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Abstract 
This paper analyzes the consequences of non-random sample selection for continuous-time 
duration analyses and develops a new estimator to correct for it when necessary. We conduct a 
series of Monte Carlo analyses that estimate common duration models as well as our proposed 
duration model with selection. These simulations show that ignoring sample selection issues can 
lead to biased parameter estimates, including the appearance of (non-existent) duration 
dependence. In addition, our proposed estimator is found to be superior in root mean square error 
terms when non-trivial amounts of selection are present. Finally, we provide an empirical 
application of our method by studying whether self-selectivity is a problem for studies of 
leaders’ survival during and following militarized conflicts. 
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Introduction 
 
 The study of the duration of events by political scientists has increased 

dramatically in recent years. This has lead to opportunities to test our theories in novel 

ways and has inspired new, more sophisticated theories that focus on the timing of 

political phenomena. Substantively, this has improved our understanding of a variety of 

topics including the lifespan of cabinets in parliamentary democracies, the length of 

international conflicts and partnerships, and the duration and timing of legislative policy 

adoptions. Statistically, the widespread application of duration models has garnered 

attention to a variety of statistical issues, many of which are unique to duration analyses.1 

 In a number of cases, political scientists have been able to develop solutions to 

problems unique to duration analyses. But in some cases, solutions have not yet been 

found. One such issue is non-random sample selection, which occurs when unobserved 

factors that affect the duration of an event also determine whether the event is observed at 

all. While solutions for sample selection in linear regression and discrete choice models 

have been developed and employed fruitfully in political science, these solutions are 

inappropriate for the study of duration data. Yet the same underlying processes that cause 

sample selection for continuous and binary outcomes can operate just as easily on 

duration outcomes. In many cases, some of which we discuss in the following section, 

political scientists express concern about the possibility of selection in their duration 

analyses, but have had to employ ad hoc fixes or put the problem aside. With no 

information about the consequences of ignoring non-random selection for duration 

analyses, it is impossible to know the implications of these decisions. 
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 In this paper we study the consequences of non-random sample selection for 

duration models and propose an estimator to test and correct for it. In particular, we focus 

on the effect of sample selection for one increasingly popular class of models: 

continuous-time duration models such as the exponential, Weibull, and Cox models. Our 

evidence indicates that the consequences of ignoring selection processes are just as 

serious for duration models as they are for standard regression models. Most importantly, 

we find that parameter estimates may be biased in an unknown direction, making 

conclusions drawn from them tenuous at best.  

 Our proposed solution to modeling sample selection is a full information 

maximum likelihood model that simultaneously estimates the duration and selection 

processes. This approach parallels the standard correction for sample selection in linear 

regression and discrete choice frameworks, but uses a more appropriate distribution that 

permits both exponential and Weibull durations. While the bivariate exponential 

distribution that we use allows us to derive appropriate duration models, it does have the 

limitation of not permitting maximal error correlation. Yet Monte Carlo analysis indicates 

that our proposed model is superior to standard duration models that do not account for 

selection even when the error correlation is outside its assumed range: the estimates are 

closer to the truth and have smaller root mean square error than standard duration models.  

We conclude this paper by using our model to explore how war participation affects the 

tenure of political leaders. 

Sample Selection and Duration Models 

 In this section we provide an overview of the problem of non-random sample 

selection in general, the problems it causes for continuous and binary choice models, and 
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discuss duration studies that may suffer from selection bias. Of course, we cannot know 

whether selection bias is a problem for the analyses discussed below.  Rather, we wish to 

highlight the variety of studies that might benefit from the ability to test and correct for it, 

including cases where authors have themselves raised the issue of selection bias but have 

not had a way to address it. 

 Selection bias has received a fair amount of attention in political science, 

particularly in recent years.2 While survey researchers have generally been in the 

forefront of this issue, international relations and comparative politics scholars have also 

begun to consider the effects of self-selectivity and strategic decisions on empirical 

models.3  Sample selection4 occurs when unobserved factors that influence the process of 

interest help determine whether that process is observed at all. When this happens, values 

of the dependent variable for uncensored observations are systematically unrepresentative 

of the population being studied.5 One can not even argue that the dependent variable is 

representative for the observed sample since selection induces unrepresentative values of 

the dependent variable, even after controlling for values of the independent variables. 

 This can be illustrated by an example: if a country’s leader has private 

information about his ability to quickly win a war, then this unobserved factor may make 

him more likely to initiate a war, and may also make his country more likely to win the 

war (Fearon 1995).6 Conducting an analysis of what determines victory in the sample of 

observed wars leads to inconsistent coefficient estimates under a broad range of 

circumstances. Selection bias can be avoided by estimating a model that accounts for the 

decision to enter a war while simultaneously estimating the factors that influence victory. 

In the example given, since winning a war may be treated as a discrete event, one would 
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estimate a probit-probit selection model for either censored (Dubin and Rivers 1990; 

Maddala 1983; Sartori 2003) or truncated data (Boehmke 2003; Maddala 1983).  

 Now consider the same example in a duration framework: rather than estimating a 

model of victory, one might wish to model the length of the war. In this situation, one 

would usually estimate any of a variety of duration models for discrete or continuous-

time data (Allison 1984; Box-Steffensmeier and Jones 1997, 2004). Yet these models do 

not account for the potential relationship between unobserved factors that influence the 

occurrence of war and unobserved factors that determine the length of war.7 If this is 

indeed the case, there are no standard models to control for the selection process when 

estimating the duration of war.8 

 We believe that there are many cases across the subfields of political science 

similar to the one just described. Examples from international relations include studies of 

the duration of security alliances (Bennett 1997) and the longevity of newly democratic 

regimes (Kadera, Crescenzi, and Shannon 2003). In comparative politics the literatures 

on cabinet formation (Martin and Vanberg 2003) and stability (King, Alt, Burns, and 

Laver 1990; Warwick and Easton 1992) raise questions about selection bias. Examples 

from American politics include studies of the time until appointment of political 

nominees (McCarty and Razaghian 1999; Shipan and Shannon 2003). All of these works 

study durations that are only observed for certain individuals, countries, or cabinets. One 

can easily imagine how unobserved factors influence both the observation and duration of 

the events under study. 

 Consider the case of cabinet formation. A variety of studies develop theories and 

empirical tests about which cabinets form, how long negotiations take, and how long the 
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resulting cabinets last.9 Most empirical studies of cabinets focus on one of these three 

steps, but theoretical arguments suggest unobserved factors that might affect cabinet 

formation and subsequent duration. As Laver (2002) argues, unobserved shocks should 

be measured in studies of cabinets, since all anticipated events are accounted for during 

formation. For example, public opinion shocks are central to Lupia and Strom’s (1995) 

theory of cabinet formation: in countries where only the current government can dissolve 

the legislature and call new elections, unanticipated and possibly unobserved opinion 

shocks can lead to renegotiation among coalition members, or to new elections that favor 

the formation of specific governments. Since the expected duration of these governments 

influences the timing of the elections and the specific government that forms, there may 

be a selection process at work.10 

 A related group of studies examine the duration of cabinet formation. Diermeier 

and van Roozendaal (1998) focus on the roles of uncertainty and private information for 

the negotiation of cabinets. These unobserved factors may influence the length of the 

bargaining process, since in some cases parties may extend the negotiation period to send 

a signal to other participants. This signal may influence both the outcome of negotiations 

and the duration of the subsequent government. Martin and Vanberg (2003, p.328 fn. 11) 

explicitly question the assumption that the unobserved factors are independent: 

One can easily imagine how this assumption may be violated – e.g., when 
personality conflicts between party leaders are important to both 
government termination and subsequent bargaining delay. To account for 
this, we would have to move away from standard censoring techniques 
and examine these processes jointly using a model of stochastic censoring 
(which would be interesting but beyond the scope of the present study). 
 

Martin and Vanberg are candid in their concern over how selection processes influence 

their study of cabinet negotiations. Yet the lack of appropriate statistical techniques 
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ultimately renders them unable to model the link between government termination and 

delay in cabinet bargaining.  

 We believe the literature on cabinet duration and negotiations, as well a multitude 

of other studies in political science, may benefit from a method that allows scholars to 

link selection processes to duration analyses. The studies described in this section analyze 

durations that are only observed after political leaders, organizations, or countries decide 

to take specific actions – actions that may reasonably depend on the subsequent duration. 

Our method, developed in the next section, allows researchers to directly account for the 

selection process and to obtain accurate estimates when it is a problem. 

A Duration Model With Selection 

 Following the logic of existing models for non-random sample selection, the best 

approach to obtaining accurate parameter estimates of duration in the face of selection is 

to simultaneously model both processes. This allows one to condition on the selection 

process when estimating the duration model. Thus, our proposed solution parallels the 

approach taken by Heckman (1976; 1979) for linear regression and Dubin and Rivers 

(1989) for logit and probit models. In this section we introduce our Full Information 

Maximum Likelihood (FIML) estimator for exponential and Weibull durations. Our 

estimator is similar to Prieger’s (2002) Flexible Parametric Selection (FPS) model, which 

uses a generalized bivariate distribution to bind together the selection and duration 

equations. Our estimator is based on a related distribution and shares many of the features 

of the FPS model for exponential and Weibull durations, including a similar limitation on 

the range of the error correlation. 
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 Our objective is to model a continuous duration outcome, iY , with associated 

density )( iYf . This outcome depends on a set of covariates by letting ε iiy )exp(- βxi= .11 

The selection process leads us to observe iY  only for observations for which the binary 

censoring variable ic  takes on the value 1. Modeling the duration process, then, requires 

us to account for the selection process by writing out the probability of uncensored and 

censored observations: )1,Pr( == cyY iii  and )0Pr( =ci . Rewriting the former as a 

conditional probability and combining the two pieces leads to the following likelihood 

function for all observations:12  

( ) ( ) .)0Pr( 01)()|1Pr()Pr(
1

∏
=

= =====
n

i
iii ci

ciciyfyYcicY,   

 The next step is to use specific distributions to calculate each of the probabilities. 

In the Heckman correction for continuous data, one would model )|1Pr( iii yYc ==  and 

)0Pr( =ic  with probit models and )( iyf  with a linear regression model. Since these 

models are inappropriate for duration data, we must substitute different distributions. In 

this paper we use a bivariate exponential distribution, as the univariate exponential is a 

common duration distribution and can be modified to allow for duration dependence in 

the form of the Weibull distribution. 

 There are different forms of the bivariate exponential model to choose from, each 

of which has benefits and drawbacks.13 We utilize one developed by Gumbel (1960) with 

the following joint and cumulative density functions: 

( )
( ).)exp(1))exp(1))(exp(1(),(
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The measure of association between the two variables x and y is given by 11 ≤≤ α- , and 

the error correlation is given by 4/α=ρ .  

 One limiting characteristic of this particular implementation of the bivariate 

exponential is the restriction 25.0|| ≤ρ . As we mentioned, other bivariate exponentials 

exist, but this one appears to provide the best combination of empirical appropriateness 

and generality. One particularly appealing feature is the allowance of both positive and 

negative correlation, which explicitly tests the hypothesis that sample selection is 

ignorable. While this is clearly a limitation of our estimator, others impose similar ones: 

Prieger’s FPS model with exponential duration limits 282.0|| ≤ρ  (Prieger 2002). Despite 

this shortcoming, we anticipate that even when ρ  is outside this range, our estimator 

may provide a better approximation to the truth than ignoring the problem altogether. 

Evidence from our particular Monte Carlo analysis is consistent with this expectation. 

 We now use this distribution to develop the discrete outcome models in our 

likelihood. We start with the marginal distribution of the censoring variable. This 

corresponds to a binary outcome model, much like logit or probit, but with the errors 

following an exponential distribution. We write this model as a function of systematic 

and stochastic components as follows:  

⎪⎩

⎪
⎨
⎧

>

≤
=

=

.1  if  1

1  if  0

;)exp(

*

*

*

i

i
i

ii

c

c
c

uic γw
 

We pick one as the threshold mainly for convenience and because the exponential is 

defined only for non-negative numbers.14 Using this model implies that the probability 
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that an observation is censored is given by Pr( 1)exp( ≤ui iγw ); since the error follows a 

standard exponential distribution this is given by F(1|exp(- γwi ))=1-exp(- )exp(- γwi ).  

 While an exponential discrete choice model may seem unusual, transforming it by 

taking logs puts it in a more familiar form: )ln()ln( * uic ii += γw . The transformed error 

term now follows a Type I extreme value distribution (Johnson and Kotz 1970); its cdf is 

similar to the standard normal cdf, though it is not symmetric. Monte Carlo results 

suggest that even if this equation is misspecified and the error term is (for example) 

normally distributed, the parameter estimates for the duration equation may be 

unaffected. Note that this approach permits the selection process to be based on either a 

single decision or the timing of that decision through a discrete-time duration model. 

 Now we derive the conditional probability that an observation is uncensored 

given its duration. Using the bivariate exponential distribution given above, the 

conditional cumulative density is: 

( ).)1))(exp(1)exp(2(1)exp(1)|( −−−−+−−== xyxyYxF α  

Substituting uic ii )exp(* γw=  and ε iiy )exp(- βxi= , and defining )exp(-1 γwii =λ  and 

)exp(2 βxi=iλ  we write 

( ).)1))(exp(1)exp(2(1)exp(1),|( 12121 −−−−+−−== iiiiiiiiiii uyuyuF λλαλλελ  

The probability that an observation is uncensored is one minus this quantity evaluated at 

1=iu . Lastly, we allow for right-censoring by calculating the joint probability that an 

observation selects in and has duration greater than the right censoring point, 0
iy :  

[ ].))exp(--))(1exp(--(11)exp(

),,|F(1,)|F(1-)|F(-1))exp(-,Pr(
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 Letting d i  be an indicator variable for whether an observed duration is right-

censored, we combine the components for uncensored observations with an observed 

failure time, uncensored observations that are right-censored, and censored observations 

to complete our exponential likelihood function. 

[ ]

[ ]
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 While the exponential duration model with selection may be useful for many 

applications, it does not allow for the possibility of duration dependence, which is a 

concern in many empirical applications. Yet with a simple modification we can derive the 

likelihood for the commonly utilized Weibull model.15 This is straightforward since if a 

variable u follows a Weibull distribution, then up (for p>0) follows an exponential 

distribution (Johnson and Kotz 1970).16 Using this fact, we can transform a Weibull 

variable into an exponential and substitute it into the bivariate exponential cumulative 

distribution function:  

( ).)exp(1))exp(1))(exp(1(),( yxyxyxF pp −−+−−−−= α  

The Weibull likelihood with right-censoring is then derived by repeating the same steps 

as for the exponential. 
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Monte Carlo Analysis of Naïve and FIML Duration Estimators 

 In this section we conduct Monte Carlo analysis to analyze the consequences of 

selection bias for standard duration models and to demonstrate the effectiveness of our 

proposed FIML correction. When the data are generated according to the assumptions of 

our model, we find commonly used duration models such as the exponential, Weibull, 

and Cox produce parameter estimates that are biased whereas those from our FIML 

estimator appear to be consistent. Further, even when we generate data from an alternate 

error distribution that allows correlation outside the assumed range, our FIML estimates 

are biased, but are still closer to the truth than those obtained from the naïve models. In 

both cases we find that our estimator always outperforms the alternatives in root mean 

square error terms when non-random selection is non-trivial. 

 We rely on Monte Carlo analysis to study these issues because even the simple 

exponential model does not produce a closed form solution for the coefficient estimates, 

making it impossible to analytically demonstrate the effect of selection on parameter 

estimates. When it is impossible to explicitly derive general results, Monte Carlo analysis 

allows us to study an estimator’s properties while controlling or manipulating other 

components (Mooney 1997). Of course, one should keep in mind that the conclusions 

depend on the set-up of the particular simulations. 

 For our Monte Carlo analysis we generate data according to an exponential 

duration model. We use the exponential duration model because it is the simplest and 

allows us to focus on the effects of selection without complicating the model by adding 

duration dependence. Also, popular models such as the Weibull and Cox include the 

exponential as a special case, which allows us to study how these more general models 
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fare on the same selected data and whether their estimates indicate that the exponential is, 

in fact, the correct model. The data are generated in accordance with the model presented 

in the previous section and use the bivariate exponential distribution to create continuous 

time duration data that are observed according to a discrete exponential censoring rule: 

.75.00exp
,1 if 1

,1 if 0

,15.0exp
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We assume that yi is observed if and only if ci=1.  

 To assess the performance of our estimator and its robustness to the limitation on 

the correlation parameter, we conduct two sets of simulations based on different error 

generating processes. The first set of simulations generates error terms from the assumed 

bivariate exponential distribution by taking independent and identically distributed draws 

from the bivariate uniform and then transforming them to exponentials (Devroye 1986). 

The second set of simulations assesses the performance of the model when the error 

correlation is outside its assumed range by taking draws from the bivariate normal with 

correlation ρ  and then transforming each to an exponential.17 As both simulations are 

run for 25.0|| ≤ρ , comparing the estimates in this range also assesses the robustness of 

our approach to the bivariate exponential assumption. 

 For our simulations we generate 5000 observations of our independent variables 

X and W, which we hold fixed for the entirety of the simulations.18 A single simulation 

consists of fixing the value of ρ , generating draws of the errors, calculating the values of 

ci and yi, then estimating the FIML exponential duration model with selection using all 

the data and the naïve duration models using only observations where ci is one, which 
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happens for about half of our observations.19 We save the resulting coefficients and 

standard errors and then repeat the process for different values of ρ .20 

 In practice, political scientists rarely estimate an exponential model due to its 

assumption of duration independence.  Many empirical processes are duration dependent, 

and ignoring duration dependence leads to inconsistent parameter estimates.  Thus, most 

studies estimate either a parametric model such as the Weibull, Gompertz, gamma or 

lognormal duration models, or a semi-parametric model such as the Cox, which estimates 

the coefficients without specifying a functional form for duration dependence (Box-

Steffensmeier and Jones 1997, 2004; Zorn 2000). To study whether and how selection 

affects these more general models, we also estimate the commonly used Weibull and Cox 

models on the same data.21 All models are estimated using robust standard errors. 

[Figure 1 here.] 

 Before moving on to a detailed evaluation of the Monte Carlo results, Figure 1 

presents a graphical depiction of the average parameter estimates. We omit the estimates 

from the exponential model as they are essentially equivalent to those from the Weibull 

model. The results for error correlations between -0.25 and 0.25 are from the simulation 

using the bivariate exponential distribution and the results outside those points are from 

the transformed bivariate normal error terms. The plotted values provide a simple 

demonstration of the bias that ignoring non-random sample selection introduces into 

parameter estimates. It also shows that our duration model with selection produces 

estimates that are at the correct values in the permitted range of correlation and closer to 

the true values outside that range. The next two tables provide additional evidence in 

favor of our FIML estimator. 
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 Table 1 presents the details of the average estimates for three parameters: the 

constant term, α ; the log of the duration dependence parameter, ln(p), from the Weibull 

model; and the estimated error correlation from our FIML estimator.22 Note that the Cox 

model does not estimate any of these parameters. Results are reported for both sets of 

simulations for selected values of ρ . In addition to average estimates and their standard 

deviations, we also report the Root Mean Squared Error (RMSE), which adds the 

variance to the squared bias and takes the square root.23  

[Table 1 here.] 

 It is immediately apparent from Table 1 that ignoring sample selection leads to 

biased estimates of both the constant term and the duration dependence parameter 

whenever there is non-zero correlation between the unobserved factors. The constants for 

the naïve models are biased in the opposite direction of the correlation whereas the 

duration dependence parameter is biased in the same direction as the correlation.24 

Because the original model contains no duration dependence, this suggests that sample 

selection can be added to heterogeneity as another cause of apparent duration 

dependence. Note that the bias is slightly greater for the simulations using the correct 

error distribution. 

 By comparison, the average estimates for the exponential duration model with 

selection show virtually no bias whenever the correlation is between –0.25 and 0.25, 

though the estimates using the alternate error distribution display increasing bias as the 

error correlation exceeds its assumed range. Because our estimator restricts the 

correlation, it is unable to fully correct for sample selection with large correlation.25 This 

is illustrated by the fact that while the average estimate of the error correlation is accurate 
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in the proper range, it is estimated at its boundaries in the second set of simulations when 

it is outside this range. Yet despite this limitation, the average estimates are still always 

closer to the truth than those from the naïve duration models, suggesting that our method 

provides more accurate estimates even when this assumption is not met. Since the true 

amount of correlation is never known in an empirical application, this result is important 

for demonstrating the benefits of our correction. 

 To better illustrate the superiority of our method, compare the RMSEs of the 

different models for the intercept term. Only when the correlation is zero do the naïve 

models have smaller RMSEs; once it is non-zero the RMSEs for our model are smaller 

for both sets of simulations. Further, the difference increases quickly, with the naïve 

models producing RMSEs that are two to three times as great even when the correlation 

is relatively small. 

 Table 2 shows the simulation results for β  and includes the estimates from the 

Cox model. The estimates from our FIML estimator appear to be consistent in the first set 

of simulations using the true error distribution. They are generally quite close to the truth 

using the alternate distribution when the correlation is in its assumed range. Some bias 

occurs near the bounds because the simulations will include errors with greater than 

assumed correlation. The bias becomes more pronounced once the error is outside its 

bounds. Again, the presence of non-zero correlation leads to biased estimates from the 

naïve models.26 Consider the results for the exponential and Weibull models. For both 

sets of simulations, the bias in the parameter estimate is in the direction of the correlation, 

though the bias appears to be slightly greater at comparable values of ρ  using the proper 
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error distribution.27  Note that the bias for these models is greater than for ours even when 

the error is outside its assumed range in the second set of simulations. 

 Comparing the standard deviations of the estimates shows that those from the 

naïve models are generally the same or slightly smaller than those from the FIML model. 

Combining these two by comparing the RMSEs, however, shows that our estimator 

strongly outperforms both the exponential and Weibull models:  the RMSEs for the naïve 

models increase quickly from equality when 05.0|| =ρ , to 34% when 20.0−=ρ , and to 

60% when 20.0=ρ  using the true error distribution. Similar results are obtained with the 

alternate error distribution, though the RMSE ratios start to decrease as the correlation 

approaches its bounds due to the bias in the results for our FIML model. 

[Table 2 here.] 

The results for the Cox model are different because it reports a hazard 

interpretation that combines the coefficient and the duration dependence parameter: 

pβ × . Since the Cox is a semi-parametric model that does not estimate p, we can not 

report results for β in isolation. Of course, the true value of p is one, so if the estimate is 

not biased then the estimates are comparable. Recall from the earlier results, however, 

that the Weibull model’s estimates of the duration dependence parameter are biased. 

Therefore any bias in the estimates from the Cox model will include biases in both β and 

p. 

 The average estimates using the correct error distribution show that the bias in the 

Cox model is greater and in the same direction as for the two naïve models. The bias is 

greater because the presence of positive duration dependence when the correlation is 

positive and negative duration dependence when it is negative pulls the estimate of pβ ×  
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further away from 0.75. In the second set of simulations, the Cox parameter estimates 

have similar bias, though it appears to be greater when the correlation is positive and 

smaller when it is negative. The differences in the estimates of duration dependence 

across the two sets of simulations account for the difference in the amount of bias in the 

Cox estimates. The RMSE comparison shows that for both sets of simulations, the Cox 

model is never preferred to our estimator, with RMSEs ranging from 10% to 300% 

greater.  

 In sum, our comparison of the duration model with selection to standard duration 

models offers strong evidence for our FIML estimator. Not only does it appear to provide 

consistent estimates when its assumptions are met, it also produces estimates that are 

closer to the truth even when using the alternate error distribution that allows for 

correlations outside the assumed range.28 In both cases, our model also produces smaller 

RMSEs whenever the correlation is non-negligible. 

Empirical Application: War and the Tenure of Leaders 

 Our Monte Carlo simulations show that ignoring non-random sample selection 

processes produces biased parameter estimates. In this section we demonstrate the 

potential consequences of ignoring sample selection by applying our correction to a 

political science question: does war influence the tenure of leaders? This investigation, in 

addition to our simulations, allows for a more complete understanding of how selection 

impacts duration analyses. 

 How might selection processes affect an analysis of war and leader duration? As 

discussed before, non-random selection causes bias if unmeasured factors that influence 

observation of an event are correlated with unmeasured factors in the equation of interest. 
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In a study of war and leader tenure, factors that affect a leader’s expected tenure after war 

initiation may also affect the leader’s decision to go to war.  For example, diversionary 

theory argues that leaders who are vulnerable to being removed from office are more 

likely to use aggressive foreign policies (DeRouen 1995; Ostrom and Job 1986).29 

Because measuring vulnerability is difficult at best (Miller 1999, 399), its effects are 

largely consigned to the error term.30 Diversionary theory therefore implies a negative 

correlation between expected post-crisis tenure and the decision to enter into a crisis. On 

the other hand, if only secure leaders enter into crises, we would expect a positive 

correlation between the error terms. 

 In the following analysis, we apply our FIML duration model with selection to 

Bueno de Mesquita and Siverson’s (1995) study of war and leader survival. We follow 

their study in constructing our duration analysis, but we also model the leader’s decision 

to get involved in a conflict. Since Bueno de Mesquita and Siverson use a Weibull 

duration model for their estimation, we report estimates from our Weibull duration model 

with selection. 

 We begin our investigation with the leader’s decision to go to war, which 

determines whether we observe a post-crisis tenure. To estimate the selection model, our 

analysis shifts from the usual dyadic level to the monadic level of observation. To this 

end, we employ the state leader-year as our unit of analysis. Our data for the selection 

model include all state leaders from 1919 to 1975. The dependent variable for the 

selection equation, Enter, is coded one if a leader went to war that year and zero 

otherwise.31  War is defined as involvement in any conflict with at least 1,000 battle-

related deaths, as reported by the Correlates of War project (Small and Singer 1982). 
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 To explore what influences a leader’s decision to go to war, we include state and 

individual level measures drawn from various sources in the selection equation. We 

examine the possible monadic effects of regime type (Haas 1965, Rummel 1983) with 

Democracy, an indicator variable constructed by using each state’s Polity IV score, where 

states scoring 6 and above are considered democratic (Marshall and Jaggers 2000). Major 

Power status is an indicator variable coded one if the state is a major power in the current 

year, using standard Correlates of War measures (Small and Singer 1982). Borders is the 

total number of countries that border the state in the given year, derived from the COW 

Direct Contiguity Data set, version 3.0. To control for neoliberal influences, we include 

the natural Log of Trade Openness, taken from Chiozza and Goemans (2003). 

 Modeling selection allows us to test additional hypotheses derived by Bueno de 

Mesquita and Siverson regarding leaders’ decisions to enter a crisis, as a significant 

component of their theory focuses on a leader’s decision to enter into war. Specifically, 

we test Bueno de Mesquita and Siverson’s sixth hypothesis: the longer an autocrat is in 

power, the more likely he is to go to war. To this end, we include an interaction term, 

Autocracy*Tenure, in our selection equation (along with the two main effects of 

Autocracy and Tenure).32 

 The second stage of our analysis examines the tenure of all state leaders who went 

to war between 1919 and 1975. We estimate a duration model of these leaders’ time in 

office using Bueno de Mesquita and Siverson’s (1995) heads of state data. The dependent 

variable in the duration equation is the leader’s Time in Office following crisis onset, 

measured in days.  Following Bueno de Mesquita and Siverson, we explain leader time in 

office using measures of Log Tenure, Battle Deaths, crisis Winner, and Log 
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Tenure*Democracy. We also include an indicator variable for Democracy, since it is part 

of an interaction term in the analysis.33 

 Table 3 presents the results of our two-staged FIML duration with selection model 

as well as results from the independent selection and duration models. Column 1 displays 

the probit results of the leader’s decision to enter a crisis; column 2 displays the results of 

the original Bueno de Mesquita and Siverson (1995) Weibull model for our smaller 

sample extending from 1919 to 1975; column 3 displays results from our Weibull 

duration model with selection.34 The probit and FIML selection equations provide similar 

conclusions, with statistically significant coefficients for total borders and trade openness. 

More bordering countries increases the likelihood of a leader initiating war, while 

increasing trade openness reduces his probability of going to war. None of the other 

variables achieve statistical significance, including the interaction term testing Bueno de 

Mesquita and Siverson’s (1995) hypothesis regarding autocratic tenure. 

[Insert Table 3 here.] 

 Of more interest for our purposes here are the coefficients of the duration 

equations. Overall, the results from our duration model with selection are quite similar to 

those from the independent Weibull model in Column 2, indicating that pre-crisis tenure 

significantly increases a leader’s time in office, whereas democracy significantly 

decreases leader tenure.35 The main distinction between the independent Weibull and 

FIML models is that while battle deaths is significant at the 0.10 level in the Weibull 

model, it become insignificant once selection is accounted for (p=0.17). 

 In this case, then, the consequences of selection are not severe for the assessment 

of statistical significance, with the possible exception of the battle deaths variable. But 
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there are important ways in which correcting for selection changes or improves our 

inferences. First, the duration with selection model generates a positive and significant 

estimate of the correlation between the error terms.36 The positive value of rho is 

inconsistent with predictions of diversionary theory, suggesting that if a leader’s expected 

tenure is greater than average, his expected probability of going to war is also greater 

than average.  Second, by accounting for selection, the constant term increases from  

–1.16 in the independent Weibull model to –0.37 in the Weibull duration model with 

selection.  Consequently, our model indicates a larger hazard rate and therefore shorter 

times until failure. The shift in the constant term occurs because leaders’ tenure is 

artificially increased by factors that influence the selection of war.  Once we account for 

the decision to go to war, the estimated tenure of a leader decreases. This finding is 

consistent with our Monte Carlo results, which indicate that positive error correlation 

biases the estimate of the constant term downward. 

 Accounting for a leader’s selection into war as well as his tenure is important for 

two reasons. First, our analysis provides information about the factors that determine 

which leaders go to war, as modeling the decision to go to war decreases the estimated 

post-war tenure of a leader. Second, the presence of significant correlation and the shift in 

the intercept term alter the shape of the estimated survival function and hazard rate, as 

well as the impact of the independent variables on their shapes. 

 To illustrate these consequences we calculated survival functions for both models. 

The survival function gives the probability that a leader is still in office at a given 

moment in time.37  We are also interested in the marginal effect of independent variables 

such as democracy on the survival function. Thus we generated survival functions for 
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autocracies and democracies and report the difference between them, providing an 

estimate of the effect of democracy on leader tenure after war initiation.38 These first 

differences, along with the survival functions for autocracies, are presented in Figure 2.  

[Insert Figure 2 here.] 

 The results indicate a substantively large difference in the estimated survival 

functions and first differences. The survival function for the duration model with 

selection is much lower than for the Weibull model, indicating that the probability of a 

leader lasting five years, for example, is only thirty-nine percent and not fifty-three 

percent. Overall, the probability of surviving more than two years is about two-thirds 

smaller once the selection process is accounted for. Put another way, the median tenure 

for our duration model with selection is 2.8 years whereas for the naïve Weibull model it 

is 5.75 years. The difference arises from the larger constant term estimated by our model, 

which implies a greater hazard rate, earlier failure, and consequently, shorter tenure. 

 These changes in the survival rate also produce changes in the estimated first 

difference for democracy. While the Weibull model indicates that changing a regime 

from an autocracy to a democracy decreases the survival function anywhere between 

twenty-five to fifty percent, the duration model with selection results indicate that the 

change is never greater than twenty five percent. On average, the corrected first 

difference is less than half the size of the inaccurate first difference from the Weibull.39 

Thus our proposed correction provides additional information about the decision to go to 

war, a leader’s tenure in office after war initiation, and the conditions under which 

leaders may be expected to initiate crises. 
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Discussion and Conclusions 

 The consequences of sample selection for duration analyses should receive more 

attention from political scientists. Our simulations provide clear evidence that ignoring 

non-random selection poses severe problems for analyses using duration models, 

including the exponential, Weibull and Cox models. These problems include biased 

coefficient estimates, incorrect evidence of duration dependence, inaccurate predicted 

hazard and survival functions, and incorrect first differences  Studies that potentially 

suffer from selection bias may produce erroneous conclusions about what factors 

influence (or do not influence) the duration process of interest. 

 Despite our findings, further work is needed. Our Monte Carlo study can be 

modified in a number of ways, including varying the rate of selection, the correlation of 

the independent variables, the presence and amount of duration dependence, or including 

the selection equation variable in the duration equation. In addition, our FIML estimator 

can be further developed to allow for time-varying covariates. 

 We also think it would be fruitful to pursue alternate estimators for several 

reasons.  First, different estimators such as the log-normal or gamma distributions would 

permit alternate forms of duration dependence. Second, this would allow for more 

common specifications of the selection equation error distribution. Third, using bivariate 

distributions such as the normal would increase the range of allowed correlation between 

the error terms by producing a probit selection equation with a log-normal duration 

equation. One could also allow correlation between the two equations by introducing 

correlated random effects, as in Gordon’s (2002) competing risks model, though at the 

cost of increased estimation complexity. 
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 A more general approach can be developed through the application of copula 

theory, which allows one to bind together a variety of continuous distributions. While our 

FIML estimator is a member of the family of Farlie-Gumbel-Morgenstern copulas (Smith 

2003), a wider variety of specifications of the two equations is available.40 Lee (1983) 

applies the bivariate normal family of copulas to linear regression models with sample 

selection; Prieger (2002) extends it to duration outcomes. This approach has the 

advantage of permitting maximal correlation, but is more difficult to work with and does 

not necessarily preserve characteristics of the marginal distributions in the conditional 

distributions, which Prieger (2002) argues may be particularly important for duration 

analyses. Both our FIML estimator and Prieger’s FPS model preserve these 

characteristics. Future work should explore these alternate approaches if sample selection 

proves to be a relevant consideration for duration studies in political science.  
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Table 1. 
Monte Carlo Simulation Results for Intercept (α =0), Duration Dependence (ln(p)=0) and Correlation Parameters 

 FIML Exponential Weibull 

 Intercept Correlation Intercept Intercept 
Log Duration 
Dependence 

Rho Mean SD RMSE Mean SD Mean SD RMSE
RMSE 
ratio Mean SD RMSE

RMSE 
ratio Mean SD 

Bivariate Exponential Errors 
-0.20 0.008 0.071 0.071 -0.194 0.041 0.252 0.036 0.255 3.584 0.279 0.037 0.282 3.961 -0.057 0.022
-0.15 -0.003 0.074 0.074 -0.151 0.045 0.183 0.034 0.186 2.526 0.206 0.034 0.209 2.831 -0.049 0.021
-0.10 0.004 0.063 0.063 -0.097 0.044 0.120 0.032 0.124 1.965 0.136 0.034 0.140 2.222 -0.035 0.020
-0.05 0.001 0.056 0.056 -0.048 0.041 0.057 0.028 0.063 1.141 0.065 0.030 0.072 1.288 -0.019 0.023
0.00 0.003 0.050 0.050 0.000 0.034 0.003 0.031 0.031 0.616 0.003 0.031 0.032 0.633 0.001 0.020
0.05 -0.003 0.046 0.047 0.048 0.033 -0.054 0.031 0.062 1.335 -0.063 0.032 0.071 1.525 0.024 0.022
0.10 0.000 0.041 0.041 0.103 0.028 -0.108 0.028 0.111 2.729 -0.127 0.029 0.130 3.202 0.051 0.022
0.15 0.003 0.039 0.039 0.149 0.028 -0.151 0.028 0.154 3.903 -0.181 0.030 0.184 4.658 0.080 0.023
0.20 0.010 0.040 0.041 0.207 0.030 -0.198 0.026 0.200 4.902 -0.239 0.027 0.241 5.899 0.115 0.023

Bivariate Normal Errors Translated to Exponentials 
-0.80 0.629 0.032 0.630 -0.250 0.000 0.924 0.031 0.925 1.468 0.955 0.033 0.955 1.517 -0.064 0.023
-0.60 0.329 0.029 0.331 -0.250 0.001 0.634 0.029 0.634 1.918 0.678 0.031 0.679 2.053 -0.091 0.023
-0.40 0.104 0.050 0.115 -0.231 0.023 0.396 0.035 0.398 3.454 0.435 0.036 0.436 3.786 -0.080 0.021
-0.20 0.025 0.066 0.070 -0.128 0.043 0.180 0.031 0.182 2.599 0.202 0.033 0.205 2.922 -0.049 0.024
-0.10 0.003 0.069 0.069 -0.071 0.049 0.087 0.028 0.091 1.328 0.098 0.028 0.102 1.492 -0.026 0.022
0.00 -0.003 0.053 0.053 0.001 0.038 -0.002 0.029 0.029 0.547 -0.003 0.029 0.029 0.554 0.002 0.021
0.10 -0.008 0.047 0.048 0.071 0.034 -0.083 0.029 0.088 1.836 -0.097 0.029 0.101 2.116 0.035 0.021
0.20 -0.032 0.042 0.053 0.125 0.030 -0.162 0.027 0.165 3.089 -0.187 0.029 0.189 3.549 0.064 0.020
0.40 -0.062 0.027 0.068 0.246 0.010 -0.308 0.024 0.309 4.573 -0.362 0.025 0.363 5.366 0.156 0.020
0.60 -0.194 0.025 0.196 0.250 0.000 -0.443 0.024 0.444 2.263 -0.521 0.024 0.522 2.662 0.258 0.020
0.80 -0.318 0.023 0.319 0.250 0.000 -0.568 0.023 0.569 1.783 -0.667 0.023 0.668 2.093 0.380 0.022

Note: Bivariate exponential entries based on 200 draws for each value of the correlation. Transformed bivariate normal entries based 
on 100 draws. See text for details of the data generating and estimation processes.
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Table 2. 
Monte Carlo Simulation Results for Slope Coefficient ( β =0.75) 

 
 FIML Exponential Weibull Cox 

Rho Mean SD RMSE Mean SD RMSE
RMSE 
ratio Mean SD RMSE

RMSE 
ratio Mean SD RMSE

RMSE 
ratio 

Bivariate Exponential Errors 
-0.20 0.751 0.033 0.033 0.708 0.031 0.052 1.604 0.707 0.031 0.052 1.610 0.656 0.032 0.099 3.039
-0.15 0.750 0.036 0.036 0.717 0.033 0.047 1.288 0.717 0.033 0.047 1.293 0.673 0.034 0.084 2.323
-0.10 0.749 0.031 0.031 0.730 0.029 0.036 1.159 0.729 0.029 0.036 1.161 0.698 0.033 0.061 1.997
-0.05 0.753 0.030 0.030 0.743 0.029 0.030 0.998 0.743 0.029 0.030 0.997 0.727 0.034 0.041 1.377
0.00 0.750 0.030 0.030 0.750 0.029 0.029 0.960 0.750 0.029 0.029 0.960 0.751 0.033 0.033 1.093
0.05 0.751 0.028 0.028 0.759 0.027 0.029 1.038 0.759 0.027 0.029 1.035 0.781 0.035 0.046 1.674
0.10 0.750 0.030 0.030 0.767 0.030 0.034 1.138 0.767 0.030 0.034 1.132 0.812 0.037 0.073 2.400
0.15 0.749 0.025 0.025 0.772 0.025 0.034 1.335 0.772 0.025 0.033 1.314 0.844 0.035 0.100 3.964
0.20 0.746 0.029 0.029 0.778 0.029 0.040 1.371 0.776 0.029 0.039 1.340 0.880 0.039 0.136 4.691

Bivariate Normal Errors Translated to Exponentials 
-0.80 0.632 0.028 0.121 0.586 0.028 0.166 1.376 0.584 0.028 0.168 1.393 0.541 0.030 0.211 1.748
-0.60 0.688 0.029 0.068 0.637 0.030 0.117 1.713 0.635 0.029 0.119 1.744 0.573 0.028 0.179 2.624
-0.40 0.735 0.035 0.038 0.684 0.034 0.074 1.935 0.683 0.034 0.075 1.963 0.626 0.033 0.129 3.362
-0.20 0.747 0.032 0.032 0.720 0.030 0.043 1.324 0.720 0.030 0.043 1.333 0.683 0.033 0.075 2.318
-0.10 0.754 0.030 0.030 0.740 0.028 0.030 0.972 0.740 0.028 0.030 0.975 0.721 0.035 0.045 1.492
0.00 0.756 0.032 0.032 0.756 0.031 0.031 0.960 0.756 0.031 0.031 0.958 0.755 0.035 0.035 1.094
0.10 0.748 0.029 0.029 0.759 0.028 0.029 1.017 0.759 0.028 0.029 1.016 0.787 0.034 0.050 1.729
0.20 0.756 0.028 0.028 0.776 0.026 0.037 1.297 0.775 0.026 0.036 1.285 0.827 0.032 0.083 2.948
0.40 0.769 0.023 0.030 0.805 0.024 0.060 2.006 0.803 0.024 0.058 1.944 0.936 0.037 0.189 6.357
0.60 0.794 0.024 0.050 0.829 0.023 0.083 1.661 0.825 0.023 0.078 1.573 1.062 0.041 0.315 6.321
0.80 0.822 0.020 0.075 0.855 0.020 0.107 1.426 0.847 0.020 0.099 1.321 1.227 0.041 0.478 6.377

Note: Bivariate exponential entries based on 200 draws for each value of the correlation. Transformed bivariate normal entries based 
on 100 draws. See text for details of the data generating and estimation processes.
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Table 3. 
Analysis of War Participation and Leader Tenure: Comparison of Naïve Weibull 

Model with Weibull Duration Model with Selection  
 

  Column 1 Column 2 Column 3 

  
Probit Model Naïve Weibull 

Model 
Weibull with 

Selection 

Selection β 
Robust 

S.E. β 
Robust 

S.E. β 
Robust 

S.E. 
Democracy -0.125 0.168   -0.087 0.109 
Autocracy -0.105 0.168   -0.075 0.096 
Log(Tenure) 0.019 0.062   0.011 0.036 
Log(Tenure) * Autocracy 0.057 0.086   0.038 0.048 
Borders 0.040** 0.020   0.028* 0.015 
Major Power 0.275 0.190   0.184 0.147 
Log(Trade Openness) -0.097* 0.052   -0.055* 0.033 
Constant -2.663 0.158   -1.739** 0.122 

Duration          
Log(Tenure)   -0.800** 0.236 -0.808** 0.240 
Democracy   1.885* 1.071 1.959* 1.133 
Log(Tenure) * Democracy   -0.450 0.783 -0.514 0.797 
Log (Battle Deaths/10K)   0.163 0.099 0.147 0.106 
Winner   -0.381 0.548 -0.334 0.565 
Constant   -1.160** 0.486 -0.374 0.670 
           
ln p   -0.387** 0.108 -0.652** 0.148 
p (Duration Dependence)   0.679** 0.073 0.521** 0.077 
rho (Error Correlation)   -- -- 0.198** 0.068 
N (Uncensored) 5148 69 5148 (69) 
Log Likelihood -344.33 -114.23 -470.12 
Wald 52.14** 23.00** 18.49** 
Notes: * indicates p < 0.10 ** indicates p < 0.05. Robust standard errors cluster on 
country.
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Figure 1. 
Average Parameter Estimates from Monte Carlo Simulations 
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Figure 2. 
Impact of Model Choice on Estimated Leadership Survival: 

Comparison of Survival Function and Marginal Effect of Autocracy 
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Notes: Survival functions indicate the probability that a leader is still in office at a given time, 
given that a crisis was initiated. All variables are set to their average values for autocracies using 
the 69 observations with uncensored durations. Estimates for democracies are obtained by 
changing the appropriate indicator variables, including those in interactions. For the duration with 
selection model, this includes changing their values in the selection equation. First differences 
represent the difference between the estimated survival functions for democracies and autocracies 
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1 We discuss many of these examples and related issues in detail later. Readers looking 

for more information are referred to Box-Steffensmeier and Jones’ (2004) thorough and 

comprehensive discussion of duration models in political science. Issues that have 

received extensive attention include controlling for duration dependence (Beck, Katz and 

Tucker 1998; Bennett 1999; Zorn 2000) and, more recently, accounting for repeated 

failures (Box-Steffensmeier and Zorn 2002; Branford and Jones 2003). 

2 See, for example, Achen (1986) Berinsky (1999), Brehm (1990, 1999), Boehmke 

(2003), King (1989), Reed (2000), Signorino (1999), Timpone (1998) and Sartori (2003). 

3 See, for example, Bennett (1999), Hug (2003); Reed (2000), Signorino (1999) and 

Clark and Reed (2003). 

4 A note on terminology: the specific form of selection that we are studying is known as 

stochastic censoring, a form of non-ignorable missingness. This corresponds to situations 

where characteristics of all observations are observed, but the variable of interest is only 

observed for some observations. In various situations it may be referred to as selectivity, 

self-selection, non-random sample selection, or selection bias. 

5 An additional note on terminology: in the duration literature censoring refers most 

commonly to left, right and middle censoring – situations when an observation fails 

during a time when it is not under observation (i.e., after a study was completed for right 

censoring). In the selection literature, censoring refers to situation where we have 

measures of independent variables but no measure of the dependent variable (i.e., a voter 

may answer demographic questions on a survey but fail to indicate who she voted for). 
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We use the term censoring to refer to the latter situation and specify right or left 

censoring if we mean the other. 

6 International relations scholars have argued that private information may play in 

important role in the decision to initiate wars. Leaders may have better knowledge than 

potential opponents about factors such as their country’s resolve or its military 

capabilities. It is not a great step to assume that these unobserved factors may also 

influence the outcome or duration of any wars that occur. 

7 Note that the problem does not arise because the occurrence of war and the outcome or 

duration of the war are influenced by the same factors. Non-random selection is only a 

problem when the unobserved factors are related. 

8 The one exception we have found is due to Prieger (2002), which develops an estimator 

similar to ours as well as one using Lee’s (1983) generalized selection model based on 

the bivariate normal family of copulas (Smith 2002). 

9 The literature is too extensive to discuss every study – a nice overview is provided by 

Laver (2002). 

10 If these opinion shocks were perfectly measured, the selection problem could be dealt 

with. It seems reasonable to expect that government officials may have better (and 

perhaps more idiosyncratic) measures and more information than scholars attempting to 

study cabinet duration. 

11 Note that this is the hazard interpretation – large coefficients correspond to greater 

hazards and shorter durations 
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12 In most cases, of course, we are substantively interested in the quantity )1|( =ii cyf . 

We write out our likelihood using the conditional distribution of the censoring variable 

because it is easier to derive. The two approaches are mathematically equivalent. 

13 See Johnson and Kotz (1972) for a discussion of various implementations of the 

bivariate exponential. The drawbacks are generally in terms of restrictions on the values 

that the correlation can take on, but we also had more difficulty obtaining estimates with 

some versions. 

14 The choice of threshold is without loss of generality: if the true threshold is not one, the 

only consequence is that the intercept term shifts the appropriate amount, much the same 

as with probit and logit. 

15 The choice to allow for Weibull duration dependence in the duration part of our model 

might suggest that it would also be desirable to extend the discrete part in the same way. 

While this turns out to be impractical (a Weibull binary choice model is not identified), 

duration dependence can be controlled for in the selection equation in a discrete-time 

duration model interpretation through the usual methods (time dummies; linear or 

quadratic time trends; or cubic splines). See Beck, Katz and Tucker (1998) for discussion. 

16 Note that one can allow for log-normal durations with a probit selection model by 

estimating a Heckman model with the log duration as the dependent variable (assuming 

no right censoring). As Prieger (2002) notes, the correlation of ui  with )ln(ε i  may range 

from negative to positive 1, but the correlation between it and ε i  depends on the latter’s 

standard deviation σ  – when 1=σ , for example, 76.0|| ≤ρ .  
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17 We ran a series of simulated draws of the resulting error terms and found that the 

correlation between them is about the same as the bivariate normal correlation, though 

generally a little closer to zero, particularly when the correlation is negative. 

18 These independent variables are generated from a bivariate normal distribution with 

standard deviations one and correlation 0.5. The values of the coefficients and 

independent variables were set so that the variation of the systematic portion of the model 

is a little greater than the variation of the stochastic component. 

19 We estimate the exponential duration model with selection because it corresponds to 

the underlying data generating process. We also estimated the Weibull duration model 

with selection on the same data and found the results were indistinguishable from the 

exponential. We therefore only report one set of results. 

20 All simulations were conducted in Stata 8.2 on a Windows machine with dual 731 

MHz processors. Generating the data and estimating each model once took 30 seconds on 

average. During estimation, we use the inverse of Fisher’s Z transformation, 

( ) ( )1)2exp(1)2exp()( *** +−== αααα Z , so that the unbounded *α  generates an 

estimate of α  in the appropriate interval. 

21 We estimated other parametric models that allow for duration dependence and they 

produced estimates that were virtually identical to those from the Weibull, so we omit 

them for presentation purposes. 

22 To save space and to focus attention on the parameters of interest (i.e., those of the 

duration process), we do not report the average values of the selection equation 
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parameters. We note that our results indicate they are unbiased, or at least consistent. 

These and other results are available from the authors upon request. 

23 2))ˆ(bias( )ˆVar( )ˆMSE( θθθ += , where the variance is taken from the sampling 

distribution of the parameter and the bias is calculated by taking the average estimate in 

the draws and subtracting the true value. 

24 The intuitions behind these findings are as follows: when the correlation is positive, the 

conditional expected value of the error term for uncensored observations is greater than 

its unconditional mean (since it is harder for observations with small errors to select in), 

leading to longer times until failure. This corresponds to a smaller baseline hazard rate. 

For the duration dependence parameter, positive correlation between the error terms 

results in a greater proportion of “large” errors in the selected sample, resulting in an 

increasing failure rate among surviving observations as time increases. 

25 This limitation on the correlation forced the model to push the estimate to the 

appropriate boundary and occasionally lead to instances where the model failed to 

converge. Overall, convergence failure occurred in less than three percent of the draws, 

though it was closer to ten or fifteen percent when the alternate error distribution 

correlation was at the two extremes. 

26 Note that since the hazard ratio interpretation just reports exp(β), our results have the 

same implication for reported hazard ratios. 

27 Recall that the explanatory variables in the selection and duration equations are 

positively correlated. Thus observations with small values of W require large errors to 

select in, inducing a negative correlation between W and u. When the errors and 
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independent variables are positively correlated, this then leads to a negative correlation 

between X and ε. This results in relatively early failures when X is large and late failures 

when it is small, which biases the hazard ratio upwards. Further Monte Carlo analyses 

indicate that the direction of the bias in the coefficient depends on the sign of the product 

of the correlation between the independent variables and the coefficient in the selection 

equation. 

28 Additional simulations also indicate that our findings are robust to the assumption that 

the censoring rule corresponds to a binary exponential model – if we generate data using 

a probit censoring rule instead, the duration model with selection still produces estimates 

with less bias and smaller RMSEs. 

29 While most of the diversionary theory literature focuses on democracies, Rosecrance 

(1963) finds evidence for non-democratic states engaging in diversionary behavior. 

30 One could model these two decisions as strategic selection in the sense of Signorino 

(1999). While we think that this could prove fruitful in the future, our first objective was 

to develop a general duration model with selection rather than one tailored for a specific 

strategic circumstance. 

31 To conduct our analysis, we merged the duration data with information on all leaders, 

restricting our analysis to the years 1919 to 1975. Prior to 1919, differences between 

leader data sets make it difficult to merge the duration data with information on all 

leaders. The original Bueno de Mesquita and Siverson (1995) analysis examined all 

leaders between 1816 and 1975. 
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32 As we required data on all leaders (not just those who went to war), we used Chiozza 

and Goemans’s (2003) leader tenure data for the selection model. 

33 In general one should not include interactions without main effects since it complicates 

the interpretation and may lead to false conclusions (i.e., the interaction may be 

significant because it captures the effect of the omitted main effect) (Brambor, Clark, and 

Golder, forthcoming). While we would like to replicate Bueno de Mesquita and 

Siverson’s model as closely as possible, in this case the inclusion of the democracy 

variable influenced the results. 

34 While the naïve Weibull results cohere with predictions made in the original work, 

some variables decrease in significance. This is most likely due to the reduced sample 

size, though changes in the underlying data generating process could also cause these 

differences. 

35 While these results suggest that the effect of tenure is not different for democratic 

leaders, we should note that even if we omit the democracy indicator the democracy-

tenure interaction remains insignificant, possibly due to our reduced sample size. 

36 While the estimate of the correlation is significant, the corresponding unbounded, 

transformed value narrowly missed significance at the 0.10 level. 

37 For our duration model with selection, the conditional survival function is the 

probability of an observation being right-censored divided by the probability of going to 

war. We use the conditional survival function rather than the unconditional survival 

function (the joint probability of going to war and surviving until a certain time) since we 



 43

                                                                                                                                                 
 
are interested in leaders’ expected tenure given war initiation, as it is this quantity that a 

leader uses to determine whether to go to war. 

38 All the independent variables were set to their mean values for autocracies. To estimate 

the impact of democracy, we then changed the value of the relevant indicator variables 

(in both equations for the selection model) and for the appropriate interaction terms 

(tenure*democracy in the duration equation and tenure*autocracy in the selection 

equation). 

39 A similar pattern emerged when we calculated the predicted hazard rates as well, with 

the marginal effect of democracy on the hazard from the Weibull model about twice as 

great as the marginal effect from the Weibull duration model with selection. 

40 This family also includes Prieger’s (2002) FPS model. See Smith (2002) for a 

discussion of the application of copula theory to models for sample selection. 




