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Abstract

Duration data are often subject to various forms of censoring that require adaptations
of the likelihood function to properly capture the data generating process, but existing
spatial duration models do not yet account for these potential issues. Here we develop
a method to estimate spatial duration models when the outcome suffers from right cen-
soring, the most common form of censoring in this area. In order to address this issue,
we adapt Wei and Tanner’s (1991) imputation algorithm for censored (nonspatial) regres-
sion data to models of spatially interdependent durations. The algorithm treats the unob-
served duration outcomes as censored data and iterates between multiple imputation of
the incomplete, i.e., right censored, values and estimation of the spatial duration model
using these imputed values. We explore performance of an estimator for log-normal du-
rations in the face of varying degrees of right censoring via Monte Carlo and provide em-
pirical examples of its estimation by analyzing spatial dependence in states’ entry dates
into World War I.



Introduction

The use of spatial modeling in the study of politics has grown over the past two decades as

the ability to estimate a variety of outcomes, including continuous, discrete, and duration,

becomes more readily available. Despite this expansion, there are still issues that have not

been addressed. Of particular interest in this paper is the problem of right censoring in

spatial duration models. Spatial econometrics provides a common method for addressing

these various forms of interdependence and models for continuous outcomes such as

spatial regression are well known and growing in their use in political science.

Work on duration models makes clear that they pose their own unique set of chal-

lenges. For example, duration data often exhibit various forms of censoring that require

adapting the likelihood function to properly capture the data generating process. Exist-

ing spatial duration models do not yet account for these potential issues and the goal

of this paper is to develop a method to estimate spatial duration models when the out-

come suffers from right censoring, the most common form of censoring in this area. Right

censoring occurs when we partially observe a duration: we know when an observation

began and that it lasted until at least a given point in time, but we do not know exactly

how long it survived beyond this point. This poses a significant challenge for modeling in-

terdependence since the outcome for one observation depends on the outcomes for other

observations. Censored durations render the analyst incapable of properly capturing this

interdependence since the complete outcome data are not fully observed.

In order to address this issue, we adapt Wei and Tanner’s (1991) imputation algorithm

for censored (nonspatial) regression data to models of spatially interdependent durations.

The algorithm iterates between imputing the durations for right censored observations

and estimating the spatial duration model given these imputed values. We apply this

algorithm to develop an estimator for log-normal durations with right censoring. We then
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explore the performance of the estimator in the face of varying degrees of right censoring

and spatial interdependence via Monte Carlo followed by an empirical illustration the

examines spatial dependence in states’ entry dates into World War I. This offers a good

example given the great degree of interdependence in entry decisions but also because of

the presence of significant amount of right censoring caused by countries that did not join

before the conflict ended.

Spatial Duration Models

As with continuous outcomes, examples abound in which units’ durations likely depend

on one another. For example, prominent literatures exist that evaluate interstate depen-

dence in the timing of policy adoption or the timing of international conflict. In both

cases interdependence constitutes a central question given the strategic nature of conflict

and the positive and negative spillovers that policy changes create. In the policy diffusion

literature in particular, this interdependence in the timing of adoption has been made exo-

geneous through the use of temporal lags of spatially connected’s units policy choices, de-

spite a longstanding interest in interdependence underscored by recent work that makes

it explicit (Volden, Ting and Carpenter 2008). The tendency to address interdependence

by assuming it to be exogenous or just treating it as a nuisance may be especially tempt-

ing in the context of duration outcomes since they provide an easy shortcut via the use of

time lags to make assumptions that imply exogeneity.

Of course, estimating standard duration models without explicitly modeling spatial

dependence potentially omits relevant factors that affect the hazard. ?’s (?) show this

directly in the case of spatial regression estimators: ignoring spatial correlation by es-

timating a non-spatial OLS leads to inflated estimates while properly modeling spatial

interdependence through spatial lags drastically improves the estimates. Similar results
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hold when estimating a non-spatial duration model with continuous outcomes. In fact,

since a log-normal duration model without any right censoring corresponds exactly to a

linear regression estimator with normal errors, their results apply directly.

Previous attempts at capturing spatial dependence for duration outcomes have typi-

cally modeled it through the inclusion of frailty terms. The use of frailties has a long tra-

dition in duration modeling; frailties help account for the unobserved differences across

units that make some more likely to experience the event of interest sooner than others,

thereby playing a role similar to random effects (Box-Steffensmeier and Jones 2004). Re-

cent work captures spatial processes by allowing correlation between the random effects

for spatially connected observations. For example, Darmofal (2009) discusses a Bayesian

spatial survival model that uses a conditionally autoregressive (CAR) prior to capture

spatial autocorrelation in the frailty terms (see also Banerjee, Wall and Carlin 2003). Em-

pirical application to the timing of members of Congress’ announcements of their posi-

tion on the North American Free Trade Agreement demonstrates that these estimators

offer useful insight into the dependence structure of these random effects. Further, since

the spatial correlation exists in the frailties, they can account for right censoring with only

minor adaptation for parametric forms, e.g., the Weibull, or with little adaptation as in

the case of the semi-parametric Cox version.

Importantly, though, the inclusion of spatially autocorrelated frailty terms does not

address many interesting or theoretically motivated forms interdependence. Spatial de-

pendence emerges not just through the presence of correlated random shocks or unmod-

eled heterogeneity, but also through explicit interdependence in units’ choices. This might

arise from strategic choices made by actors about the optimal time to enter a conflict or to

announce their position on pending legislation. These forms of interdependence cannot

be properly captured with frailties, but rather must occur through the dependent vari-

able as is the case with spatial lag models. Given this, we develop a spatial lag duration
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estimator that allows for interdependence between duration outcomes rather then only

through random errors. For this project we consider a model for a log-normal duration

process.

The data generating process that this describes can be written in matrix notation as

follows:

y = ρWy + Xβ + Lu (1)

where y represents the natural log of the non-negative duration outcome and W captures

the spatial dependency between observations.1 ρ is the parameter of spatial dependence

or the degree of spatial autocorrelation in the model. In political science, spatial relation-

ships are generally expected to have a positive relationship, leading to a positive ρ. The di-

agonal matrix L has
1

λ
down the center diagonal, where λ represents the shape parameter

for the error distribution and captures the existence and degree of duration dependence.

From this structural form we can derive the reduced form of the spatial model:

y = (I − ρW)−1Xβ + (I − ρW)−1Lu, (2)

= ΓXβ + ΓLu, (3)

= ΓXβ + v. (4)

where Γ = (I − ρW )−1 and v = ΓLu. The reduced form equation makes evident the

importance of including the spatial lag since the outcome for each unit depends on both

the observed and unobserved components of other units through the spatial lag matrix.

Ignoring this spatial dependence when it is not equal to 0 (i.e., ρ ̸= 0) leads to biased

coefficient estimates as ?’s (?) show in the linear regression context.

1The description of this model follows Hays and Kachi’s (2009) notation.
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The reduced form equation also makes evident the additional challenge posed by right

censoring. Right censoring occurs when we do not observe the exact moment the event

occurs, but only that it occurred after a specific point in time. A standard duration model

handles this easily by replacing the density of failure at a specific time with the survival

function evaluated at the time of censoring, which captures the probability that the obser-

vation lasts longer than the censoring point. In the context of spatial durations however,

this becomes more complicated since the probability of surviving past a single point in

time depends on the failure time of other observations and therefore the likelihood can

not be constructed via the marginal distributions of failure or censoring for each obser-

vation. Moreover, since the probability of failure for observed cases will often depend on

the true failure time for right censored cases, we lose critical information needed to model

the failure time for all observations.

To explicitly introduce right censoring, assume we do not fully observe the duration,

yi, for some subset of observations but rather we observe only that it lasted at least un-

til the censoring point. Thus we divide observations into those cases that are censored,

denoted with yCi , and those cases that we fully observe, denoted with yi. In standard du-

ration analysis treating right censored cases as fully observed when they are in fact right

censored can lead to bias in the estimates of the parameters (Box-Steffensmeier and Jones

2004).

To date censoring in spatial models has been dealt with in two different ways. First,

researchers assign a value to all of the censored cases and treat this as the observed fail-

ure time; oftentimes this is the threshold cutoff between those cases that are observed and

those that are censored. Alternatively, they omit the censored observations from the anal-

ysis. Both can lead to biased estimates. The first systematically reduces the dependent

variable for censored cases. The second leads to truncation and unless the factors that

produce the censoring are unrelated to those that affect when the event occurs, truncat-
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ing the sample will also tend to produce bias (Box-Steffensmeier and Jones 2004). Spatial

modeling has the potential to exacerbate both of these issues since even uncensored obser-

vations depend on the realization of the outcome variable in censored cases. We therefore

require a method to recover the missing information about censored cases so that we can

properly capture the spatial dependence between observations, a task to which we turn

in the next section.

An EM Approach for Imputation and Estimation

To develop an estimator that simultaneously addresses spatial interdependence and right

censoring we adapt Wei and Tanner’s (1991) imputation method for (non-spatial) cen-

sored regression data to account for spatial interdependence. The logic underlying their

approach lies in alternating between taking draws of the outcome variable for censored

cases conditional on the censoring point and estimating the model on the observed values

for uncensored cases and the imputed values for censored cases. This approach allows es-

timation to proceed with computationally nonintensive regression models which at one

point would have been easier than doing maximum likelihood with a mix of censored

and uncensored observations. We adapt it to spatial durations with censored data for the

same reason since calculating a high dimensional multivariate distribution with a mix of

observed and censored cases would prove challenging today.

Extending the original approach requires accounting for the interdependence between

observations as we iterate between the estimation and imputation stages. In words, we

use the most recent estimates to calculate the reduced form residuals. We then translate

them back into their structural form counterparts which allows us to take draws in an

i.i.d. space. This translation occurs via the Cholesky decomposition of the correlated re-

duced form errors which, as a lower triangular matrix, allows us to iteratively solve for
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each of the structural errors as a linear combination of the previous n− i+1 reduced form

errors. For censored cases we obtain the minimum value that ensures that realized value

will exceed the observed censoring point. We use this to take a random draw of the i.i.d.

structural form error from a censored normal distribution and use this draw in the solu-

tion for the next structural form error. Once this iterative process concludes, we calculate

the dependent variable, reestimate the model, and repeat until the parameters stabilize.

To be precise, the algorithm starts by estimating a spatial regression model that treats

the censoring point as the observed event time. Using these results, we calculate the re-

duced form residuals. The data generating process follows from equation 4. The reduced

form error v represents a linear combination of i.i.d. errors. Using these reduced form

residuals, we then calculate the Cholesky decomposition, A−1, of the expected covari-

ance matrix of these errors.

E[v̂v̂′] = E[(ΓLû)(ΓLû)′], (5)

= (ΓL)E[ûû′](ΓL)′, (6)

= (ΓL)(I)(ΓL)′, (7)

= (ΓL)(ΓL)′. (8)

For a log-normal distribution L captures the standard deviation as a departure from the

standard normal error u and has σu down its diagonal. We can therefore simplify this for

the log-normal case to σ2
uΓΓ

′.

We can then write the reduced form errors as a linear combination of i.i.d. normal

errors: û = A−1η. Since A−1 is upper triangular, we can iteratively solve for the corre-

sponding value of η one observation at a time starting with the last observation. Assume

without loss of generality that we have solved for the kth observation. When we solve for

the (k − 1)th observation, if the observation is uncensored this results in the implied val-
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ues. If the (k − 1)th observation is censored, we can calculate the necessary value for the

duration to exceed the censoring point given the calculated errors for the previous obser-

vations and then draw from the distribution conditional censored below at this value. The

value of censoring point is calculated in the same way that we solve for the uncensored

ηk. Once the censoring point is determined for k − 1, we take a random draw from the

censored standard normal distribution to obtain a value that is greater than the censored

value to impute ηk−1 (see Appendix for example). This method returns the same value

for each of the uncensored cases and imputed outcomes for the censored cases.

In order to create the imputed reduced form spatial errors, we multiply the η by A−1.

Using these imputed values for the errors, an imputed Y is calculated from the combina-

tion of Ŷ from the previous spatial lag model and the imputed spatial errors calculated.

The imputed Y is then run in a spatial lag model and the parameter vector is saved.

To account for estimation uncertainty in our procedure we multiply impute M draws

of the errors for censored cases. After each step of the EM process, we take the average of

the M parameter vectors as our current estimate to begin the next step. The algorithm con-

tinues until the results converge, which we assess by whether the log-likelihood changes

by less than a small amount, e.g., 0.000001. Once it converges, we calculate the final es-

timates using each of the multiply imputed data sets are combined using Rubin’s (2009)

formula:

θ̄ =
1

M

M∑
m=1

θ̂m, (9)

V ar(θ̄) =
1

M

M∑
m=1

V ar(θ̂m) +
M + 1

M

(
1

M − 1

M∑
m=1

(θ̂m − θ̄)2

)
. (10)

8



Monte Carlo

In order to evaluate our approach we conduct a series of Monte Carlo simulations. These

allow us to study its properties, both statistically and computationally, and to compare

the estimates that it produces to those that one would obtain from either ignoring the

censoring or ignoring the spatial interdependence as well as to those from the original un-

censored data as a benchmark comparison. To evaluate our EM estimator’s performance

across a wide range of circumstances we vary both the amount of spatial interdependence

and the amount of censoring.

Our data generating process proceeds as follows. We start with one hundred units

spread out evenly across a ten by ten grid. We construct a spatial dependence matrix, W ,

based on rook and queen contiguity. We then generate 100 independently and identically

distributed observations of a single independent variable, X , according to the standard

normal distribution. For simplicity’s sake we set L = I , resulting in the following data

generating process:

y = (I − ρW)−1(−1− 1× X) + (I − ρW)−1u (11)

With 100 observations our approach to generating W results in about around 7% connec-

tivity between units. As is common, we row-standardized the spatial weights matrix by

dividing each element by the sum of the elements in its row, which produces a matrix in

which all of the elements represent proportions and each row sums to 1. This ensures that

the spatial parameters are comparable across different models (Anselin and Bera 1998).

Since most spatially dependent relationships in political science have positive spatial au-

tocorrelation we run simulations with ρ varying from 0 to 0.75 by increments of 0.25. We

hold the independent variables constant across all of the simulations.

We introduce censoring through a common censoring point for all observations. This
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mimics what occurs when some observations have not failed by the end of the study, such

as when all units have not adopted a policy in an event history analysis or when the event

of interest becomes infeasible at certain point in time, as in our application to the timing of

countries’ entry in World War I. Based on the distribution of the dependent variable that

results from our data generating process, we selected censoring points that vary from -1

to 0.5 by increments of 0.5. The amount of censoring that occurs ranges from fifty to nearly

zero percent depending on the degree of censoring and the amount of spatial correlation

(see Figure 1 in our supplemental appendix).

For each combination of values of spatial interdependence and censoring points we

generate 500 draws of u from a standard normal distribution, calculate the value of Y,

then apply our censoring rule so that Y c
i = min{Yi, C}. We estimate four models: a naı̈ve

spatial model that treats all realizations of Y c
i as uncensored, a naı̈ve log-normal duration

model that accounts for the censoring but ignores the spatial dependence, our EM spatial

duration model with imputation of censored values, and a log-normal spatial duration

model using the uncensored value Yi. The latter serves as a best-case scenario against

which to compare our EM approach since spatial models often show some degree of bias

in parameter estimates with relatively small samples.

For our EM estimator we set the maximum number of iterations for each draw to 100

and use fifteen imputations for each step of the EM process. With high degrees of censor-

ing, our proposed estimator occasionally fails to produce estimates. This happens about

a third of the time when the degree of censoring is high and the spatial correlation was

low, circumstances which make it difficult for our estimation procedure to draw strength

across observations. In exploring individual draws we found this to be an issue usually

resolved by changing the seed and rerunning the estimator, so it should not pose a signif-

icant problem for well-behaved applications. Standard errors are calculated according to

Equation 10.
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[Figure 4 here.]

Figures 4 presents the average bias in the estimates for the intercept, slope coefficient,

and spatial dependence parameters, with the first two having true values of −1 and the

latter varying from 0 to 0.75.2 Three patterns emerge quite clearly. First, the benchmark es-

timates evidence a potential, though slight, negative bias, especially for the intercept and

spatial dependence parameters. This is consistent with other simulations of spatial esti-

mators and should be kept in mind in evaluation the performance of the other estimators

since it represents the best case scenario in which no censoring occurs.

Second, the naı̈ve spatial estimator suggests bias for all three parameters, with the

deviations from the true values most severe for the coefficient and intercept. These devia-

tions get smaller as the spatial correlation increases or the censoring parameter decreases.

Since this estimator ignores censoring it makes sense that it does worse as censoring in-

creases. The magnitude of the apparent bias can be quite severe with average estimates

frequently ranging from 80-45% of the true value of -1.

Third, the naı̈ve duration model exhibits the opposite pattern. It does quite well with

little interdependence, which we expect since when ρ = 0 out data correspond exactly

to a standard duration model. When the spatial correlation reaches 0.25, however, the

intercept begins to show some apparent bias which quickly becomes much worse: the

average bias is over 300% of the magnitude of the true value when ρ = 0.75. The slope

coefficient exhibits a similar pattern, though on a much smaller scale, with deviations up

to 10% of the true effect.

Fourth, the EM estimator produces average estimates for all three parameters near

their true values. The results shown here exhibit some potential bias in estimating the

intercept and slope parameters for ρ = 0 and small values of c, which makes sense since in

those cases one has much less information about the outcomes for the censored cases since
2We report detailed results for all parameters in our supplemental appendix.
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their values do not spatially influence the outcomes in uncensored cases.3 We also see

some slight deviation in the estimate of the spatial parameter relative to the benchmark

case with moderate spatial dependence, but not with large or zero dependence. When

censoring is very low a simple duration estimator may be preferred and when spatial

correlation is high a simple spatial estimator may suffice, but our estimator performs

about as well as the alternatives even in these situations and clearly outperforms both in

all other cases.

Given the greater complexity of our estimator, including the multiple imputation com-

ponent, we also want to consider the relative precision of its estimates. We start by eval-

uating the accuracy of the reported standard errors for our approach and then move to

a mean squared error comparison across alternatives. Figure 3 in our supplemental ap-

pendix provides a comparison of the average standard errors across the 500 draws to the

standard deviation of the sampling distribution of the parameter estimates and indicates

that our estimator provides accurate estimates of uncertainty.

[Figure 5 here.]

Moving to a comparison across estimators, Figure 5 plots the square root of the sum

of the variance and the squared bias of each parameter for all four estimators. The plots

show clear evidence that even with its greater complexity our EM estimator generally

equals or outperforms both of the naı̈ve ones and by a wide margin for the spatial estima-

tor with spatial interdependence less than 0.75 and for the duration estimator with spatial

dependence equal to or greater than 0.5. The results for the spatial dependence parameter

are generally comparable across models.

Overall, then, we take these results as providing solid evidence in favor of our EM

spatial duration model for censored data. With even modest levels of censoring it appears

3We confirmed this by increasing the amount of censoring but do not report the results given the in-
creasingly low rate at which we obtained estimates.
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to outperform a naı̈ve duration model that ignores the censoring in root mean square

error terms. The results also indicate that it provides estimates that do deviate much from

the benchmark model with fully observed data. With extremely high rates of censoring,

some apparent bias does emerge, but given the size of the standard deviations it may

not be meaningful. These results also point to a need to further investigate the generally

modest underestimation of the standard errors by our EM estimator.

Illustration: The Diffusion of WWI

Illustration: The Diffusion of WWI

There is a large literature in international relations on the diffusion or contagion of war

(Davis, Duncan and Siverson 1978; Most and Starr 1980; Levy 1982; Siverson and Starr

1991; Gartner and Siverson 1996; Werner and Lemke 1997; Kedera 1998). According to

one line of thought, the spread of war is analogous the spread of infectious disease. War

is theorized to diffuse through geographical proximity, rivalries, and military alliances

among other mechanisms. Duration models provide a natural framework for empirically

evaluating theories of conflict diffusion. Given a particular level of conflict “exposure,”

the question is how long will it take before a country succumbs to the scourge of war.

Right-censoring presents a significant methodological challenge to duration analyses of

war diffusion, however. Wars end before all the potential joiners have entered the conflict.

An armistice is like a vaccine or the end of a clinical trial.

One recent attempt to model the contagion of conflict that addresses the problem of

right-censoring is Melin and Koch (2010). They take a two stage approach to analyze the

expansion of militarized interstate disputes (MIDs) over the period 1816-1992. In their

first-stage, the expansion stage, they model the time until an initial dyadic militarized
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dispute expands. This is important because the potential for conflict expansion varies

greatly across militarized disputes, and potential joiners take this likelihood into account.

Therefore, in the second stage, the joining stage, Melin and Koch model the time until

a potential joiner enters the conflict, conditional on the expected duration of the initial

dyadic dispute from their first-stage estimates. They find, inter alia, that capabilities, con-

tiguity, and alliances reduce the time it takes for potential joiners to enter a conflict. This

approach handles right-censoring and the strategic timing of conflict entry decisions in a

sophisticated way, but in many instances the triadic nature of the interdependence will

be too restricted in scope.

Radil, Flint and Chi (2013) take a different approach, rooted in social network anal-

ysis, in their study of WWI. They examine how international political networks and ge-

ography influenced the decisions of states to join the conflict in four waves of expan-

sion. The initial wave began with Autria-Hungary’s declaration of war on Serbia, with

entries following soon after by Germany, Russia, Belgium, France, and the United King-

dom. Japan joined the war approximately a month later, and Turkey followed suit within

one-hundred days of the outbreak. The middle stage (May 23, 1915 - August 27, 1916)

included entries by Italy, Bulgaria, Portugal, and Romania. The late joiners, in order, were

the United States, Cuba, Panama, Bolivia, Greece, Thailand, China, Peru, Uruguay, Brazil,

Ecuador, Guatemala, Nicaragua, and Honduras. Radil et al. identify the structural posi-

tion of each state in multiple networks defined by geographical contiguity, alliances, and

international rivalries and then relate this position to their decision to join the war. They

find a strong and statistically significant correlation (using Quadratic Area Procedure ma-

trix regression) between structural equivalency measures of network positions for two

states at one stage of the conflict and their joint involvement at subsequent stages. Ad-

ditionally, they use convergence of iterated correlations applied to the multiple network

matrices to identify eight latent classes of states and show with ANOVA that these groups
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help to explain the timing decisions of their members.

While these studies represent best practice in the empirical study of conflict diffusion,

there are significant limitations in both. Melin and Koch only account for the connections

between a potential joiner and the initial target and conflict instigator. Taking WWI as

an example, this would mean that the time it takes Britain to join the conflict between

Austria-Hungary and Serbia would depend only on its relationship to Austria-Hungary

and Serbia. However, clearly, Britain’s decision to join the conflict when it did depended

on Germany’s decision to enter the conflict three days earlier. In short, this approach

(implicit triads) does not account for the entire structure of interdependence that exists

between all potential joiners. Second, it does not address the simultaneity between the

expansion and joining outcomes. The Melin and Koch approach would make Germany’s

decision to join the conflict between Austria-Hungary and Serbia a function of the ex-

pected time to expansion, but the time to expansion also depends on Germany’s decision

to intervene.

Radil et al. account for the complex structure of interdependence that influenced the

war joining decisions of states, and this is an important advance, but they reduce the

network relationships to latent classes and measures of structural equivalence that make

it impossible to identify which sources of connectivity matter most for the expansion of

conflict. Is it geographical relationships, alliances, or rivalries? Moreover,their ANOVA

framework is less than ideal for duration analysis given that it cannot address the right-

censoring problem. The strengths and weaknesses of these two approaches to interdepen-

dent duration analysis mirror those of the simpler naı̈ve strategies that we presented in

our Monte Carlo experiments. They are either strong with respect to modeling the time to

conflict expansion (Melin and Koch and our non-spatial duration model) or the interde-

pendence in war-joining behavior (Radil et al. and our naı̈ve spatial model).

We model the WWI entry timing decisions of states using a spatial lag model of in-
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terdependent durations. Our approach addresses the shortcomings of the two-stage du-

ration model in Melin and Koch as well as the network analysis in Radil et al. All of the

entry timing decisions are potentially linked through multiple connectivity matrices and

treated as simultaneously determined. WWI is an excellent case for studying the diffu-

sion of war. It began as a localized conflict that over the course of four years expanded to

include half of the independent states in the international system. Had the war continued,

undoubtedly, more states would have been drawn into in the conflict.

One could treat the entry timing decisions of these states as independent and driven

purely by domestic and international structural factors such as regime type, trade ex-

posure, and relative military capabilities, but this is approach unsatisfactory. Ultimately,

each states decision about when to enter the war was heavily influence by the entry tim-

ing decisions of others, and any empirical analysis should take this interdependence into

account. We incorporate three forms of interdependence into our models: geographical

distance, rivalry, and defensive alliances. These sources of interdependence suggest that

states will be influenced by the participation and entry timing decisions of their neigh-

bors, rivals, and allies.

To capture the role of geography in the spread of war, we use an inverse distance

spatial weights matrix, which is standard in the spatial econometrics literature. With this

matrix, every state’s entry timing decision is influenced by every other state’s decision,

but the interdependence between geographically proximate states is much stronger than

it is for distant ones. Of course, the geographical notion of distance can be extended to

social, political and economic contexts (?), and this is how we approach our rivalry and

alliance weights matrices. Every state’s entry timing decision is influenced by every other

state’s decision, but the interdependence between rivals and allies is much stronger than

for states not connected by a rivalry or alliance. To be more specific about how we gener-

ate our matrices, consider the case of international rivalry. If state i has no rivals, then its
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weights for i ̸= j are

wij =
1

n− 1
.

If state i has both rivals and non-rivals, then its weights for non-rivals i ̸= j are

wij =
(1− r)

n− nr − 1
,

where r is a parameter on the interval [nr/(n− 1), 1] that determines the relative influence

of rivals and non-rivals and nr is i′s total number of rivals. For i′s rivals, the weights are

wij =
r

nr

.

With this function for wij , everyone influences everyone else equally is a special case

where r = nr/(n− 1). This produces a weights matrix for which all of the off-diagonal

elements are 1/(n− 1). At the other extreme, r = 1, the function produces rows in the

weights matrix where only rivals have influence. We report the results for r = 1 below,

but our findings are robust to the choice of r.

We identify all of the defensive alliances that were in force at the onset of the war using

?, being careful to exclude alliances that were formed during the conflict. In total, there

were sixteen defensive alliances connecting eleven of the countries in our sample. We

code all of the rivalries, both proto-rivalries (short-term) and enduring ones, that existed

at the onset of the war using ?. Again, we do not include rivalries that emerged during the

conflict. At the onset of the war, there were thirty-one active rivalries involving twenty-six

of the states in our sample.

Following Radil et al., our dependent variable is the number of days before enter-

ing WWI. Of the 44 sample countries, half eventually joined the conflict. All the spa-

tial weights matrices are row-standardized. We include three important covariates in
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the analysis. National capabilities are the COW CINC index scores (Singer, Bremer and

Stuckey 1972); democracy is the Polity measure of regime type (Marshall and Jaggers

2002); and trade is the value of total trade in current US dollars (Barbieri 2002). We es-

timate the three types of models evaluated in our Monte Carlo: a non-spatial duration

model, a naı̈ve spatial model that treats the time the censoring as an observed failure

time, and our multiple imputation model. Based on the Monte Carlo results, we expect

the estimates from non-spatial duration model to overstate the effects of the covariates on

war joining. This is particularly true for variables such as national capabilities that cluster

among states that are linked by the mechanisms or ”vectors” through which conflict dif-

fuses. For example, national capabilities in our sample are more than twice as high among

the states that are connected by alliance networks. Additionally, because the naı̈ve spatial

model fails to account for right-censoring, we expect its estimates to understate both the

strength of interdependence and as well as the direct effects (i.e., those prior to any spatial

or network feedback) of the covariates on war joining.

We report the results in Table ?. Some clear patterns emerge. First, among the covari-

ates, national capabilities is the only one that has a robust statistically significant effect

on the war-participation timing of states. Military power is associated with early entry

into the war. Second, among the spatial lags, only the rivalry and alliance lags are sta-

tistically significant. We do not find that geography matters for the participation timing

decisions of states. This may seem surprising at first; however, the simple fact that this

was a world war means that geography was less significant than would otherwise be the

case. For WWI, military power, rivalry, and alliances were more important determinants

of participation than a state’s geographical location.4

When we compare the estimators, we find very similar patterns to those in the Monte

4This is true whether we use an inverse distance or contiguity spatial weights matrix, once we control
for national capabilities and trade. The contiguity spatial lag is significant in a model without these two
covariates.

18



Carlo experiments. Focusing on national capabilities, we see that the estimated coeffi-

cient from the non-spatial duration model is much larger than the estimates from the

other models. The difference is particularly stark when we use the alliance weights ma-

trix (national capabilities and alliance membership are strongly correlated) and cannot be

explained by the fact that the spatial model decomposes the total effect of national capa-

bilities into a direct effect and an indirect effect through spatial feedback. If we calculate

the spatial multipliers from our imputation model, (I− ρW)−1, we find that for the de-

fensive alliance weights matrix the average multiplier is 1.05 and the maximum is 1.29.

Inflating the direct effect estimates by these multipliers gives 1.05×−18.91 = −19.86 and

1.29 × −18.91 = −24.39. The estimated effect from the non-spatial model, -31.45, is 29%

larger than the maximum effect from the alliance spatial model and 58% larger than the

average effect. Additionally, the naı̈ve spatial model underestimates the direct effect of

national capabilities as well the strength of interdependence relative to the imputation

model. Thus, as in our Monte Carlo, the estimates from the non-spatial duration model

seems to overstate the effect of national capabilities while the estimates from the naı̈ve

spatial model understate this effect.

To sum, our imputation approach to interdependent duration analysis leads to a more

accurate understanding of the diffusion of WWI. When compared with the non-spatial

and naı̈ve spatial approaches, ours produces more accurate estimates of the total effects

of covariates as well as, in the case of the naı̈ve spatial model, a better decomposition

into direct effects and interdependence-driven multipliers. We also believe our approach

improves on the implicit triads strategy in Melin and Koch and the network analysis in

Radil et al. for essentially the same reason: our method is the only one that allows for

complex interdependence and addresses the right-censoring problem.
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Conclusion

Interdependent duration processes are common in politics and other strategic settings.

The time to an event for one actor often depends on the time to that same event for oth-

ers. For example, the time it takes states to enter wars, alliances, and international orga-

nizations depends on the time it takes other states to make these decisions. The entry and

exit decisions of political candidates in electoral contests depend on the timing of their

opponents. If policies diffuse across countries, the time it takes one country to adopt a

particular policy depends on the adoption timing of other states. Simply put, politics and

strategic behavior generate duration interdependence across actors.

One challenge for studying interdependent durations in politics is that right censoring

prevents us from fully observe the consequences of this interdependence. Either the op-

portunity to take a particular action ends before such decisions are made, as with our war

joining illustration, or our studies end before the events of interest are observed. Unfor-

tunately, methods for analyzing interdependent duration processes are underdeveloped,

particularly when there is right-censoring. We have adapted Wei and Tanner’s imputation

algorithm for censored (nonspatial) data to models of spatially interdependent durations

and shown via Monte Carlo that this approach performs reasonably well and is preferable

to simply ignoring the censoring problem.

Much work remains to be done. First, our illustration suggests that imputation-based

estimation of spatial lag duration models with right-censored data may be sensitive to

distributional assumptions. Ideally, we would like to offer a semi-parametric approach

along the lines of Wei and Tanner. Their approach, sampling from a Kaplan-Meier esti-

mate of the distribution of residuals, hinges critically on the assumption that these resid-

uals are independent and identically distributed. We have not yet determined a feasible

way to sample from a distribution of spatially interdependent disturbances without mak-
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ing parametric assumptions. Second, we know that it is a bad idea to ignore the censor-

ing problem with spatial lag models, but perhaps ignoring the interdependence problem

is less problematic. We need to compare the performance of our model and estimator

against non-spatial models that address right-censoring in more traditional ways, but fail

to account for interdependence. Finally, we need to determine why our standard error

estimates are highly overconfident when the degree of censoring is high.
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A Example of Imputation Procedure



v̂1

v̂2

v̂3

v̂4


=



b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44





η1

η2

η3

η4


Say case 4 is not censored. We can write η4 = v̂4/b44.

Say case 3 is censored. We can write

v̂3 = b33η3 + b34η4,

η3 = (v̂3 − b34η4)/b33,

then multiply impute M standard normals η(m)
3 given that η(m)

3 ≥ η3.

Say case 2 is not censored. We can write η2 = (v̂2 − b23η3 − b24η4)/b22.

Say case 1 is censored. We can write

v̂1 = b11η1 + b12 − η2b13η3 + b14η4,

η1 = (v̂1 − b12η2 − b13η3 − b14η4)/b11,

then multiply impute M standard normals η(m)
1 given that η(m)

1 ≥ η1.

B Detailed Monte Carlo Results
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Figure 1: Average Proportion of Censored Cases by Spatial Correlation and Censoring
Point
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Notes: Results represent averages across 500 simulations, excluding cases for which the
EM algorithm did not converge within 100 iterations. EM algorithm performed with 15
imputations.
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Figure 2: Proportion of Draws that Converged by Spatial Correlation and Censoring Point
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Notes: Results from 500 simulations. EM algorithm performed with 15 imputations and
100 maximum iterations.
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Figure 3: Comparison of Standard Deviations and Standard Errors, varying the Amount
of Spatial Correlation and the Amount of Censoring
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Notes: Results represent the average across 500 simulations, excluding cases for which the
EM algorithm did not converge within 100 iterations. EM algorithm performed with 15
imputations. Standard errors represents the average value across the 500 iterations while
the standard deviation comes from the sampling distribution of the parameter estimates.
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Figure 4: Average Bias from EM Approach, Naı̈ve Duration Model, Naı̈ve Spatial Model,
and Uncensored Benchmark Spatial Duration Model, varying the Amount of Spatial Cor-
relation and the Amount of Censoring

Notes: Results represent the average deviation from the true parameter value across 500
simulations, excluding cases for which the EM algorithm did not converge within 100
iterations. EM algorithm performed with 15 imputations. Duration coefficients estimated
in time to failure format.
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Figure 5: Comparison of Root Mean Standard Errors from EM Approach, Naı̈ve Dura-
tion Model, and Uncensored Benchmark Spatial Duration Model, varying the Amount of
Spatial Correlation and the Amount of Censoring
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Notes: Results represent the average across 500 simulations, excluding cases for which the
EM algorithm did not converge within 100 iterations. EM algorithm performed with 15
imputations. RMSE2(θ̂) = (θ̂ − θ0)

2 + V ar(θ̂).
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