition

types of Nn of size m and N(n1, . . . , nm) counts the number of partitions of a given type.

The Ewens-Pitman prior arises as the marginal prior distribution over the set of partitions from a Dirichlet

process and depends on one parameter, which we shall call ρ. The probability of a partition depends only on

its type. A partition C with type (n1, . . . , nm) has prior probability

pEPP (C|n) =
1

Γ(n+ ρ)

m
∏

ℓ=1

(ρΓ(nℓ)) (11)
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Fix an integer m > 0; the ratio of prior probabilities

pEPP ({C : size(C) = m+ 1}|n)

pEPP ({C : size(C) = m}|n)
≈ ρ log(n) (12)

shows that the EPP places mass on sets of partitions with larger and larger size as n → ∞. The random

variable F converges in a locally in the weak sense to the Haldane measure on the m simplex, restricted to

F1 ≥ F2 ≥ · · · ≥ Fm. Thus, the EPP both places mass on partitions with greater size as n increases and

converges weakly to an improper measure when restricted to partitions of a particular size, both undesirable

properties.

The hierarchical uniform prior, on the other hand, accounts for the size and type of the partition in the

prior construction. First, a prior is placed on m. For convenience, we assume that this prior is a truncated

Poisson distribution whose (non-truncated) mean is 1, but any distribution which sums to 1 as n → ∞ is

appropriate. Conditioned on size(C) = m, the prior over types is uniform. Conditioned on both the size

and type of partition, the partitions are uniformly distributed. Thus, a partition C with size(C) = m and

type(C) = (n1, n2, . . . , nm) has prior probability

pHUP (C|n) = pHUP (m|n)
1

b(n,m)N(n1, . . . , nm)

The number of types with fixed size m increases as b(n,m) ≈ nm−1

m!(m−1)! as n→ ∞ and

N(n1, . . . , nm) =

(

n

n1, . . . , nm

)

1

R(n1, . . . , nm)

where R(n1, . . . , nm) =
∏n

j=1 ([
∑m

ℓ=1 I(nℓ = 1)]!) is a redundancy factor that accounts for reordering subsets

of the partition that have the same number of elements. By its construction, the HUP places finite mass on

each choice of m. When restricted to partitions of size m, the random variable F converges weakly to the

uniform measure restricted to the set F1 ≥ F2 ≥ · · · ≥ Fm. Thus, the HUP alleviates the issues encountered

with the EPP and we choose to focus on the HUP as the prior for the partitions C.

2.4.2 Cluster Posterior Probabilities

Our goal is to find the best partition C = (C1, . . . , Cm) in the sense of finding the C which maximizes π(C|Y,X).

The posterior probability of C is given (up to a proportion) by:

π(C|Y,X) ∝ f(Y|C,X)P (C)

=

(

∑

A

∫

f(Y|β0,η, τ
2,A, σ2

β , V,S, λ, C,X)dβ0dηdτ
2dAdσ2

βdV dSdλ

× p(β0,η, τ
2,A, σ2

β , V,S, λ)

)

P (C) (13)
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Computing this posterior probability requires not only integrating out the cluster specific coefficients and the

corresponding hyper parameters, but also marginalizing over the random effects, which requires integration

over η, integrating out the priors for τ2 and λ, and summation over the A matrices. These tasks make direct

computation intractable. In Section 3 we develop an RJMCMC algorithm for generating samples from the

posterior distribution of the parameters of the model, including C and A.

3 Overview of Posterior Estimation

We use a Metropolis within Gibbs procedure to drive a Reversible Jump MCMC algorithm over the set of

clusters {C}, subclusters {A} and the continuous parameters.. Specifically, we create a Markov chain by

dividing the parameters into the sets {(A,η), (C,βC ,σ
2
C
), ξ′}, where ξ′ = (β0, σ

2
β,S,v, τ, λ). Its stationary

distribution is the joint posterior distribution of the parameter sets. The RJMCMC will therefore explore

through the space of clusters in a manner that maintains detailed balance. The sampling procedure utilizes

Metropolis corrections for sampling (A,η) and (C,βC ,σ
2
C
) and Gibbs sampling for ξ′. At each iteration, the

sampling of any one component is performed while conditioning on all other components.

The iterative sampling produces model estimation of potentially different dimension on each iteration since

changing the number of partitions changes the dimension of the model. Therefore there is a direct analogy

with reversible jump MCMC processes (Green 1995), although there is not a bijection function specified in

the literal sense. A unique model C is given by a partition from the sampler, and the likelihood function for

the data given C is conditioned on model-specific parameters, θC = (βC ,σ
2
C
), as well as the other parameters

whose prior forms do not depend on the partition status, ξ = (β0, σ
2
β,S,v, τ,η, A, λ). So θC and η potentially

differ in structure on each iteration and ξ retains its original dimension since it depends only on the class of

models specified independent of the product partitioning and Dirichlet process random effects.

The sampling of (C,βC ,σ
2
C
) and (A,η) are RJMCMC steps, with the dimensions of (βC ,σ

2
C
) and η possibly

changing at each iteration of the sampler due to the changing clusters and subclusters. These parameters are

sampled directly from their full conditional distributions after proposing C or A and then (C,βC ,σ
2
C) or (A,η)

are accepted or rejected as blocks. The Metropolis corrections for these blocks do not depend on the particular

values of (βC ,σ
2
C
) or η sampled because they are drawn from their full conditional distributions. For example,

if we let K(A′|A, ξ′, C,βC ,σ
2
C
,y) be a proposal kernel for A then the proposal for (A′,η′) is given by:

K(η′,A′|A, ξ′, C,βC ,σ
2
C ,y) = π(η′|A′, ξ′, C,βC ,σ

2
C ,y)K(A′|A, ξ′, C,βC ,σ

2
C ,y) (14)

and the target is given by:

π(η′,A′|ξ′, C,βC ,σ
2
C ,y,y) = π(η′|A′, ξ′, C,βC ,σ

2
C)π(A′|ξ′, C,βC ,σ

2
C ,y) (15)
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Therefore, the ratio of the two is given by:

K(η′,A′|A, ξ′, C,βC ,σ
2
C
,y)

π(η′,A′|ξ′, C,βC ,σ
2
C
,y)

=
K(A′|A, ξ′, C,βC ,σ

2
C
,y)

π(A′|ξ′, C,βC ,σ
2
C
,y)

(16)

which is free of η. A similar calculation is easily carried out for C. Because rejecting C or A also rejects

θC and η, we add an extra sampling step of θC and η after sampling C and A. This additional sampling

step promotes mixing whenever the discrete parameters are rejected and does not affect detailed balance. We

discuss specific distributions used for sampling and detailed balance after discussing the use of samples from

the Markov chain to produce estimates of the posterior probabilities of the partitions.

3.1 Estimation of Partition Posterior Probabilities

This setup is useful because the computation of marginal partition probabilities can be produced using essen-

tially the same process as RJMCMC estimates. In particular, we take advantage of (9) to form an estimator

of the probability of each cluster conditioned on the draws of (A,η) and ξ.

First, calculate the posterior probabilities of C conditionally on [y,X] and (A,η, ξ), f(y|C,A,η, ξ,X) given

in (10). This can be directly transformed into an estimate of the conditional posterior of C through

P̂ (C|ξ(k),A(k),η(k),y,X) =
f(y|C, ξ(k),A(k),η(k),X)p(C)

∑

C′ f(y|C′, ξ(k),A(k),η(k),X)p(C′)
. (17)

where the sum is taken over the C′ visited during the stochastic search and (k) represents the value from the

kth iteration of the Markov chain. Restricting to the set of partitions visited during the stochastic search is

a convenience that is used because the size of the partition space is so large. In theory, one can include all C

in the denominator or some other — restricted — set of partitions. Thus, P̂ (C|ξ(k),A(k),η(k),y,X) given in

(17) is really an estimate of the conditional posterior probability of C restricted to the class of partitions used

in the denominator of (17).

The estimator averaged over the sampled values is given by:

P̂ (C|y,X) =
1

Nsim

Nsim
∑

k=1

P̂ (C|ξ(k),A(k),η(k),y,X). (18)

and is a direct estimator of (13) through a Rao-Blackwell style estimator. Even though the draw of each

(ξ(k),A(k),η(k)) is obtained by conditioning on a specific model and the model specific parameters that have

been sampled, the distribution of the marginal chain (ξ(k),A(k),η(k)) follows f(ξ(k),A(k),η(k)|y,X). Thus

(18) is a consistent estimator of P (C|y,X) as Nsim → ∞. Also, since the chain maintains detailed balance,

each C is visited by the chain eventually and (17) and (18) can — theoretically — be estimated over the entire

partition space.
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3.2 Transition Kernels

A variety of proposal kernels are used for C and A. The kernel used on any specific iteration of the MCMC

algorithm is chosen at random, where the multinomial probability vector for this choice is an MCMC tuning

parameter. The need for a variety of kernels for clustering problems is discussed in Jain and Neal (2004).

Both large and small steps are needed in the sampling algorithm in order to effectively search the model space.

Large steps are needed in order to make the sampler move between cluster spaces of different sizes. Small

steps are needed to provide a fine adjustment to existing clusters, moving single observations at a time.

For clusters and subclusters, we implement different versions of Multinomial-Dirichlet sampling, and so we

describe it for subclusters. Let A(t) be the current subcluster configuration. Define the Dirichlet probability

parameter vector as α = (m1 + r, . . . ,mK + r, r, . . . , r) for fixed r > 0 where α has length n and K is the

number of subclusters in A(t) with subcluster lengths m1, . . . ,mK . A proposal A′ is generated according to

a Multinomial distribution with parameter q ∼ Dirichlet(α). The larger r is, the more uniform the sampling

from the Multinomial-Dirichlet and thus for large r many small subclusters will be sampled. For small r (say

r = 1/n), the sampling produces subcluster sizes in A′ which are more like those from A. Since this sampling

is indifferent to the actual subclusters in A(t) and only uses the subcluster sizes in the sampler, this produces

samples which are nearly independent of A.

The sampler for clusters has two levels performed on each cycle. The top macro-level chooses a move

algorithm. Since clustering searches need big steps to mix through the sample space as well as small steps to

refine high probability clustering outcomes, we mix two algorithms large moves and two algorithms with small

moves from:

• Jain-Neal sampling scheme (large moves)

• Pitman Jump (large moves)

• random walk (small moves)

• restricted Gibbs sampling (small moves).

These choices dictate the micro-level algorithm steps contained within. The result of each lower level process

is a candidate position for a Metropolis-Hastings accept/reject step at the higher level. Since this decision

nests the micro-level decisions, the Markov chain is ergodic at the macro-level regardless of the decisions made

within these inner steps.

The Jain-Neal sampling scheme for splits and merges (see also Frühwirth-Schnatter 2006, Chapter 5,

and Viallefont et al.2002) starts with the latest interaction of the cluster assignment, C denoted C.Vec in the

software and sampling uniformly at random sample cases, labeled Xi and Xj . If these are in the same cluster

Cℓ, then create a new cluster, CL+1, and assign one of them to this new cluster, arbitrarily Xj here. For each

of the remaining cases in Cℓ assign them to remain with probability 0.5 and to move to CL+1 with probability

0.5. This is not a key part of the stochastic process, it is simply done to create a “launch state,” (Claunch) for

a small set of Gibbs draws. Now for k in 1 to Kℓ units in the first group and k in 1 to KL+1 in the second

group do:
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1. draw a cluster move between the groups for unit k based on p(Xk|X−k) where −k denotes the other

cases in that case’s group,

2. make a Gibbs between groups move based on this draw, save p(Xk|X−k) and its complement 1 −

p(Xk|X−k),

3. repeat steps 1. and 2. m∗ times (depending on hardware capability),

4. final configuration provides a candidate position for the enveloping Metropolis-Hastings algorithm to

accept or reject this split of the original cluster.

Figure 2: Illustration of Jains-Neal

The initial transition probability is (0.5)j−2 where j is the size of the subcluster being split. The result

of the intermediate Gibbs sampling steps is to produce Claunch and the randomly drawn proposal kernel is

K(C′|C, Claunch). The sampling of C′ is achieved by one more iteration of the restricted Gibbs sampler and the

overall transition probability is computed using the product of the individual transition probabilities of the

sampled states. This not only produces a transition probability that is larger than (0.5)j−2, it also produces

sampled C′ with larger (conditional) posterior probability, making C′ more likely to be accepted by a Metropolis

correction.

This process is shown graphically in Figure 2. If the Xi and Xj are in different clusters then these two

clusters are potentially eliminated (depending final acceptance in the Metropolis-Hastings step), and a new

larger cluster is created from their union. Then the above process is performed with the final decision offered

to the enveloping algorithm based on a new split of this new cluster. Second, we employ a “Pitman Jump,”

(Pitman 1976) which is simply a multinomial-Dirichlet draw for the clusters. This simple step is also designed

to make large adjustments in order to move between modes efficiently.
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We also need to make small moves to fully explore high density areas of the parameter space. First, the

simple biased random walk randomly samples one of the existing clusters at some iteration of the Markov

chain and then samples a single observation from that cluster. This case is then uniformly randomly assigned

to one of the existing clusters (including the original cluster it came from). This done for subclusters as well.

For clusters, we also implement restricted Gibbs sampling. At random, two clusters are chosen and then two

observations from those clusters. These observations are fixed as remaining in distinct clusters. The rest of the

observations in these two clusters are then resampled according to a random scan Gibbs sampler, restricted

to being in one of the two clusters.

3.3 Sampling ξ′

Since sampling ξ′ is done in a Gibbs sampler fashion, we list the full conditional distributions of all of the

parameters in ξ′ here. This is done in six steps:

Step 1: Sampling β0.

The full conditional is given by:

β0|βC ,σ
2
C ,S, σ

2
β,y ∼ N

(

∑

ℓ σ
−2
ℓ βℓ

σ−2
β +

∑

ℓ σ
−2
ℓ

,S

(

σ−2
β +

∑

ℓ

σ−2
ℓ

))

. (19)

Step 2: Sampling σ2
β .

The full conditional is given by:

σ2
β |β0,S, aσ2

β
, bσ2

β
,y ∼ IG

(

p+ aσ2

β

2
,
bσ2

β
+ β′

0Sβ0

2

)

. (20)

Step 3: Sampling S.

The scaled precision matrix, S, has a Wishart full conditional distribution according to:

S|C,βC , σC ,β0, σ
2
β, V,y ∼ W





(

V −1 + σ−2
β β0β

′

0 +
∑

ℓ

σ−2
ℓ (βℓ − β0)(βℓ − β0)

′

)−1

, (m+ 1 + aS)



 . (21)

Step 4: Sampling v.

To update V we draw p independent vi from a gamma full conditional distribution using Sii:

vi|S, aS, av, bv,y ∼ G

(

aS + av
2

,
Sii + bv

2

)

. (22)

Step 5: Sampling λ.

Sampling the Dirichlet process precision term is aided by a parameter expansion process simplified from that
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of Escobar and West (1995). First draw a value γ from the distribution:

γ|λ,A,y ∼ Beta(λ, n). (23)

The full conditional distribution of λ is now given by:

λ|γ,A,y ∼ G(aλ + k, bλ − log(γ)). (24)

Step 6: Sampling τ .

Sampling τ (the constant variance term in the distribution of η) is also a Gibbs step with the full conditional:

τ |A,η,y ∼ IG

(

k + aτ

2
,
bτ +

∑k

j=1 η
2
j

2

)

(25)

At this point the Gibbs sampler has a complete draw for ξ′, for a single step.

3.4 Sampling (C,βC,σ
2
C)

(C,βC ,σ
2
C
) is sampled in a RJMCMC step conditioned on {ξ′, (A,η)}. Here we use a Metropolis step with

target distribution given from Bayes’ Law (up to proportion) by:

π(C|ξ′,η,A, λ,y) ∝

(

m
∏

ℓ=1

fℓ (yℓ|ξ
′,η,A, λ)

)

P (C), (26)

with p(C) indicating the hierarchical uniform prior on C. Within each ℓ = 1, . . . ,m cluster, the nℓ outcomes,

yℓ have a Students-t distribution unique to that cluster:

fℓ(yℓ|ξ
′,η, A, λ) = MVT nℓ

(

y

∣

∣

∣

∣

aσ2 , µ̂yℓ
, Σ̂yℓ

)

(27)

with:

µ̂yℓ
= Aℓη + Xℓβ0 Σ̂yℓ

=
bσ2

aσ2

(

Inℓ
+ XℓS

−1X′
ℓ

)

.

Notice that this draw incorporates both subcluster information from the Dirichlet process as well as substantive

clustering information from the ℓ grouping.

The cluster specific parameters (βC ,σ
2
C
) are directly drawn from their joint conditional distribution with

each (βℓ, σ
2
ℓ ) being distributed as

σ2
ℓ |yℓ, C,Aℓ,η,β0,S ∼ IG

(

nℓ + aσ2

2
,

bσ2

2
+

1

2
(yℓ − Aℓη − Xℓβ0)

′
(

Inℓ
− Xℓ(X

′
ℓXℓ + S)−1X′

ℓ

)

(yℓ − Aℓη − Xℓβ0)

)

βℓ|yℓ, C,Aℓ,η,β0,S, σ
2
ℓ ∼ N

(

(X′
ℓXℓ + S)

−1
(X′

ℓ (yℓ − Aℓη) + Sβ0) , σ
2
ℓ (X′

ℓXℓ + S)
−1
)
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At this point the Gibbs sampler has a drawn complete version of the vector ξ′, as well as (C,βC ,σ
2
C
) during

this single step of the Markov chain.

3.5 Sampling (A,η)

Sampling of (A,η) is also achieved using a RJMCMC step. The key to this update is determining π(A′|ξ′, C,βC ,σ
2
C
,y)

in order to compute the Metropolis correction. The prior for A is the Ewens-Pitman prior:

p(A|λ) = λK Γ(λ)

Γ(λ+ n)

K
∏

k=1

Γ(#{i : yi is in subcluster k}) (28)

The likelihood for y can be expressed in the form of an integral over η:

f(y|A, C,βC ,σ
2
C , ξ

′) =

∫ m
∏

ℓ=1

fℓ(yℓ|Aℓ,Xℓ, µℓ,βℓ, σ
2
ℓ , τ

2,η)π(η|τ2)dη.

Now the acceptance ratio can be computed as soon as we determine the value of f(y|A, C,βC ,σ
2
C
, ξ′). This

is relatively easy in the regular GLMDM as there are only the subclusters to consider within each cluster.

In order to do this for the substantively clustering GLMDM, we can recognize that it will be normal and

determine the appropriate mean and covariance structure. In fact, the mean vector is Xℓβℓ in cluster ℓ. The

precision structure (using clusters as blocks) is given by:

Ωℓ,ℓ′ =
Inℓ

δℓ(ℓ
′)

σ2
ℓ

−
Aℓ

σ2
ℓ

(

Ik

τ2
+

m
∑

ι=1

A′
ιAι

σ2
ι

)−1
A′

ℓ′

σ2
ℓ′

(29)

where δℓ(ℓ
′) denotes the Kronecker delta function (1 if the variables are equal and 0 otherwise). This is simply

the rows one gets from the precision for y after integrating out η (note that we have conditioned here on the

cluster specific parameters). If we define mj,ℓ to be the number of observations from cluster ℓ with random

effect ηj from the Dirichlet process, then:

(

Ik

τ2
+

m
∑

ι=1

A′
ιAι

σ2
ι

)−1

=

(

Ik

τ2
+

m
∑

ι=1

diag(mj,ι)

σ2
ι

)−1

=

(

diag

(

1

τ2
+

m
∑

ι=1

mj,ι

σ2
ι

))−1

= diag





(

1

τ2
+

m
∑

ι=1

mj,ι

σ2
ι

)−1




which we label as diag(φj). Therefore the variance of a particular yi is

σ4
ℓ[i]

σ2
ℓ[i] − φj[i]

(30)
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and the cross-precision between two observations yi and yi′ is

−
φj[i]δj[i](j[i

′])

σ2
ℓ[i]σ

2
ℓ[i′]

(31)

where again δj[i](j[i
′]) denotes the Kronecker delta function. Unfortunately, there is no easy analytical way

to invert this matrix and so we are left with inverting it numerically, which is computationally costly due to

sparsity of the matrix whenever there are a large number of subclusters. However, we can also notice that all

we need to compute the normal random variable is the determinant of this matrix and an appropriate inner

product. The inner product is not too difficult to compute, but the determinant still requires an arduous

computation.

We can first sample A (since the acceptance ratio does not depend on η). Then we can sample η given

the accepted A. Its full conditional is given by:

η|A,q(t+1),θ(t),y ∼ Nk





(

m
∑

ℓ=1

A′
ℓAℓ

σ2
ℓ

+
Ik

τ2

)−1( m
∑

ℓ=1

A′
ℓ(yℓ − 1nℓ

µℓ − Xℓβℓ)

σ2
ℓ

)

,

(

m
∑

ℓ=1

A′
ℓAℓ

σ2
ℓ

+
Ik

τ2

)−1


 (32)

This draw for η is the final step in a single iteration of the Markov chain.

3.6 Detailed Balance and Ergodicity

At each stage of the sampler, detailed balance is ensured because the sampling is either Gibbs or a Metropolis

correction is employed. For sampling C and A, we employ a number of different proposal kernels. At each

iteration, a kernel is chosen at random. As discussed in Tierney (1994), using a Metropolis correction on the

selected kernel produces a chain which maintains detailed balance. One concern that arises is whether the

composite chain is ergodic. As discussed in Jain and Neal (2004), the chain is ergodic since each proposal

kernel is ergodic and has non-zero probability of leaving the state unchanged. Meaning we know that this is

an aperiodic, Harris recurrent (there is σ-finite probability measure ψ for (Ω,F) such that at time n it has the

property: ψ(A) > 0, ∀A ∈ F), and is therefore and ergodic Markov chain.

4 Application: Terrorism Data Analysis

The health and security of millions of people around the world depends on the understanding of the connections

that exist in covert networks, especially terrorist networks. Terrorism is an important problem because it

affects internal government policy, public perception, relations between states, and of course, personal safety.

To protect citizens, governments and nongovernmental organizations invest enormous amounts of time and

energy to understand and to thwart terrorist attacks. This remains a challenging social, political, and military

problem because many of the variables that we would like to see are unobservable under even the most highly
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visible situations. The study of terrorism has not made enough empirical progress due to inherent problems

in the available data.

Data problems include: non-granular discrete measurement, insufficient explanatory variables, and the lack

of access to classified collections. Another key problem is that there are unmeasured clusters in almost all

terrorism data. These groups have a natural affinity for dispersion and segmentation, either for ideological

or obvious tactical reasons. Some progress has been made: these groups are usually not unitary actors (Chai

1993, Crenshaw 1981), they tend to be cellular and distributed rather than hierarchical (Carley 2004, Krebs

2002, Rothenberg 2002), and they adapt over time (Carley 2003, 2006). We know there are clusters within

terrorist organizations, even if they are not visible, since terrorists are known to be collaborative, imitative,

and fluid. Kyung (2011) showed that Dirichlet Process Priors on random effects can improve regression models

with this type of data by accounting for the heterogeneity from latent clustering. But, as pointed out before,

the resulting subclusters are not the substantive clusters of actual interest.

An additional problem with much of the empirical/statistical literature on terrorism is its focus on “events

data,” data analysis where the outcome variable is an attack and the explanatory variables describe the

individuals involved, the location, the target, and the means used. Thus the datasets created are selecting on

the observable outcome and ignore failed attacks, aborted attacks, and planned events. Obviously this is a

necessary encumbrance since terrorist groups and governments have motivations to hide their activities. This

has driven more work in terrorist networks (Tsvetovat and Carley 2006), and formal/mathematical modeling

of psychology and motivation (Bueno de Mesquita 2005).

The model estimated here improves on the empirical study of terrorism since it addresses the main problems

just listed: the challenge in producing real clustering, and not selecting on the observable outcome merely out

of convenience. We use the product partition technology just developed in conjunction with Dirichlet process

priors to see latent features of importance with real data on terrorist organizations worldwide.

4.1 Data and Model

The approach taken here is to look at groups rather than individual events using the Big Allied and Dangerous

(BAAD) Database 1 (Asal, Rethemeyer and Anderson 2008). This aggregates worldwide lethal attacks from

1998-2005 by terrorist organizations recording variables describing: geography, ideology, group size, organi-

zational structure, funding sources, and network information on allies and state sponsors. These data were

assembled from several established databases: Memorial Institute for the Prevention of Terrorism’s (MIPT)

Terrorism Knowledge Base (TKB), Correlates of War (COW), Polity, and Polity2. These are standard sources

for terrorism events, international conflict between nations, and regime characteristics (respectively). Thus

the BAAD dataset is not an original collection but an assembly of variables from reliable and routinely used

resources, assembled with careful quality control.

All terrorism data comes with problems due to the nature of the actors being studied. The creators

of the BAAD data are careful to identify the potential shortcomings. Many of the described events come

from media reports, which may introduce measurement problems inherent in journalistic reporting. The
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data miss about one-half of the recorded events worldwide since events for which no party claims respon-

sibility, there is no data on the claimant, or the perpetrator is not an organized group. Strictly reli-

gious events are also excluded by Asal, Rethemeyer and Anderson (2008), since they deem these attacks

to be fundamentally different in nature. Finally, we use the version of their dataset that excludes Al

Figure 3: Histogram of Fatalities from BAAD

Groups, 1998-2004
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Qaeda since its scope, profile, and effectiveness place

it in a unique category. This increases the generality

of our findings but obviously excludes a pivotal event

in the modern history of terrorism.

The data provide 395 cases (each a terrorist at-

tack) and 16 possible explanatory variables. We use

fatalities as the outcome variable to focus on the

primary objective of these attacks. See the figure at

the right. Even though these attacks are intended to

cause personal harm through violence, it is important

to note that the real underlying goal for terrorist orga-

nizations is not actually the death and mayhem that

results from such attacks. This is only an intermediate

objective and their actual goal is undermining citizens’

confidence in their government’s ability to protect them (Hoffman 1988).

Terrorist groups can be cleanly classified according to their sponsorship status. The variable statespond

indicates whether the group is financially or logistically supported by one or more recognized governments

(coded 1, n1 = 32), or not (coded 0, n0 = 363). Hezbollah is a archetypal example of a state-sponsored

Figure 4: Histogram of Alliances from BAAD

Groups, 1998-2004
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terrorist group since they receive support from Iran

and Syria. The home-base of these groups can be im-

portant, either locally or regionally, so we include the

variable masterccode which denotes the COW CCODE

value. The size of the groups’ membership is given by

the ordinal measure ordsize, according to 0 for less

than 100 members (n0 = 261), 1 for 101-1,000 members

(n1 = 77)), 2 for 1,001-10,000 members (n2 = 45), and

3 for more than 10,000 members (n = 12). Another

important delineator for these groups is whether they

control some land and therefore operate with impunity

in some geographic area. The variable terrStrong is

coded 1 (n1 = 43) if they possess territory and 0 if they

do not (n0 = 352). There is evidence that interconnections between terrorist groups affects their endurance

and effectiveness, and degree gives a count of alliance connections in the network sense, where the histogram
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of these is shown in the figure above left.

Religion and ethnicity are obviously big drivers of modern terrorism, so we include four variables from a

longer list that potentially highlight these effects. We use the variable LeftNoReligEthno where a 1 indicates

that the group’s ideology is leftist and it is not compounded with another ideological orientation (n1 = 94), and

a 0 indicates that group’s ideology is either not leftist or is a mix of leftist and at other ideological dimensions

(n0 = 301). The variable PureRelig indicates with a 1 whether the group’s ideology is purely religious and

not associated with other political or social factors (n1 = 50), and 0 otherwise (n0 = 345). Similarly, the

variable PureEthno indicates with a 1 whether the group is ethnonationalist (nationalist causes tied to ethnic

identity) and not associated with other ideological factors (n1 = 26), and 0 otherwise (n0 = 369). Finally,

since modern terrorism is strongly tied to history and politics in the Middle East, we also include a variable

Islam where a 1 is assigned to groups inspired by some form of Islam (n1 = 287) and 0 otherwise.

4.2 Model Results

We estimate the DPP/Product Partition model using the sampler developed in Section 3. The Markov chain

is run for 22,500 iterations disposing of the first 2,500 as burn-in. Convergence was assessed with superdiag,

a diagnostic suite provided by an R package (Tsai and Gill 2012) that calls all of the conventional convergence

diagnostics typically used (Gelman & Rubin, Geweke, Heidelberger & Welch, Raftery & Louis). We also found

no evidence of non-convergence with standard graphical tools (traceplots, cumsum diagrams, etc.).

Table 1: Selected Covariate Percentage for Modal Partition

Cluster 1 Cluster 2 Cluster 3
Covariate Value: 0 1 0 1 0 1
statespond 262 (96%) 10 (4%) 51 (78%) 14 (22%) 50 (86%) 8 (14%)
terrStrong 257 (94%) 15 (6%) 43 (66%) 22 (34%) 52 (90%) 6 (10%)
LeftNoReligEthno 196 (72%) 76 (28%) 52 (80%) 13 (20%) 53 (91%) 5 (9%)
PureRelig 249 (92%) 23 (8%) 54 (83%) 11 (17%) 42 (72%) 16 (28%)
PureEthno 256 (94%) 16 (6%) 60 (92%) 5 (8%) 53 (91%) 5 (9%)
Islam 223 (82%) 49 (18%) 37 (57%) 28 (43%) 27 (47%) 31 (53%)

During the stochastic search, 5, 681 unique partitions were visited. In total, the sampler spent 581 iterations

in partitions with 3 clusters, 18837 iterations with 4 clusters, and 3082 iterations with 5 clusters. There were

no observed partitions with less than three clusters. The highest posterior probability (p(C|y) = 0.8543)

partition had three clusters with the counts: [272, 65, 58]. In contrast, the next four partition probabilities

were: 0.0989, 0.0129, 0.0055, 0.0031. The top 15 partitions all have 3 clusters and the prior on the space of

clusters behaves as expected. The hierarchical uniform prior appropriately penalizes these partitions for their

complexity, which would not have occurred under the uniform prior on the space of clusters.

Table 1 uses the highest probability partition to evaluate covariate differences between the three clusters.

For this partition, the individual clusters have fundamentally different, and substantively interesting, covariate

mixes indicating non-independence of explanatory effects between clusters. Cluster 1 is almost strictly free of

government sponsorship where the other two are noticeably more in receipt of such support. Cluster 2 seems
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to be identified strongly with holding actual territory. Notice also that Cluster 3 has many fewer cases where

the group’s ideology is leftist and it is not compounded with another ideological orientation (9% versus 28%

for Cluster 1 and 20% for Cluster 2). Finally, Cluster 1 is significantly less made of cases that are inspired by

some form of Islam. As a whole, Table 1 provides evidence that this partition reveals substantively important

cluster differences, which provide potentially useful information for policy-makers engaged in anti-terrorist

planning.

4.3 Analyzing A Single Result

A key question is what modeling strategy should be pursued now that there is reliable posterior clustering infor-

mation. Recall that the simultaneous product partition clustering/Dirichlet process prior subclustering model

used the explanatory variable specification to produce a sample of partitions from the MCMC draws. Now we

would like to use that information to produce an analogous regression model to make substantive inferences

with the same mix of right-hand side covariates. Given the selection of one of the partitions, three canonical

models are available to us: a “fully unpooled” form with separate specifications for the clusters in a selected

partition, a “fully pooled” model that ignores clustering information, and a hierarchical specification where the

estimated clusters in the chosen partition form the group level definitions.2 Since choosing a preferred partition

from the product partition/Dirichlet process sampler fully defines how these models are identified with regard

to group (partition) identification, each of them can easily run with existing samplers. The fully unpooled

model is run with the generalized linear mixed Dirichlet model (GLMDM) on the partition with the highest

posterior probability noted above. These results give separate GLMDM models corresponding to the three sep-

arate clusters in this partition and displayed in Table 2. The fully pooled model and the multilevel model are

estimated with the jags MCMC estimation software (http://www-ice.iarc.fr/∼martyn/software/jags/).

We apply diffuse conjugate priors distributions for the regression parameters and standard methods for as-

sessing convergence with superdiag.

Several of the results from the two models differ in important ways. For the majority of terrorist acts

(Cluster 1), the only reliable predictor is the ordinal size of the organization. However, there are important

differences in the effect size of ordsize between the clusters. The 95% credible intervals for the effects size do

not overlap for the different clusters, with the second cluster (which happens to have the largest percentage

of Islamic groups performing the acts) having a very large effect due to organization size. This second cluster

also contains the acts for which whether the organization has a strong hold (terrStrong) is strongly positively

associated with the number of fatalities. It is also interesting to note that the degree of association (degree)

is positively associated with fatalities for the second and third clusters, with the largest positive effect in the

second cluster, as is the case with whether the organization is Islamic (Islam). We can now give a substantive

interpretation to our clusters. The first represents terrorist acts where simply the size of the organization

weakly influences the number of fatalities. The second represents terrorist acts where organizational size,

associations, territory, and Islamic fundamentalism provide large increases in the number of fatalities. The

2We borrow this pooling language from Gelman and Hill (2007), especially Chapter 12.
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Table 2: Cluster Model Results: BAAD Data

95% CI Lower 0.25 Quantile Median 0.75 Quantile 95% CI Upper
C

lu
s
t
e
r

1
,

n
=

2
7
2

(Intercept) -0.402 0.408 0.911 1.330 2.047
statespond -0.596 -0.301 -0.156 -0.013 0.265
masterccode -0.007 -0.003 -0.001 0.001 0.005
ordsize 0.084 0.174 0.220 0.269 0.361
terrStrong -0.378 -0.130 -0.001 0.126 0.370
degree -0.003 0.035 0.055 0.075 0.114
LeftNoReligEthno -0.253 -0.129 -0.065 -0.001 0.126
PureRelig -0.204 0.021 0.141 0.258 0.486
PureEthno -0.444 -0.223 -0.108 0.010 0.235
Islam -0.270 -0.067 0.030 0.132 0.328

C
lu

s
t
e
r

2
,

n
=

6
5

(Intercept) 16.219 23.906 27.617 31.418 38.901
statespond -8.182 -3.758 -1.643 0.559 4.734
masterccode -0.412 -0.311 -0.260 -0.210 -0.104
ordsize 4.767 6.921 8.094 9.247 11.556
terrStrong 0.408 4.547 6.738 8.954 13.351
degree 0.146 0.794 1.138 1.459 2.097
LeftNoReligEthno -12.387 -7.238 -4.701 -2.134 2.490
PureRelig -2.737 1.620 3.947 6.260 10.908
PureEthno -14.041 -7.412 -4.186 -1.163 4.979
Islam 4.551 8.868 11.102 13.352 17.678

C
lu

s
t
e
r

3
,

n
=

5
8

(Intercept) 0.827 2.675 3.613 4.497 6.311
statespond -2.040 -0.900 -0.333 0.214 1.326
masterccode -0.060 -0.031 -0.016 -0.001 0.028
ordsize 0.396 0.943 1.221 1.495 2.041
terrStrong -1.244 0.044 0.694 1.398 2.817
degree 0.039 0.305 0.438 0.576 0.845
LeftNoReligEthno -2.269 -0.807 -0.137 0.539 1.982
PureRelig -0.851 0.179 0.699 1.231 2.316
PureEthno -1.466 -0.064 0.622 1.384 2.924
Islam 0.395 1.521 2.096 2.682 3.788

third represents acts where size, associations, and Islamic fundamentalism have a positive but less pronounced

effect. Finally, four marginal posteriors are disappointingly centered near zero with large variance: those for

statespond, LeftNoReligEthno, PureRelig, and PureEthno. This suggests that the most reliable effect in

terms of religion and (associated) ethnicity is associated with Islamic groups rather than others.

This analysis so far falls under the completely unpooled approach in the multilevel modeling sense where

the three clusters are considered as completely separate collections, each deserving its own model. As a contrast

we run a standard Bayesian multilevel linear model (diffuse proper priors) with the three estimated clusters as

group definitions. Table 3 gives these results (using jags) and a comparison with a standard non-hierarchical

Bayesian linear model. Here τ is the precision of the residuals (standard linear model), or the precision of the

between group categories (multilevel linear model).

The completely pooled standard (Bayesian) linear model in the left-hand side of Table 3 serves only as

a benchmark analysis since the clusters are completely ignored. We see reliable explanatory effects for the

coefficient posteriors: ordsize, terrStrong, degree, and Islam. This näıve model suggests that: larger

groups are more deadly, those holding territory are also more deadly, as are those that are more networked

and also those with an Islamic identity. However, the more principled multilevel model, that does not ignore the
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Table 3: Flat and Hierarchical Model Results: BAAD Data

Standard Linear Model Multilevel Linear Model
Quantiles: 0.025 0.25 0.5 0.75 0.975 0.025 0.25 0.5 0.75 0.975

α -2.842 -1.171 -0.303 0.566 2.255 α1 -5.842 -4.765 -4.191 -3.617 -2.512
α2 16.756 18.228 19.001 19.771 21.237
α3 -4.290 -2.953 -2.246 -1.545 -0.200

statespond -1.810 -0.313 0.492 1.302 2.848 2.140 3.207 3.760 4.323 5.403
masterccode -0.056 -0.015 0.007 0.029 0.070 -0.075 -0.051 -0.038 -0.025 0.000
ordsize 3.328 4.256 4.744 5.223 6.152 1.723 2.300 2.606 2.911 3.489
terrStrong 1.194 2.942 3.850 4.755 6.492 0.299 1.534 2.188 2.848 4.095
degree 1.727 2.108 2.309 2.511 2.898 0.870 1.095 1.214 1.333 1.562
LeftNoReligEthno -1.809 -0.437 0.287 1.013 2.389 -0.590 0.306 0.782 1.258 2.175
PureRelig -1.451 0.239 1.117 2.003 3.692 -0.563 0.671 1.309 1.950 3.166
PureEthno -3.726 -1.913 -0.958 -0.005 1.809 -3.501 -2.169 -1.461 -0.758 0.579
Islam 0.473 2.022 2.839 3.646 5.182 1.188 2.284 2.853 3.425 4.527
τ 0.007 0.008 0.009 0.009 0.010 0.023 0.026 0.027 0.029 0.031

Summed Deviance: 3001 Summed Deviance: 2547
Variance Std.Dev.

σα: 37.037 6.086
σy: 1.31 1.15

high posterior probability clusters identified above, tells a more informed story. In this second specification in

the right-hand side of Table 3, each of these four explanatory effects is also statistically reliable, but in all cases

the posterior median is noticeably lower, suggesting that the model ignoring clusters exaggerates the impact

of the associated variables. In addition, the posterior distribution for statespond was not 95% bounded away

from zero in the first model, but it a large and reliable effect in the second model. This is consistent with a

large body of descriptive literature on terrorist organizations: having a government benefactor is instrumental

in securing resources for attacks, recruitment, and defensive operations.

We believe that these results can be very helpful to policy-makers concerned with controlling and responding

to international terrorism. The largest cluster (n = 272) is majority non-Islam: 223 to 49, and majority not

of a single (pure) religious base: 249 to 23, and majority not state sponsored: 260 to 10, whereas the other

clusters contain a much higher percentage of Islamic groups and are more likely to be state sponsored. Since the

results point strongly to Islamic terrorist groups being more deadly, perhaps these cluster is a lower priority to

policy-makers, perhaps based on cost to defeat. However, if policy makers can effectively isolate these groups,

the deadly nature of their attacks can be mitigated. Forcing terrorist groups in the second cluster out of their

controlled territory would also help to reduce the number of fatalities due to these groups.

5 Conclusion

In this paper we have proposed an innovative model-based Bayesian clustering approach which not only

provides substantive clustering through the product partition model, but also incorporates Dirichlet process

random effects to further account for individual level variation. The model thus provides a means of clustering

observations based on response to covariates while relaxing assumptions about the residual structure. Since the
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partition posterior probabilities cannot be analytically calculated, we have proposed an MCMC algorithm that

alternates between sampling substantive clusters and Dirichlet process subclusters. The partition posterior

probabilities are calculated using a Rao-Blackwell style estimator using the entire MCMC output. This

estimator allows for reasonable estimation of the partition posterior probabilities. Beyond the important

substantive analysis of terrorism data, this paper also provides an interesting insight into the hierarchical

uniform prior on the space of partitions. In contrast to the uniform prior, the hierarchical uniform prior (HUP)

provides an appropriate complexity penalization to allow the identification of a small number of substantive

clusters.

6 References
Victor Asal, R. Karl Rethemeyer, Ian Anderson. (2009). Big Allied and Dangerous (BAAD) Database 1 - Lethality

Data, 1998-2005, website.

Barry, D. and Hartigan, J. A. (1992). Product Partition Models for Change Point Problems. Annals of Statistics 20,

260-279.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Annals of Statistics 1,
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