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Introduction

Setup of interaction hypotheses.

Boehmke Interactions Workshop February 29, 2008 2 / 40



Introduction

Setup of interaction hypotheses.

Discussion of common claims.

Boehmke Interactions Workshop February 29, 2008 2 / 40



Introduction

Setup of interaction hypotheses.

Discussion of common claims.

Implementing tests.
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The Model

Yi = α + βxXi + βzZi + βxzXiZi + εi .

Marginal Effects:

∂Yi

∂Xi

= βx + βxzZi ;

∂Yi

∂Zi

= βz + βxzXi .
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The Hypothesis

Define γ = βx + βxzZi .
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The Hypothesis

Define γ = βx + βxzZi .

H0 : γ = 0;

HA : γ 6= 0.
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The Test

γ̂ = β̂x + β̂xzZi ,

Var [γ̂] = Var(β̂x + β̂xzZi),

= Var(β̂x) + Z 2

i Var(β̂xz) + 2ZiCov(β̂x , β̂xz).

γ̂
√

Var [γ̂]
∼ tn−4.

Boehmke Interactions Workshop February 29, 2008 5 / 40



Frequently Overhead

1 I don’t need to include Xi .
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Frequently Overhead

1 I don’t need to include Xi .
2 I can interpret β̂x directly.
3 The coefficients are not significant.

Boehmke Interactions Workshop February 29, 2008 6 / 40



I Don’t Need to Include X

1 Maybe you have no prediction about its direct effect.
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I Don’t Need to Include X

1 Maybe you have no prediction about its direct effect.
2 Maybe you have a theory that says its direct effect

is zero.
3 Maybe you have a lot of correlation between X and

X × Z .
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What Happens if you Don’t Include X ?

True Model: Y = α + βxXi + βzZi + βxzXiZi + εi .

Estimate: Y = α′ + β′
zZi + β′

xzXiZi + ε′i .

Implies: Y = α′ + β′
zZi + β′

xzXiZi + (εi + βxXi).
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What Happens if you Don’t Include X ?

True Model: Y = α + βxXi + βzZi + βxzXiZi + εi .

Estimate: Y = α′ + β′
zZi + β′

xzXiZi + ε′i .

Implies: Y = α′ + β′
zZi + β′

xzXiZi + (εi + βxXi).

So we have omitted variable bias!
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Figure: Estimated Marginal Effect when X Included
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Figure: Marginal Effects from Models with and without X
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Figure: X Excluded & its Coefficient is not Zero
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Figure: X Excluded by Value of βx
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Figure: It Gets Worse!
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Figure: It Gets Worse!
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Why Interpretation of β̂x is Tricky

Let Z ′
i = Zi + c .
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Why Interpretation of β̂x is Tricky

Let Z ′
i = Zi + c .

Yi = α + βxXi + βzZ
′
i + βxzXiZ

′
i + εi ,

= α + βxXi + βz(Zi + c) + βxzXi(Zi + c) + εi ,

= α + βxXi + βzc + βzZi + βxzXiZi + βxzXic + εi ,

= (α + βzc) + (βx + βxzc)Xi + βzZi + βxzXiZi + εi ,

= α′ + β′
xXi + βzZi + βxzXiZi + εi .
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Figure: Adding a Constant to Z Affects Marginal Effect of X
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Just Look at the Significance of the Coefficients

Coefficients possess only limited information.
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Coefficients possess only limited information.

As we’ve seen, coefficients on constitutive terms are
meaningless.
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Just Look at the Significance of the Coefficients

Coefficients possess only limited information.

As we’ve seen, coefficients on constitutive terms are
meaningless.

Need to test whether marginal effect is significant at
different values of Z .
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Table: Number of Citizen Interest Groups per State, 1990

Initiative State 88.50 ∗ ∗ 85.24
(41.72) (93.45)

Total Population 17.53 ∗ ∗ 17.56 ∗ ∗
(3.92) (4.04)

Citizen Ideology 1.89 2.02
(2.88) (4.34)

Initiative × Ideology −0.23
(5.83)

Constant 80.54 82.15
(56.38) (70.23)
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Table: Assessing Significance of Marginal Effect

Ideology γ̂ SE(γ̂) t p

-30 92.08 100.66 0.91 0.37
-25 90.94 75.21 1.21 0.23
-20 89.80 53.65 1.67 0.10
-15 88.66 42.39 2.09 0.04
-10 87.52 49.11 1.78 0.08
-5 86.38 68.73 1.26 0.21
0 85.24 93.45 0.91 0.37
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Implementing Interaction Tests in Stata

1 Using Stata’s test command.
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Implementing Interaction Tests in Stata

1 Using Stata’s test command.

2 Using Clarify suite.

3 Using grinter.

4 Using formulas.

5 Using simulations.
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Using Stata’s test Command

use boehmke2008-02-29interactions.dta

regress y x z zx

test b[xz] = 0

test b[x] + 3* b[xz]=0
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Using Stata’s test Command

use boehmke2008-02-29interactions.dta

regress y x z zx

test b[xz] = 0

test b[x] + 3* b[xz]=0

Use loops to automate for many values:

forvalues val=1(1)5 {
test b[x] + ‘val’* b[xz]=0

}
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A Slightly More Flexible Version of test

summarize x

forvalues val = ‘r(min)’/‘r(max)’ {
local effect = b[x] + ‘val’* b[xz]

quietly test x + ‘val’*xz=0

display ‘x’ , ‘effect’ , r(F) , r(p)

}
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Saving Those Values I

generate test val = .

generate test eff = .

generate test F = .

generate test p = .
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Saving Those Values II

summarize x

local i = 1

forvalues val = ‘r(min)’/‘r(max)’ {
local effect = b[x] + ‘val’* b[xz]

quietly test x + ‘val’*xz=0
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Saving Those Values II

summarize x

local i = 1

forvalues val = ‘r(min)’/‘r(max)’ {
local effect = b[x] + ‘val’* b[xz]

quietly test x + ‘val’*xz=0

replace test val = ‘x’ if n == ‘i’

replace test eff = ‘effect’ if n == ‘i’

replace test F = ‘r(F)’ if n == ‘i’

replace test p = ‘r(p)’ if n == ‘i’

local ‘i’ = ‘i’ + 1

}
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Using the Clarify Suite of Commands

estisimp regress y x z xz

setx (x z xz) mean

simqi, fd(ev) changex(x 0 1 xz 0 1)

Boehmke Interactions Workshop February 29, 2008 24 / 40



Using the Clarify Suite of Commands

estisimp regress y x z xz

setx (x z xz) mean

simqi, fd(ev) changex(x 0 1 xz 0 1)

summarize z

forvalues val = ‘r(min)’/‘r(max)’ {
simqi, fd(ev) changex(x 0 1 xz 0 ‘val’)

}
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Using grinter to Graph Marginal Effect

grinter automates graphing marginal effect for
simple interaction.
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Using grinter to Graph Marginal Effect

grinter automates graphing marginal effect for
simple interaction.

Graphs ∂Y /∂X = β̂x + β̂xzZ against values of Z .

Adds confidence interval to asses whether it includes
zero.
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Using grinter to Graph Marginal Effect

grinter automates graphing marginal effect for
simple interaction.

Graphs ∂Y /∂X = β̂x + β̂xzZ against values of Z .

Adds confidence interval to asses whether it includes
zero.

Basic syntax:
grinter x, inter(xz) const02(z).
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grinter init, inter(initideo) const02(ideology)

Mean of Citizen Ideology (EWM measure)
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Dashed lines give 95% confidence interval.
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grinter init, inter(initideo) const02(ideology)

clevel(90)

Mean of Citizen Ideology (EWM measure)
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Dashed lines give 90% confidence interval.
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grinter init, inter(initideo) const02(ideology)

clevel(90) yline(0)

Mean of Citizen Ideology (EWM measure)
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Dashed lines give 90% confidence interval.
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grinter init, inter(initideo) const02(ideology)

clevel(90) yline(0) kdensity

Mean of Citizen Ideology (EWM measure)
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Thick dashed lines give 90% confidence interval.
Thin dashed line is a kernel density estimate of ideology.
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Figure: A More Complicated Example
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Marginal Effects in Non-Linear Models

More difficult than in OLS since marginal effect
depends on all covariates.

Boehmke Interactions Workshop February 29, 2008 31 / 40



Marginal Effects in Non-Linear Models

More difficult than in OLS since marginal effect
depends on all covariates.

But the basic principle remains the same: determine

∂Y /∂X .
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Marginal Effects in Non-Linear Models

More difficult than in OLS since marginal effect
depends on all covariates.

But the basic principle remains the same: determine

∂Y /∂X .

Getting confidence intervals is more difficult, but
simulation helps.
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Logit

Pr(Yi = 1|X ) = Pr(Xiβ > 0|X ),

= 1 − Pr(−Xiβ < 0|X ),

= 1 − F (−Xiβ),

= 1 −
exp(−Xiβ)

1 + exp(−Xiβ)
,

=
1

1 + exp(−Xiβ)
,

= (1 + exp(−Xiβ))−1.
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Marginal Effect in Logit I

Xiβ = α + βxXi + βzZi + βxzXiZi .
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Marginal Effect in Logit I

Xiβ = α + βxXi + βzZi + βxzXiZi .

∂ Pr(Yi = 1|Wi)

∂X
=

∂(1 + exp(−Xiβ))−1

∂X
,

= −
∂(1 + exp(−Xiβ))

∂X
(1 + exp(−Xiβ))−2,

= −
∂(−Xiβ)

∂X
exp(−Xiβ)(1 + exp(−Xiβ))−2,

= (βx + βxzZi) exp(−Xiβ)(1 + exp(−Xiβ))−2;
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Marginal Effect in Logit II

= (βx + βxzZi) exp(−Xiβ)(1 + exp(−Xiβ))−2,

= (βx + βxzZi)

(

exp(−Xiβ)

1 + exp(−Xiβ)

)

(1 + exp(−Xiβ))−1,

= (βx + βxzZi)

(

exp(−Xiβ)

1 + exp(−Xiβ)

)

Pr(Yi = 1|Xi),

= (βx + βxzZi)

(

1 −
1

1 + exp(−Xiβ)

)

Pr(Yi = 1|Xi),

= (βx + βxzZi)(1 − Pr(Yi = 1|Xi)) Pr(Yi = 1|Xi),

= (βx + βxzZi) Pr(Yi = 0|Xi) Pr(Yi = 1|Xi).
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Estimating Marginal Effect in Logit

Trying to estimate:

(βx + βxzZi) Pr(Yi = 0|Xi) Pr(Yi = 1|Xi).

Use:

(β̂x + β̂xzZi) ̂Pr(Yi = 0|Xi) ̂Pr(Yi = 1|Xi).

Generate confidence interval by sampling J times
from distribution of estimated coefficients:

β̂j ∼ N(β̂, Var(β̂)).
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Logit Marginal Effects in Stata

use boehmke2008-02-29interactions-logit.dta

logit y x z xz

generat x val = 1

generat z val = 1

drawnorm beta x beta z beta xz alpha,

means(e(b)) cov(e(V))
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Logit Marginal Effects in Stata

use boehmke2008-02-29interactions-logit.dta

logit y x z xz

generat x val = 1

generat z val = 1

drawnorm beta x beta z beta xz alpha,

means(e(b)) cov(e(V))

generat xb hat = alpha + beta x*x val + beta z*z val

+ beta xz*x val*z val

generat gamma hat = beta x + beta xz*z val

generat pi1 hat = 1/(1+exp(-xb hat))
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Logit Marginal Effects in Stata

use boehmke2008-02-29interactions-logit.dta

logit y x z xz

generat x val = 1

generat z val = 1

drawnorm beta x beta z beta xz alpha,

means(e(b)) cov(e(V))

generat xb hat = alpha + beta x*x val + beta z*z val

+ beta xz*x val*z val

generat gamma hat = beta x + beta xz*z val

generat pi1 hat = 1/(1+exp(-xb hat))

generat marginal = gamma hat*(1 - pi1 hat)*(pi1 hat)

summarize marginal, detail
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Graphing Logit Marginal Effects in Stata I

logit y x z xz

collapse (mean) x (min) z min=z (max) z max=z

expand 1000
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Graphing Logit Marginal Effects in Stata I

logit y x z xz

collapse (mean) x (min) z min=z (max) z max=z

expand 1000

generat z = z min + (z max - z min)*( n-1)/ N

generat xz = x*z

expand 1000
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Graphing Logit Marginal Effects in Stata II

drawnorm beta x beta z beta xz alpha,

means(e(b)) cov(e(V))

generat xb hat = alpha + beta x*x val + beta z*z val

+ beta xz*x val*z val

generat gamma hat = beta x + beta xz*z val

generat pi1 hat = 1/(1+exp(-xb hat))

generat marginal = gamma hat*(1 - pi1 hat)*(pi1 hat)
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Graphing Logit Marginal Effects in Stata III

collapse (mean) marginal (p5) marg lb=marginal (p95)

marg ub=marginal, by(z)
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Graphing Logit Marginal Effects in Stata III

collapse (mean) marginal (p5) marg lb=marginal (p95)

marg ub=marginal, by(z)

twoway line marginal marg lb marg ub z, sort

lpattern(solid dash dash) yline(0)
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Graphing Logit Marginal Effects in Stata III

collapse (mean) marginal (p5) marg lb=marginal (p95)

marg ub=marginal, by(z)

twoway line marginal marg lb marg ub z, sort

lpattern(solid dash dash) yline(0)

twoway lowess marginal z, sort lcolor(black)

|| lowess marg lb z, lpattern(dash) lcolor(gs6)

|| lowess marg ub z, lpattern(dash) lcolor(gs6)

yline(0)

ytitle("Marginal Effect of X on P(Y=1|X,Z)")

xtitle("Value of Z")
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Conclusion

Lots of bias can emerge if constitutive terms not
included.
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Conclusion

Lots of bias can emerge if constitutive terms not
included.

Even if you have a theory, probably best to include
them.

Many ways to assess significance.

Same principle allows calculation for any estimator
or form of interactions.
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