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1 Introduction
One critical element influencing the policy choices that governments make is the set of choices

made by other peer governments. A considerable amount of scholarship demonstrates the pro-

cesses by which policies diffuse across national and subnational boundaries (for a review, see

Shipan and Volden 2012). For instance, trade liberalization policy (Meseguer 2006), hospital fi-

nance policy (Gilardi, Füglister and Luyet 2009), and even armed conflict (Most and Starr 1980)

have been shown to disseminate from country to country. Moreover, the institution of federalism

provides an ideal environment for such processes by encouraging member governments to learn

from one another. The American states represent an important example of such an environment

(e.g., Walker 1969; Gray 1973; Berry and Berry 1990; Shipan and Volden 2006; Boushey 2010).

Due to myriad competitive, cooperative, and imitative forces, policy innovations regularly

spread throughout the American states. This notion has informed decades of research on policy

adoption, while more recent work has moved beyond the foundational monadic models of policy

adoption to characterize policy diffusion as a mixed process of independent adoption and dyadic

emulation (Volden 2006; Boehmke 2009).1

Although theory on policy diffusion is well developed, empirical operationalizations of diffu-

sion pathways remain rudimentary. Empirically, diffusion ties are nearly always assumed to exist

exclusively between geographically contiguous states. Equating geographic contiguity with a dif-

fusion connection is a reasonable starting point in operationalizing a state-to-state policy diffusion

network. In order to keep residents who could easily relocate without substantial disruption to the

rest of their lives, neighboring states regularly compete when establishing public policy. Contigu-

ity emphasizes economic forces. For example, the policies in neighboring states might facilitate

1Note that the term “dyadic” in our general discussion refers to pairs of states, as it relates to the

network analytic understanding of the term. However, “dyadic EHA models,” which commonly

appear in this literature, refer to event history models in which the dependent variable measures

whether one state moves policy toward or away from every other previously adopting state.
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movement by people to buy lottery tickets (Berry and Baybeck 2005) or to move for more generous

welfare benefits (e.g., Volden 2002). Neighbors also cooperate to assure regional consistency in

policy regimes. Experience with policy in neighboring states by citizens can lead to public opinion

spillover effects (Pacheco 2012). And, of course, neighbors have unrivaled access to each others’

policymaking environments. For all of these reasons and more, it makes sense that scholars would

use geographic contiguity as a proxy for the presence of an influence tie between states. As con-

firmation of this measurement decision, several studies have shown that the likelihood of a state

adopting a novel policy increases with the number of its neighbors that have previously adopted

(see, e.g., Berry and Berry 1990; Mooney 2001; Shipan and Volden 2006).

Despite the focus in the literature on geographic contiguity, diffusion ties regularly form be-

tween states dispersed throughout the country. For example, California is considered both a prolific

policy innovator in general (Volden 2006) and a leader in energy and environmental policy specif-

ically (Ghanadan and Koomey 2005). The states of New Jersey and Maryland have both recently

implemented policies explicitly modeled after energy and emissions policies in California (Nuss-

baum 2007; Wagner 2007). This represents a coast-to-coast instance of diffusion that would not be

captured via contiguity. Several non-geographic forces facilitate diffusion, such as social learning

or comparison to peer networks or states facing similar policy problems.

Recently, scholars have begun to look anew for broader forms of policy diffusion by exam-

ining, for example, whether states emulate the policies of states that have proven successful in

addressing the underlying policy problem. Most prominent in this line of work is Volden’s (2006)

introduction of dyadic event history analysis. This modeling approach adheres to the assumption in

Gray’s (1973) model of state policy diffusion that policymakers across the states are “completely

intermixed” (1176), meaning that all current adopters of a policy have the potential to influence

all states that have not yet adopted. In dyadic event history analysis, the characteristics of both

adopters and non-adopters are used to model implicit diffusion via sequential policy adoption.

Simultaneously, scholars have returned to exploiting information on the timing of policy adop-

tions across samples of policies. This broadens our ability to learn about policy innovativeness and
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diffusion by moving from policy-specific results to learning about consistent trends across large

databases of policies (e.g., Nicholson-Crotty 2009; Boushey 2010) and states (Boehmke and Skin-

ner 2012b). The availability of such extensive data opens the door to evaluating proposed diffusion

ties more broadly. If we think of a diffusion tie as linking two states across which policy inno-

vations commonly diffuse in sequence, then a state should be more likely to adopt a given policy

once the states to which it has tied have adopted that policy. We are not the first to have postulated

that diffusion patterns could be represented as a network. In discussing possible extensions to her

model in which every state influences every other state, Gray (1973, 1176) noted that:

More elaborate models could be constructed. . . in which there is incomplete mixing of

the population, e.g., regional or professional communication networks may produce

distinctive diffusion patterns.

Following this line of reasoning, we argue that patterns in policy diffusion can be used to infer

the network such that states become increasingly likely to adopt a policy as more of the states to

which they are connected (via diffusion pathways) adopt that policy. This conjecture underpins the

core objective of the current research; we use data on policy diffusions to directly infer the latent

diffusion network connecting the states. This latent network provides the first (to our knowledge)

measure of state-to-state policy diffusion influence. We show that the introduction of this latent

network represents a critical advancement in the study of policy diffusion. Indeed, seminal works

in this literature have alluded to, but never measured, the network we infer (e.g., Walker 1969; Gray

1973; Berry and Berry 1990). Moreover, while we focus on state policy diffusion, the technology

we use for network inference has applications in a variety of settings in political science.

In what follows we demonstrate the significance of our policy diffusion network in detail. We

first describe our method for constructing the network: a recently developed machine learning

algorithm that can be used to infer a latent diffusion network from data consisting of binary dif-

fusion “cascades.” Next we present our application of diffusion network inference to state policy

adoptions. Then we illustrate the use of the inferred diffusion network in conventional monadic
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policy adoption studies. Finally, we present an analysis of the factors that predict the formation of

diffusion ties between states.

2 Diffusion Network Inference with State Policy Adoption Data
Gomez-Rodriguez, Leskovec and Krause (2010) consider the problem of inferring latent dif-

fusion pathways connecting units (e.g., states or countries) based only on data recording the times

at which those units adopted or were infected with some attribute (e.g., a policy), over several at-

tributes. Two examples are data on when a collection of people fell ill over several ailments or data

on when news websites reported a given story over several stories. These cascades, as they are

termed, may record the operation of a hidden diffusion network connecting the units under study.

Information on policy adoption for several states or countries and several policies also constitutes

data of this type. Here we use Gomez-Rodriguez, Leskovec and Krause’s (2010) latent network

inference algorithm, called NetInf, to infer policy diffusion networks connecting the American

states.

The NetInf algorithm is derived and described in detail in the online appendix. Here we give

a broad overview of its major steps. The inferential task addressed by NetInf is the identification

of a latent, directed network (i.e., each tie has a sender and a receiver) that can be used to explain a

dataset with several cascades, where each cascade is a recording of when units (e.g., states) exhib-

ited some dichotomous attribute (e.g., a policy adoption). Each cascade is stylistically represented

as a tree, in which there is a branch for each diffusion instance whereby the attribute (e.g., policy)

spreads from the origin (i.e., sender) of the branch to the destination (i.e., receiver). The network

being inferred constrains the trees that can be used to construct the cascade such that only edges

in the network can be used to construct the trees. The network is tied to the set of cascades in that

the algorithm will attempt to find edges that can be used in trees to explain many cascades. The

structure of this algorithm actually fits quite closely with Walker’s (1969) description of the ideal

way to represent state-to-state policy diffusion:

At the top of the tree would be a set of pioneering states which would be linked together
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in a national system of emulation and competition. The rest of the states would be

sorted out along branches of the tree according to the pioneer, or set of pioneers, from

which they take their principal cues (892–893).

Here we apply NetInf to a moving window of policy adoptions on the 187 policies included

in the database introduced by Boehmke and Skinner (2012b) to infer an evolving state-to-state

policy diffusion network for the years 1960–2009. Before presenting our application further, we

define some useful terminology. We infer a different network in each year (t). The diffusion ties

(i.e., edges) that we infer are directed, identifying for each pair of states (i, j), whether policies

diffuse from i to j, from j to i, both, or neither. For a directed edge i→ j, which indicates that

policies diffuse from i to j, we refer to i as the source. Thus, if the edge i→ j exists in the network

at time t, then we say i is one of j’s sources at time t.

2.1 Network Inference over Time

Our approach permits the structure of diffusion pathways vary over time. There are many ways

we could divide the data in order to use NetInf to infer a different network for each year. We

base our approach on how the networks and measures computed on them would likely be used in

future research. We expect, and later suggest, that scholars will use the diffusion networks in the

same way they use geographic neighbors in statistical models of the adoption of new policies. That

is, statistical models will use the number of state s’s sources that have adopted the policy prior to t

to predict whether s will adopt that policy at time t.

To avoid endogeneity in the use of the network at t to predict adoption at t, we specify our

time-varying network inference to assure that only policy adoptions prior to time t are used to

inform the structure of the diffusion network at time t. An edge from i to j at t can be interpreted

as indicating that the policy has frequently spread from j to i in the period immediately preceding

t. This way, we can be certain that a state’s policy adoption at time t is not used, via the inferred

network, to predict that same policy adoption at time t. Below we address the question of how

many years preceding t should be used to infer the network for time t.2

2There may be concern that we infer one diffusion network at each time point, which models
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2.2 NetInf Parameter Tuning

We set three parameters in the network inference procedure. First, we need to define the number

of preceding years of adoptions (denoted k) that will be used to infer the network for time t. Second,

we need to define the number of edges (E) we want to infer in each time period. Third, we need

to tune a rate parameter λ of the exponential distribution used by NetInf to calibrate how long it

takes for policies to diffuse from one state to another. A policy can only diffuse from i to j if there

is an edge from i to j in the inferred network. The exponential distribution gives the distribution

of diffusion times between states, provided that there is an edge connecting them. Higher rates

place a higher penalty on the addition of edges to the network along which it takes a long time for

policies to diffuse. This prevents any given adoption by one state that happens to fall later in time

than adoption by another state from contributing to the formation of a tie between the two states.

We take a data-driven approach to finding optimal values of these parameters. We use the

conventional discrete-time event history modeling methodology to evaluate the performance of

the network in predicting future adoptions measured at different parameterizations. For each

unique combination of parameters {k,E,λ}, we fit a pooled (across all policies in the data) logistic

discrete-time event history model predicting policy adoption. The model contains three classes of

regressors. For state s still in the data at time t for policy p, the regressors are:

1. States Adopting: The number of other states that have adopted by time t−1,

2. Sources Adopting: In a network inferred on all adoptions between t−k and t−1, the number

of s’s sources in the network that have adopted p.

3. Policy Area: A dummy variable that models the unique rate of adoption for each policy.

the diffusion of all policy adoptions within the respective time window. Indeed, some types of

policies may diffuse in systematically different patterns than do other types of policies. In the

online appendix we present diagnostics to evaluate whether there exist multiple classes of policies

that systematically affect the ties inferred in the diffusion networks. We find very strong evidence

that there are not multiple classes of diffusion patterns in our dataset of policies.
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In this design, all of the adoptions used to infer the network used to predict adoptions at time

t occurred prior to t. We use a simple grid search to find best-fitting values of {k,E,λ}. We

search over λ ∈ {0.125, .25, .5,1}, which corresponds to mean diffusion times of 8, 4, 2, and

1 years, respectively, k ∈ {5,10, . . . ,50}, and E ∈ {100,200, . . . ,1000}. We use the Bayesian

Information Criterion (BIC) to evaluate the fit of each combination of parameters and search for

the combination of parameters that best fits the data (i.e., results in the lowest BIC). The network

that results in the best predictive fit, across all values of λ is one with 300 edges and defined over

35 years of policy adoptions.3 The fit is not particularly sensitive to the rate parameter, but the

network using a rate of 0.5 results in the best fit. This means that policies diffuse, on average, in

two years. An average of approximately 1900 adoption instances over an average of approximately

120 policies is used to infer the network for each year.4

3 Descriptive Analysis of the Policy Diffusion Network
In this section we conduct descriptive and exploratory analyses of the networks we have in-

ferred to evaluate their structures. First, we demonstrate that the network is quite distinct from

a set of relations recording geographic contiguity. Second, we summarize the outgoing and in-

coming diffusion ties of each state over five-year periods. Third, we provide an external empirical

validation of the network by comparing it to newspaper reports of state-to-state emulation during

the same time period.

3.1 Geographic Contiguity

The first descriptive feature of the diffusion networks that we consider is whether they are

accurately approximated by a network of geographic contiguity relations among states. Figure 1

plots the percentage of contiguity relations between states that are identified as diffusion ties (black

3We also use a network based on 400 edges and 10-year periods for use in one application to a

policy adoption model (see below).
4The online appendix presents the complete model fit results from the grid search over NetInf

parameters as well as the number of adoption instances and policies used for each network-year.

7



line) and the percentage of inferred diffusion ties that are between contiguous states (gray line).

Both of these percentages hover between ten and twenty percent between 1960 and 2009. This

indicates that the overwhelming majority of policy diffusion relations exist between states that

are not geographically contiguous. Therefore, although geographic contiguity represents a good

first start, ties between neighboring states do not comprise a comprehensive proxy for the policy

diffusion network.

[Insert Figure 1 here]

3.2 State-Level Activity in Diffusion Pathways

Ranking states based on their innovativeness is a research problem that dates back at least to

Walker (1969). We now present the top 15 states based on the number of states to which they

send diffusion ties (Table 1) over five-year periods. In their time-aggregated measures of policy

innovativeness, Walker (1969) and Boehmke and Skinner (2012b) find {CA, NJ, OR, NY, CT} and

{CA, NJ, IL, NY, OR} to be the top five states, respectively. Many of these states are at the top of

our list in each five year period. In terms of leading policy innovators, the state that emerges in our

analysis as an outlier with respect to previous rankings is Florida. Walker (1969) and Boehmke

and Skinner (2012b) rank Florida as 13th and 12th, respectively, whereas we find Florida to be in

the top five for nearly every five year period, and at the top of the list for a decade.

[Insert Table 1 here]

To venture an explanation as to why Florida emerges as an innovator in our analysis, but not

in previous studies, we present Table 2, which breaks down both how often each of the three top

innovators (New York, California, and Florida) were first adopters, and also how often the other

two did not adopt. We see from this table that, even though Florida is the least frequent first adopter

among the three, the policies for which it is the first adopter are, at a very high rate, never adopted

by New York or California. Thus, although Florida does not stand out as a notably frequent first

adopter, it is often placed at the root of cascade trees because other frequent adopters are not
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innovators in policy areas led by Florida. This inference regarding Florida highlights a primary

strength of NetInf : a state will not be deemed innovative based solely on the speed with which

it adopts policies. Rather, a state is deemed innovative if its adoption serves to explain adoptions

by other states that cannot be explained with reference to other early adopters.

[Insert Table 2 here]

3.3 Media-based Validation of the Policy Diffusion Networks

We have not yet connected the diffusion ties we have inferred with any real-world instances of

state-to-state policy emulation. Given the high profile status of several areas in state law, selected

major policy decisions at the state level are afforded in-depth press coverage (Tan and Weaver

2009). As we show below, newspaper articles often indicate when a substantial portion of a state

law has been modeled after another state’s policy. We identified accounts of policy emulation

in journalistic coverage of state policymaking by searching LexisNexis Academic for newspaper

articles containing the phrase, “modeled after a/an ∗∗∗”, where “∗∗∗” was the name of a state, for

all fifty states. LexisNexis covers newspaper articles going back to 1981. From the search results

we derived a count of the number of stories that report the emulation of each states’ policies. These

documented instances of policy emulation can serve as the basis for a qualitative validation test for

the inferred networks. If the news media accurately reports some (possibly biased) sample of actual

policy emulation instances, then we should observe a positive association between the number of

diffusion ties sent by a state and the number of media reports of that state being emulated by others.

Figure 2 depicts the bivariate relationship between the number of emulation stories identified

and the average number of ties sent by each state in the inferred diffusion network, averaged

over 1981–2009. On the linear scale, we find a strong correlation of r = 0.70. However, two

outliers—New York and California—have approximately twice as many emulation stories as any

other state, so we also consider the correlation on the log-scale, which produces a slightly more

moderate correlation of 0.497. Both the Pearson’s correlation coefficient and Spearman’s rank-

based correlation reach statistical significant at the 0.01 level. The positive relationship between
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emulation reports in the media and average ties sent in the inferred diffusion networks indicates

that the diffusion relationships we identify align with in-depth journalistic accounts of state-to-state

policy diffusion.

[Insert Figure 2 here]

4 Applying the Inferred Network to Models of Policy Diffusion
Most policy diffusion studies examine the influence of state-level features on the adoption of

new policies as well as the influence states have on one another, primarily via contiguity relations.

Having estimated networks of policy diffusion across the fifty states, our data provide a novel

opportunity to account for cross-state dependencies in policy adoption studies. In this section

we apply the inferred policy diffusion networks to published empirical analyses of diffusion for

four separate policies: lotteries (Berry and Berry 1990), Indian gaming (Boehmke 2005), capital

punishment (Boehmke 2005), and restaurant smoking bans (Shipan and Volden 2006).5

Two primary contributions come from our application of the inferred diffusion networks to

models of policy adoption. First, we illustrate how the diffusion networks can be integrated into

conventional adoption models and demonstrate that their use improves the performance of those

models. The second contribution stems from the fact that NetInf does not condition on covari-

ates, making it possible that the ties inferred by NetInf arise from some underlying covariates

that induce regular patterns of policy diffusion. By observing whether the use of the inferred

networks improves models of policy adoption, we test whether the inferred ties are simply an arti-

fact of the covariates already known to influence policy adoption, or if our diffusion networks are

substantively important for diffusion models.6

5Specifically, we replicate the following models: Berry and Berry (1990, 409), Table 1, model

1; Boehmke (2005, 85 and 89), Tables 4.2 and 4.4; Shipan and Volden (2006, 839), Table 3, model

9.
6We validated this characteristic of NetInf with a simulation experiment in which we gener-

ated policy adoption data based solely on state covariates. NetInf produced network estimates

10



In addition to these policy-specific event history analysis (EHA) models we replicate Boehmke

and Skinner’s (2012a) “pooled event history analysis” (PEHA) model by combining data on 151

different policies diffusing over the period 1960–1999 (see also Boehmke 2009). This approach

stacks the data from different policies and estimates a unified model with a common set of inde-

pendent variables (including state, year, and policy fixed effects). Pooling the data does result in

fewer independent variables than for any single policy, but it provides insight into what factors

affect diffusion most broadly across the issue spectrum of American politics. We show below that

information from our inferred diffusion networks is one of those factors.

4.1 Model Details

We focus on these five models for several reasons. First, the four policy-specific models repre-

sent a wide variety of policies, and by definition the pooled model represents an even wider range.

This provides the opportunity to examine whether the diffusion networks we infer have a broad

or narrow, policy-specific impact on adoption. Second, the original studies presenting the policy-

specific models are well-known in the policy diffusion literature, having each garnered at least 50

citations according to Google Scholar.7 Finally, the models all use similar EHA empirical specifi-

cations, enhancing comparability. The dependent variable in each is coded “1” if a state adopted

the policy in a given year and “0” otherwise, with states that have already adopted dropping out of

the data beginning in the year after adoption.8

The theoretical frameworks behind our replication models each have their own unique charac-

teristics. To conserve space, we refer readers to the original studies for detailed discussions of each

that were consistent with patterns in covariate values, which indicates that consistent effects of

covariates can give the appearance of diffusion ties between states.
7In fact, Berry and Berry (1990) is included on the “high impact” list of most influential articles

appearing in the American Political Science Review (Sigelman 2006).
8The Berry and Berry (1990) and Boehmke (2005) models are estimated with probit and the

Shipan and Volden (2006) and Boehmke and Skinner (2012a) models are estimated with logistic

regression.
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one. We focus here on comparing the effect of the diffusion network on adoption to that of a factor

that consistently appears in these models: the influence of geographic contiguity. Nearly all studies

of policy diffusion include in their models either the number of or percentage of neighboring states

that have previously adopted the policy. The expectation for this variable is that, due to economic

competition and/or policy learning, as more neighbors adopt, the probability of a state adopting

increases (see, for example, Berry and Berry 1990, 403–404; Boehmke 2005, chapter 4; Shipan

and Volden 2006, 828).

While the role of economic competition is likely limited to neighboring states, it is not nec-

essarily the case that states can only learn from states with whom they share a border. Indeed,

Berry and Berry (1990) point out that there are many plausible means of state-to-state influence,

including shared borders, a shared region, or even shared culture. As with the quotes from Walker

(1969) and Gray (1973) given above, this discussion—found in a seminal study from the state pol-

icy diffusion literature—suggests that it would be useful to have a measure of which states a state

tends to “follow” in policy adoption. With information on “predesignated leader states” in regions,

the authors “would hypothesize that a state’s probability of adopting a lottery increases after one

or more states with a reputation as a leader within its region adopt it” (Berry and Berry 1990, 403).

However, the authors go on to acknowledge that they have no means of measuring this concept

because there are no “reliable data about which states are perceived. . . to be regional leaders in a

policy area” (Berry and Berry 1990, 403).

4.1.1 Including Network Information

Our inferred policy diffusion networks provide those data that previous scholars of policy dif-

fusion have not had available. In fact, beyond simply measuring regional leaders, the networks give

information on any state that tends to be a leader, or source, of policy innovation for another state.

In our replications we incorporate information from the estimated diffusion networks by creating

a variable on the same scale as Neighbors Adopting: the number of a state’s sources in a given

year that previously adopted the policy. We use the inferred networks to produce a list of states
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that influence the state in a specified time period immediately preceding a given year.9 This list

represents all of that state’s sources at that time. Next, to create the variable Sources Adopting we

count the number of states from that list that have previously adopted the policy.10 After creating

this variable, we then add it to each of the five replication models.11

4.1.2 Estimates and Model Fit

We first examine the extent to which the inclusion of Sources Adopting—instead of or in ad-

dition to Neighbors Adopting—improves model fit.12 Table 3 reports coefficient estimates and

standard errors for the two variables as well as model fit statistics for three specifications: (1)

the original model with Neighbors Adopting (plus the authors’ other covariates), (2) a model with

9As mentioned above, we constructed a version using 35-year periods and one with 10-year

periods. Results between the two are substantively similar. For each model we used the version

that produced the lowest AIC value. For all policies besides Indian gaming, we used the 35-year

version.
10This could also be computed as a percentage, as with studies that compute the percentage of

Neighbors Adopting (e.g., Shipan and Volden 2006). The two approaches represent very different

views on the diffusion process. The percentage measure specifies a diffusion process where the

non-adopting neighbors (sources) have just as much influence as the adopting neighbors (sources)

and the state ends up being pulled between the two. The count-based measure assumes that non-

adopting neighbors (sources) do not influence a state’s decision to adopt. We use a count measure

in all of our replications because it is the most commonly used in this literature.
11We include all policies in the construction of the networks used to produce Sources Adopting,

including the policy of interest in the EHA model. Recall from above that we avoid endogeneity

problems because we only use adoptions that occurred before a given year to measure the network

for that year. We also estimated the models after having removed the policy area of interest and

found results that are virtually identical to what we present below.
12The question of whether Sources Adopting should replace or complement Neighbors Adopting

is context-dependent. We focus on model fit here, but theoretical expectations should also be an

important guide.
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Sources Adopting substituted for Neighbors Adopting (plus the other covariates), and (3) a model

with both Neighbors Adopting and Sources Adopting (plus the other covariates). In all cases the

coefficients are positive (as expected), though statistical significance varies somewhat across spec-

ifications and replications. We assess the substantive impact of these effects in section 4.1.3.

[Insert Table 3 here]

To compare model fit we compute AIC, BIC, and cross-validated percent correctly classified.

We compute this last measure via leave-one-out cross-validation, which involves iteratively drop-

ping one observation, estimating the model, computing an expected probability from that model

for the left-out observation, then generating a predicted value of the dependent variable based on

a single draw from the Bernoulli distribution with that expected probability. We then compute

the percentage of the observations for which the prediction matches the actual dependent variable

value. Thus, unlike information-based measures of fit such as AIC and BIC, this measure assesses

each specification’s capacity to make out-of-sample predictions.13 In Table 3, the values in bold

indicate the best-fitting model according to each statistic.

The AIC and BIC values support the inclusion of Sources Adopting in all but the restaurant

smoking ban model, where the original model and the model with Sources Adopting produce AIC

and BIC values within 2 units of each other (indicating equal fit, see Burnham and Anderson

2002). The cross-validated percent correctly classified measure also generally supports the inclu-

sion of Sources Adopting. In four of the five replication models the percent correctly classified

in one or both models with Sources Adopting increases from the original model with Neighbors

Adopting (the restaurant smoking ban model is again the lone exception). These improvements

are somewhat small in magnitude—ranging from +1 to +3 percentage points across the different

models. Nonetheless, they consistently point to the models that include Sources Adopting in the

specification as the best fit.

13Cross-validation methods are common in other fields and have recently become more promi-

nent in political science (e.g., Ward, Greenhill and Bakke 2010).
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Overall, Table 3 provides good evidence that Sources Adopting can improve the fit of policy

diffusion EHA models, either in place of or in addition to Neighbors Adopting. Importantly, across

the five models, none of the fit statistics decisively selects the original model with Neighbors

Adopting as the better fit. Given this evidence that Sources Adopting is a useful addition to diffusion

models, our next step is to examine its substantive impact on policy adoption.

4.1.3 Marginal Effects

We examine the substantive implications of including Sources Adopting in Figure 3 by graphing

the average marginal effects of Neighbors Adopting (top row) and Sources Adopting (bottom row)

in each model on the probability scale.14 All estimates are computed from the specifications that

include either Neighbors Adopting or Sources Adopting.15

[Insert Figure 3 here]

The first point to note from Figure 3 is the effect of the count of Neighbors Adopting (lotteries,

Indian gaming, capital punishment, and pooled model) and percentage of Neighbors Adopting

(restaurant smoking bans) is positive. Consistent with the expectation that states react to economic

competition and/or policy learning, more neighboring states with the policy corresponds with an

increase in the probability of adoption. The magnitude and level of uncertainty varies somewhat

across the models, but the effect is consistently in the positive direction.

Moving to the bottom row of Figure 3, note that when substituted for Neighbors Adopting, the

effect of Sources Adopting is also positive in all five models; as the number of sources adopting the

policy increases, so too does probability of a state adopting the policy. From the minimum (0) to
14We employ the “observed value” method of Hanmer and Kalkan (2013) in these computations.

Rather than setting the other variables in the models to particular values (e.g., their means or

modes), we allow them to vary naturally over the observed values for every case in the data, then

compute the average expected probability for each observed value of Neighbors Adopting and

Sources Adopting, respectively.
15Results with both included in the same model are substantively similar (see the online ap-

pendix).
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the maximum (lotteries: 7, Indian gaming: 10, capital punishment: 10, restaurant smoking bans:

9, pooled model: 15) of Sources Adopting, the probability of adoption increases by the following

percentage points, on average: 24 (lotteries), 24 (Indian gaming), 48 (capital punishment), 15

(restaurant smoking bans), and 13 (pooled model). As with the effect of Neighbors Adopting, the

confidence intervals indicate varying degrees of uncertainty around these estimates.16 Nonetheless,

these graphs show that Sources Adopting exerts a substantively significant positive impact on the

probability of adoption across many different policies.

Moreover, these positive effects remain even after controlling for Neighbors Adopting (see the

online appendix). In short, these replication results show that information from our policy diffusion

networks can make a valuable contribution to policy adoption studies. We show examples from

four specific policy areas and a 151-policy pooled model in which states utilize a persistent set of

diffusion sources to guide their policymaking decisions.

5 Understanding the Inferred Network
Having demonstrated that accounting for previous adoption activity by source states in the

policy diffusion network improves a number of existing event history analyses of state policy

diffusion we now seek to evaluate the structure of this network through the lens of extant theoretical

expectations about the identities of leaders and followers. To do so we specify logit models to

explain source-recipient ties over the period 1960–2009.

Incomplete information underpins Walker’s (1969) theory of policy diffusion and much of the

subsequent research (e.g., May 1992; Mooney 2001; Volden 2006). States do not have the time or

resources to fully evaluate all possible policies solutions to their pressing policy problems. Walker

and others therefore suggest that states may act according to Simon’s (1976) concept of satisficing,

in which they attempt to identify policies that will improve their lot even if they may not constitute

16This is at least partially due to the fact that policy adoption models tend to have many indepen-

dent variables (the median is 19 in the four policy-specific replications). Each new variable adds

more overall error to the model, because each coefficient is estimated with uncertainty.
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the optimal policy. To accomplish this, states rely on a set of heuristics to identify policies for

possible adoption. Most importantly, states will look to the actions of other states as a source of

information. These may be neighboring states, states with similar characteristics and therefore

similar policy needs, or states with more extensive resources that act as leaders by investigating

new policies that have not yet been widely adopted.

We follow Walker’s (1969) slack resources approach to understanding states’ ability to in-

vestigate new policies or to learn about existing policies adopted by other states. He focuses on

population and income and argues that larger, wealthier states more often have the resources and

motivation to learn about policies on their own. To this we add the role of legislative profession-

alism, which diffusion scholars have more recently used as a measure of legislative capacity (see,

e.g., Shipan and Volden 2006).

Since previous EHA studies overwhelmingly focus on monadic policy diffusion, scholars typi-

cally estimate the effect of slack resources on policy adoption to test whether greater resources lead

states to adopt new polices faster. Because we seek to explain their effect on the diffusion network,

however, we have the opportunity to separate their distinct effects on leaders and followers. If

diffusion occurs according to an informational process, then the slack resources approach suggests

that states that score high on such resources will tend to be leaders since they can investigate poli-

cies on their own more thoroughly. This same logic also suggests that states with greater resources

can also process more information and consider policy solutions in more states simultaneously. We

therefore expect states with more resources to be more likely to a source, but also to identify other

states as sources.

Beyond resource effects, however, we also want to capture Walker’s idea of peer states. When

identifying sources, states may look beyond the wealthiest states to states that have similar char-

acteristics and whose choices may reflect more upon their specific circumstances. The identity of

peer states likely goes beyond the concepts connected to slack resources, however, so we also con-

sider the role of factors for which similarity may matter in and of itself. In particular, we consider

the similarity between states in terms of ideology and racial diversity. Ideology plays as crucial role

17



in the types of policies states seek to adopt. With incomplete information, then, states may look

to the policies adopted by ideologically similar states rather than to those of dissimilar states since

the former has a greater chance of providing a solution consistent with the preferences of its citi-

zens. A number of studies have demonstrated the important role that ideology plays in determining

whether a state will copy the policy adopted by another state (e.g., Grossback, Nicholson-Crotty

and Peterson 2004; Volden 2006; Volden, Ting and Carpenter 2008). We also consider the role

of racial and ethnic diversity. States with more heterogeneous populations face distinct policy

challenges so we expect that states will use diversity in defining their peer network.

The most studied concept of peer states remains the geographic-based one. While Walker

(1969) focused largely on regional clusters of states with a small number of them serving as leaders

within the cluster, more developed theories have emerged over the years. Many focus on the role

of contiguity explicitly, whether as a source of information transmission about public opinion

(Boehmke 2005; Pacheco 2012) or as a facilitator of cross border economic activity as citizens

search for desired goods or services (Berry and Baybeck 2005; Baybeck, Berry and Siegel 2011).

While contiguity remains the workhorse variable for interstate diffusion, we also want to leverage

the fact that our network considers the relationship between all pairs of states to examine the role

of geographic proximity above and beyond contiguity. To do this we include a measure of distance

between states’ capitals to test whether states have a regional tendency when determining their

peers.

In order to test for the effects of slack resources and similarity on the leader-follower relation-

ship, we include variables corresponding to each and enter them into our model in three ways. We

start with variables on total state population and income from the Bureau of Economic Affairs, leg-

islative professionalism from King (2000),17 Berry, Ringquist, Fording and Hanson’s (1998) state

citizen ideology measure (the revised 1960–2008 series) as well as partisan control of state govern-

ment from Klarner (2003),18 and racial diversity using Hero and Tolbert’s (1996) formula applied

17We use this instead of Squire’s (2007) measure because it goes back to the 1960s.
18These data come from http://www.indstate.edu/polisci/klarnerpolitics.htm.
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to Census data. For each variable, we include its value in the potential source state to model which

states tend to be emulated, its value in the potential recipient state to capture the tendency of states

to identify sources, and as a relative measure using either the absolute difference between the val-

ues in potential source and recipient states (for continuous variables) or the product of their values

(for the partisan control variables). We expect that the first three measures of slack resources have

positive effects; that the relative measures of ideology and diversity exert negative effects (since

larger values correspond to greater difference between the two states); and that shared borders and

geographic proximity have positive effects. Of course, similarity likely extends beyond ideology

and diversity, so we also expect that the absolute difference between these variables has a negative

effect. We have no specific expectation about the role of ideology on its own in the source or

recipient state.

In order to evaluate these predictions, we estimate a multi-level, over-time, logit model of the

diffusion network.19 In accordance with the structure of this network, each observation corre-

sponds to whether one state considers a second state as a source. We therefore have dyadic data,

which facilitates the inclusion of characteristics of each state separately as well as their relative

characteristics. In order to account for dependence between observations we include two (non-

nested) random effects: one for each state when it is the one choosing its peer network and another

when it is a potential source for other states. We also include, but do not report, a set of fixed ef-

19At this point it is prudent to emphasize how our analysis departs from Volden’s (2006) ap-

proach, because of important overlaps. The dependent variable that Volden (2006) uses is whether

a state A moves policy in the direction of state B’s policy at time t, for all combinations of A, B, and

t. This approach identifies policy specific emulation of B by A. Of course, if several states have

the same policy as B, Volden’s approach cannot determine which state A is emulating. In contrast,

NetInf searches for a network of edges that represent regular and reliable diffusion pathways

over many policies, meaning that our approach is capable of identifying the state(s) that A persis-

tently emulates. However, our approach is not capable of identifying policy-specific diffusion ties

between states—only ties that manifest consistently over many policies.
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fects for each year.20 Finally, recall that as we noted in the previous section the NetInf algorithm

does not condition on underlying covariates. As such, anything that would predispose two states to

prefer the same policies might induce the appearance of diffusion ties among them. Measures of

partisanship and political ideology would be chief among these common exposures when it comes

to policymaking, which suggests some initial caution in interpreting these results.

[Insert Table 4 here]

We report the results of this estimation in Table 4. Overall, these results indicate the importance

of slack resources, political similarity and geographic proximity. The results for slack resources

stand out as especially strong, with wealthier and more populous states more likely to serve as

sources and more likely to identify other states as sources. Further, we find strong evidence of a

similarity effect, with the larger absolute differences between states decreasing the probability of

each state choosing the other as a source. Interestingly, though, the results for legislative profes-

sionalism do not conform to this pattern. The effects for sources and recipients are not statistically

significant and the difference term has a positive effect, which is only significant according to the

parametric p-values, indicating that states rely more on states with different values of profession-

alism.

Our measure of citizen ideology also produces results consistent with expectations. In particu-

lar, the ideological distance has a negative and significant effect, indicating that states tend to find

sources more among ideologically similar states. We also find that more liberal states have fewer

sources and that liberal states tend to be sources less often, though the ideology of potential sources

20We recognize that network data may exhibit more complex dependencies than directed vertex

random effects (Ward, Siverson and Cao 2007; Cranmer and Desmarais 2011). As such, we used

quadratic assignment procedure (Krackardt 1987)—a permutation testing method designed for

network data—to replicate the hypothesis tests presented in Table 4. The QAP was run for 500

iterations. We use the variant of QAP in which the rows and columns of the adjacency-matrix-

valued dependent variable are permuted.
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does not have a significant effect. We find some evidence of ideological consistency with the gov-

ernment as well. Unified Democratic states have similar states as sources more often than states

with divided government, but the effect is only statistically significant according to the parametric

p-values. No effects emerge among unified Republican states.

In order to substantively interpret these coefficient estimates, we present a series of graphs

that translate them into expected probabilities that another state is chosen as a source. We first

examine the variables that have an absolute difference interpretation in Figure 4. To calculate these

probabilities we put every continuous variable at its mean value and every dichotomous variables

at its modal value in 1985, which lies about halfway between the beginning and end of our period

of analysis. We set the estimated random effects at their mean of zero, largely for convenience.

We then present partial effects for each of the five variables: one changing just the value in the

state seeking sources, one changing the value in potential sources, and one changing the absolute

difference between the two states.

[Insert Figure 4 here]

Consider first the top left graph for the effects of ideology. The baseline condition involves

citizen ideology at its mean value, represented by the vertical line. If we change its value in a state

choosing sources the probability of identifying another state as a source decreases when the state

becomes more liberal and increases when it becomes more conservative. A similar result appears

when we manipulate the ideology of the potential source state: more liberal states get chosen less

often and more conservative states more often. Of course, both of these manipulations would also

increase the ideological distance, which has a negative effect on source selection. The combined

effect of making the potential source more liberal would then lead to an even greater decrease

than either on its own. In contrast, the effect of making it more conservative would lead to a

decrease, though this effect would be less severe than the effect of distance on its own. In terms of

magnitude, the effects are large relative to the baseline probability that the hypothetical potential

source is chosen as a peer (about 15%). Indeed, the partial effects range from zero to about 30%

relative to the baseline.
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The other graphs show similar patterns for per capita income, population, and minority diver-

sity, though the magnitudes do differ quite a bit, with population showing very large effects for a

handful of large states and diversity producing a relatively small effect (note that the scales of the

graphs differ to enhance readability). Interestingly for all of the first four variables, the own state

effect appears largest, the similarity effect in the middle in three cases, and the potential source

state effect is the smallest. The results for legislative professionalism do not fit our expectations as

suggested by the coefficients and the pattern is completely different. We find these results puzzling

and hope to explore them in future work.

We interpret the other variables in Figure 5. We present these results differently given that

unified government control is binary and distance is relational only. Unified government control

does have an effect, but it appears to be quite small, generally less than one or two percentage

points. The biggest effects occur for same unified governments, with Democratic states most

likely to choose other Democratic states as sources, but Republican states less likely to choose

other Republican states. The bottom graph shows the effect of geographic distance and contiguity.

Increasing distance by a thousand miles leads to an approximately two and a half percentage point

drop in the probability of choosing a state as a source whereas contiguity leads to a minuscule

change once we account for distance—the small capped bar at the minimum of 40 miles represents

the estimated additional effect of contiguity.

[Insert Figure 5 here]

6 Conclusions
A considerable amount of research over the last fifty years examines the causes and conse-

quences of policies diffusing across national and subnational boundaries. However, until now

scholars have not had an ideal means of measuring the precise patterns though which policies are

expected to diffuse. Geographic contiguity is one important factor, but does not capture the com-

plete network of policy diffusion. In this paper, we employ a new methodology to infer such a

network from diffusion data.
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Using a recently compiled database of adoptions for over 150 state-level policies and a network

inference algorithm, we infer latent policy diffusion networks connecting the American states. We

offer three broad contributions related to the inferred networks. First, in contrast to common as-

sumptions in the literature on policy diffusion, we find that the overwhelming majority of diffusion

ties connect states that are not geographic neighbors.

Second, we show that the policy diffusion networks we infer stand to advance event history

analyses of policy adoption within specific policy areas. Through a series of replications of pre-

viously published diffusion models, we find that when a state’s policy diffusion network sources

adopt a policy, the likelihood of adoption in the future increases. The inclusion of a source adop-

tion variable improves model fit and its effect is statistically significant and generally comparable

in magnitude to adoption by contiguous states.

Third, we present modeling results that explain the ties in the inferred networks. This analysis

provides support for a number of theoretical perspectives on diffusion. Perhaps most interestingly,

the results highlight the role of internal capacity and pairwise similarity, which tend to dominate.

States with greater resources tend to have more peers, but all states favor other states that share

similar demographic and political features. We also find evidence of leadership, with larger and

wealthier states more often chosen as sources.

The current research opens the door to several future directions. First, and chief among them,

is extending the NetInf algorithm to simultaneously infer covariate-based commonalities in pol-

icy adoptions as well as the underlying diffusion network. This would present the opportunity to

clearly differentiate between diffusion ties and patterns that are attributable to covariates. A second

worthwhile extension of NetInf would be to incorporate whether policy innovations succeed or

fail by some metric, which would allow us to evaluate the degree to which diffusion depends upon

the result of the innovation. Third, our tracing of diffusion accounts in LexisNexis is rather limited,

but demonstrates the feasibility of defining diffusion networks through the broad-based analysis of

textual sources. Finally, though our work utilizes what is, to our knowledge, the most comprehen-

sive database of state policy adoptions currently available, there are many more policies that could
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be traced through the states. An expanded policy database would permit fine-grained inference of

policy-specific diffusion networks connecting the states and to identify possibly different structures

by policy type.

A final contribution of our analysis is the introduction of the NetInf technology to political

science. While we illustrate its applicability in the context of state policy adoption, it has potential

for use in other areas as well. For instance, diffusion studies are not limited to the states; several

works examine how policy travels across national boundaries as well (e.g., Most and Starr 1980;

Meseguer 2006; Gilardi, Füglister and Luyet 2009). Furthermore, the NetInf algorithm could be

useful for other areas of research with data that exhibit the “cascade” structure described here. This

might include how media sources pick up stories from each other (e.g., Hamilton 2011), how sup-

port for political candidates or the choice to participate in politics travels through citizens’ social

networks (e.g., Sinclair 2012; Makse and Sokhey 2013), or legislative cue-taking (e.g., Matthews

and Stimson 1975). Political science routinely confronts the fact that the individual decisions of a

collection of actors affect, and are affected by, other actors. We show here that inferring a network

reflecting those decisions can play a crucial role in understanding political processes.
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Figure 1: Comparison of Diffusion Relations with Geographic Contiguity
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Figure 2: Association Between Inferred Diffusion Ties and Media Reports of Emulation
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Figure 4: Estimated Substantive Effects of Absolute Difference Variables
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Note: The graphs present the effects of each variable on the probability scale using Model 2’s estimates.
All other variables are set to their mean (continuous variables) or mode (binary variables) in 1985 and
the random effects are set to zero.
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Figure 5: Estimated Substantive Effects of Selected Variables
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Note: The graphs present the effects of each variable on the probability scale using Model 2’s estimates.
All other variables are set to their mean (continuous variables) or mode (binary variables) and the
random effects are set to zero.
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Table 1: Top 15 States Based on the Total Number of Diffusion Ties Sent to Other States within
Five-Year Periods

Rank 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95–99 00–04 05–09

1 NY NY NY NY NY FL FL CA CA CA
2 KY KY FL FL FL NY NY CT CT CT
3 CA SC CO NJ NJ CA CA NJ FL NJ
4 MN AL RI MN MN MN CT FL WA FL
5 AL CO CT OR RI OR OR NY NJ WA
6 SC NM MN IL OR NJ MN MN IL IL
7 RI MN MI CO CO RI NJ OR MN MN
8 MI OH NJ AK CA CT CO WA AZ AZ
9 VT NJ NE NH AK AK OH LA IA LA

10 NJ WA PA RI IL IL RI CO NC IA
11 IL MI LA AR LA CO IL IA OR OH
12 WA RI AL CT MI ID AK AZ CO NC
13 MD MD OR MI CT MI LA NC HI CO
14 OH PA MD DE ID OH MI OH LA WI
15 MS VT AR MS PA KS ID ID OH UT
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Table 2: Top Innovators from the Inferred Diffusion Networks

FL NY CA First Adopter
FL – 7 5 13

NY 7 – 3 18
CA 6 14 – 24

The entry in row i, column j of the state× state elements
of this table gives the number of policies for which state
i was the first adopter and state j never adopted. The last
column gives the total number of policies for which state
i was the first adopter.
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Table 3: Estimates and Model Fit Statistics for Neighbors Adopting and Sources Adopting in the
Replication Models

Only Neighbors Only Neighbors and
(Original Model) Sources Sources

Berry and Berry (1990): Lotteries (Probit, N = 857)

Neighbors Adopting 0.27∗ 0.17
(0.09) (0.10)

Sources Adopting 0.29∗ 0.23∗

(0.09) (0.09)
AIC 195.12 191.02 190.24
BIC 233.15 229.05 233.02
CV % Correctly Classified 94% 96% 95%

Boehmke (2005): Indian Gaming (Probit, N = 364)

Neighbors Adopting 0.42∗ 0.42∗

(0.20) (0.21)
Sources Adopting 0.20+ 0.21+

(0.12) (0.13)
AIC 144.25 144.45 143.54
BIC 241.68 237.98 244.86
CV % Correctly Classified 89% 91% 90%

Boehmke (2005): Capital Punishment (Probit, N = 227)

Neighbors Adopting 0.16 0.14
(0.14) (0.14)

Sources Adopting 0.23∗ 0.22∗

(0.10) (0.10)
AIC 204.53 200.58 201.70
BIC 283.31 279.35 283.89
CV % Correctly Classified 75% 78% 78%

Shipan and Volden (2006): Restaurant Smoking Bans (Logit, N = 807)

% Neighbors Adopting 1.92∗ 1.54
(0.86) (0.95)

Sources Adopting 0.24+ 0.18
(0.14) (0.15)

AIC 248.57 249.36 249.02
BIC 328.36 329.14 333.50
CV % Correctly Classified 94% 93% 94%

151-Policy Pooled Model (Logit, N = 62,290)

Neighbors Adopting 0.22∗ 0.19∗

(0.02) (0.02)
Sources Adopting 0.13∗ 0.07∗

(0.02) (0.02)
AIC 17030.64 17087.50 17017.81
BIC 19263.41 19320.27 19259.62
CV % Correctly Classified 93% 93% 94%

Cell entries report coefficient estimates and standard errors (in parentheses) for Neighbors Adopting and Sources Adopting and AIC, BIC, and cross-
validated percent correctly classified values in three specifications of the replication models. All other variables from the original models are included,
but those estimates are not shown to conserve space. Numbers in bold identify the best-fitting model for each fit statistic. ∗ p < 0.05; + p < 0.10.
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Table 4: Multi-Level Logit Models of State Policy Diffusion Ties

Follower State Characteristics:
Citizen Ideology −0.013∗ (0.002)
Legislative Professionalism −0.012 (0.230)
Minority Diversity 0.538+ (0.233)
Per Capita Income 0.745+ (0.086)
Population 0.170∗ (0.011)
Unified Democratic Government 0.004 (0.035)
Unified Republican Government 0.020 (0.041)

Potential Source Characteristics:
Citizen Ideology −0.002 (0.001)
Legislative Professionalism −0.109 (0.216)
Minority Diversity 0.316 (0.187)
Per Capita Income 0.224∗ (0.076)
Population 0.031∗ (0.009)
Unified Democratic Government −0.060 (0.034)
Unified Republican Government −0.037 (0.039)

Relative Follower/Source Characteristics:
Contiguous 0.190+ (0.034) 0.021 (0.040)
Distance −0.263+ (0.017) −0.240∗ (0.020)
Citizen Ideology (Absolute Difference) −0.008∗ (0.001)
Legislative Professionalism (Absolute Difference) 0.429+ (0.134)
Minority Diversity (Absolute Difference) −0.180+ (0.104)
Per Capita Income (Absolute Difference) −0.442∗ (0.047)
Population (Absolute Difference) −0.038∗ (0.004)
Unified Democratic (Product) 0.125+ (0.046)
Unified Republican (Product) −0.125 (0.083)
Constant 0.217∗ (0.025) 0.230∗ (0.033)
σu1 (Follower Random Effect) 0.809+ (0.082) 0.828+ (0.089)
σu2 (Potential Source Random Effect) 0.217+ (0.025) 0.230+ (0.033)
N 122,500 94,080

Observations are dyadic. The dependent variable indicates whether potential source state is a source for a follower
state. We use the network 300 edges over 35 years of policy adoptions. + indicates statistical significance at the
0.05 level (two-tailed) according to just the parametric p-values from the multilevel logit.* indicates statistical
significance at the 0.05 level according to the QAP p-values and the parametric p-values. QAP p-values derived
from 500 network permutations.
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