Crystal Size Distribution of Periclase in Contact Metamorphic Dolomite Marbles from the Southern Adamello Massif, Italy

T. MÜLLER1*, L. P. BAUMGARTNER1, C. T. FOSTER, JR2 AND J. R. BOWMAN3

1INSTITUT DE MINERALogie ET GEOCHIMIE, UNIVERSITE DE LAUSANNE, BATIMENT L’ANTHROPOLE, CH-1015 LAUSANNE, SWITZERLAND
2DEPARTMENT OF GEOLOGY, UNIVERSITY OF IOWA, IOWA CITY, IA 52242, USA
3DEPARTMENT OF GEOLOGY AND GEOPHYSICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112, USA

RECEIVED SEPTEMBER 10, 2007; ACCEPTED JANUARY 21, 2009

Crystal size distributions (CSD) of periclase in contact metamorphic dolomite marbles are presented for two profiles near the Cima Uzza summit in the southern Adamello Massif (Italy). The database was combined with geochemical and petrological information to deduce the controls on the periclase-forming reaction. The contact metamorphic dolomite marbles are exposed at the contact of mafic intrusive rocks and are partially surrounded by them. Brucite is retrograde and pseudomorphs spherical periclase crystals. Prograde periclase growth is the consequence of limited infiltration of water-rich fluid at 8 near 605°C. Stable isotope data show depletion in 13C and 18O over a narrow region (~40 cm) near the magmatic contact, whereas the periclase-forming reaction front extends up to 4 m from the contact. CSD analyses along the two profiles show that the median grain size of the periclase crystals does not change, but that there is a progressively greater distribution of grain sizes, including a greater proportion of larger grains, with increasing distance from the contact. A qualitative model, based on the textural and geochemical data, attributes these variations in grain size to changing reaction affinities along a kinetically dispersed infiltration front. This study highlights the need to invoke disequilibrium processes for metamorphic mineral growth and expands the use of CSDs to systems of mineral formation driven by fluid infiltration.

KEY WORDS. X-ray μC-tomography; contact metamorphism; fluid infiltration; crystal size distribution; 3D; stable isotopes; Adamello Massif

INTRODUCTION
Metamorphic rock textures are the result of neo-formation of minerals. The spatial distribution of minerals, their shape and size result from the interaction of nucleation, growth, reaction, and deformation. They reflect the rates of change in physicochemical conditions, such as pressure (P), temperature (T), and fluid composition. During the last two decades the focus of metamorphic petrology has changed from a static point of view (i.e. the representation of a mineral assemblage as a single point in a petrogenetic grid) towards a dynamic view that interprets chemical zoning within minerals (e.g. garnet) in terms of time-paths of changing P-T conditions (Spear, 1993). Today much focus is on the dynamic non-equilibrium processes that govern the formation of mineral textures (Carlson & Denison, 1992; Carlson et al., 1995; Lasaga, 1998; Carlson & Gordon, 2004; Hirsch & Carlson, 2006) and mineral zoning as a result of disequilibrium processes in an attempt to decipher the crystallization history (Albarède & Bottinga, 1972; Watson & Liang, 1995; Watson, 1996; Skora et al., 2006). Theoretical calculations based on experimentally derived reaction rate data (e.g. Lasaga & Rye, 1993) as well as textural studies (Roselle et al., 1997; Müller et al., 2004) provide clear evidence for significant disequilibrium during crystal growth. It is increasingly clear that reaction kinetics have a strong influence on the formation of metamorphic minerals, hence understanding these kinetic
processes is one of the keys to decipher the detailed reaction history of a rock reflected by its metamorphic textures.

Information about the crystallization history is recorded not only in the chemical zoning of minerals but also in the size distribution of the crystals. Crystal size distributions (CSD) provide essential information about the interaction between nucleation and growth of minerals. Crystal size studies in metamorphic rocks have led to models for nucleation and growth processes (Galwey & Jones, 1963, 1966; Kretz, 1966, 1993; Cashman & Ferry, 1988; Carlson & Denison, 1992; Carlson et al., 1995, 1999). CSDs have been introduced into the Earth Sciences for both magmatic and metamorphic systems (Cashman & Ferry, 1988; Cashman & Marsh, 1988; Marsh, 1998). Subsequent studies focused on regional and contact metamorphic systems where minerals formed as a result of changes in T or P (Kretz, 1966, 1993; Carlson & Denison, 1992; Carlson et al., 1995, 1999, Hirsch et al., 2003; Moazzen & Modjarrad, 2005; Hirsch & Carlson, 2006). However, to the authors’ knowledge there is no study describing CSDs of metamorphic minerals that have grown as a result of fluid infiltration.

Several previous studies have described contact metamorphic periclase marbles from the southern Adamello Massif, Italy (e.g. Callegari, 1962; Bucher-Nurminen, 1982; Gerdes et al., 1995). Mineral formation in these marbles is the result of fluid infiltration (Gerdes et al., 1995). This study combines measured CSDs of brucite marbles with geochemical data to evaluate the reaction kinetics of periclase formation.

GEOLOGICAL SETTING

The Adamello Massif is one of the major Tertiary igneous complexes in the Alpine chain. The massif is bordered by the Insunric lineament, the Tonale Line segment to its north and the Giudicarie Line system to the SE (Fig. 1a). The batholith represents a complex series of intrusions, is dominated by rocks of tonalitic to granodioritic compositions, and is accompanied by numerous small bodies of gabbroic and dioritic rocks (Callegari & Dal Piaz, 1973; Bucher-Nurminen, 1982; von Blanckenburg et al., 1998; Colombo & Tunesi, 1999; Pennacchioni et al., 2006). The batholith intruded into Hercynian crystalline basement and Permian to Mesozoic sedimentary rocks of the Southern Alps.

The Cima Uzza area, located at the SE margin of the batholith, exposes Triassic dolomites with minor silicate phases in contact with intrusive igneous rocks (Callegari, 1962). The contact metamorphism of these siliceous dolomites has been the subject of several studies (Callegari, 1962; Bucher-Nurminen, 1982; Matile & Widmer, 1993; Gerdes et al., 1999; Berger & Herwegh, 2004). Calcite–dolomite (Ce–Dol) equilibration temperatures (T) were found to be 490–560°C near the forsterite-in isograd, increasing to 480–625°C near the contact at the Cima Uzza summit (Bucher-Nurminen, 1982). Lithostatic pressure (P) during the contact metamorphism has been estimated at ~1 kbar for the Cima Uzza area (Callegari, 1962, McRae, 1982; Brack, 1984), based on stratigraphic reconstructions and phase equilibria. The stable isotope compositions of carbonates indicate limited infiltration of H2O-rich fluids during contact metamorphism (Gerdes et al., 1995, 1999). Based on the presence of clinozoisite and garnet in the marbles of the underlying Buchenstein formation, Gerdes et al. (1995) estimated that the composition of the fluids derived from the intrusive rocks had an X(CO2) value <0.01.

On the western flank of Cima Uzza, excellent contacts between mafic intrusive igneous rocks and dolomite are exposed (Fig. 1b). The mafic rocks line the boundary of the main intrusion, which itself is a tonalite (Fig. 1). Based on dating and on field relations, previous studies in this area have argued that the mafic rocks, consisting mainly
of diorites (with a plagioclase composition of An30–40), are older than the main intrusive mass (Callegari & Dal Piaz, 1973; Brack, 1984; von Blanckenburg et al., 1998). The mafic intrusions consist of several masses up to 50 m in size, forming stocks and dykes.

The outcrop studied contains up to 30% igneous rocks (Fig. 1b). A 4 m × 6 m carbonate outcrop is partially surrounded by a mafic dyke-like intrusion (Figs 1b and 2). Brucite pseudomorphs after periclase occur in the rim of the carbonate towards the intrusion. They are separated from the non-reacted dolomite by a sharp boundary. The field data show near-complete reaction for all samples within the periclase zone (as will be discussed below), but the zone where periclase decreases from >70% of possible reaction progress to <1% is only a few millimetres thick, which corresponds to about one grain diameter. Periclase rim thicknesses are highly variable at other contacts (from <0.01 m to 4 m), both in dolomite xenoliths and reacted dolomite along the outside contact of the intrusion. Nevertheless, there are some small xenoliths (<1 m) that maintain their central part unchanged.

ANALYTICAL METHODS

Two profiles approximately perpendicular to the contact between the dolomite and the mafic intrusion were sampled. A total of seven samples were investigated in detail (Table 1). Stable isotope compositions of carbonates were analyzed with a Thermoquest-Finnigan Gas Bench linked to a DeltaPlus XL mass spectrometer at the University of Lausanne following the procedure of Spoel & Vennemann (2003). Drilled bulk-rock powders were reacted at 90°C for 1 h with concentrated H3PO4, and CO2 was extracted in a stream of He carrier gas. Measured values for δ13C (VPDB) and δ18O (VSMOW) were calibrated relative to those of NBS-19.

Calcite compositions for Cc–Dol thermometry were analyzed with a Cameca SX50 electron microprobe (EMP) at the University of Lausanne. Sample current was 6 nA at 15 kV, using a beam diameter of 10 μm. A counting time of 60 s was used for Ca and Fe, and 120 s for Mg and Mn. Natural calcite (Ca), dolomite (Mg), siderite (Fe), and pyrophanite (Mn) was used for standardization. The confidence limit for the Mg values is ~0.06 wt %, resulting in an analytical error of roughly ±0.5°C for the calculated temperatures. Temperatures were calculated using the mean value plus 2σ following Müller et al. (2008), and the calibration of Anovitz et al. (1987).

Three-dimensional (3D) information on the spatial distribution of periclase in the marbles was obtained by X-ray micro-computed tomography (μ-CT). Cores of 3 mm diameter were drilled out of the samples with a diamond drill. Images with a resolution of 3.9 μm (per pixel) were obtained. Analyses were performed with a Skyscan 1072 μ-CT instrument at the University of Lausanne. The Aphelion® digital image processing software was used to determine the number, size, volume, and 3D distribution of brucite pseudomorphs in the cores. Image analyses were performed on at least three sets of images with a stack height of ~0.3 mm for each sample. Measured 3D data have been shown to be reproducible with different stacks of images of the same core. The total number of grains was normalized to 1 cm3. To obtain the original grain size of periclase, the diameters of brucite pseudomorphs (molar volume of 24–63 cm3/mol) were corrected for the volume change of the retrograde reaction, which forms brucite from periclase (molar volume of 11.25 cm3/mol), using the volume factor of 0.457.

RESULTS

Petrology

The outcrop described in this study exposes a carbonate, which is in contact with a mafic intrusion on at least two sides (Fig 2). The other sides are covered by grass. The gray marble distal to the igneous contact consists of pure dolomite with an average grain size of 0.5 mm in diameter. The white dolomite marble closer to the igneous contact is a massive and highly recrystallized marble. The mineral assemblage in these rocks is dolomite + calcite + brucite (Table 1). The idiomorphic, spherical shape of the pseudomorphs indicates that they are pseudomorphs after periclase (Fig. 3). Brucite pseudomorphs appear to be homogeneously distributed, judging from thin sections and μ-CT images (Figs 3 and 4). Periclase was produced above 605°C at an estimated P of 1 kbar, probably in the presence of a water-rich fluid phase, by the reaction (Fig. 5)

\[
\text{CaMg(CO}_3\text{)}_2 \leftrightarrow \text{MgO + CaCO}_3 + \text{CO}_2,
\]

\[
\text{dolomite} \leftrightarrow \text{periclase} + \text{calcite} + \text{CO}_2,
\]

Table 1: Mineral modes of the brucite-bearing marbles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Distance from igneous contact (cm)</th>
<th>Modal percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>dolomite</td>
</tr>
<tr>
<td>04-TAD-51</td>
<td>20</td>
<td>20.2</td>
</tr>
<tr>
<td>04-TAD-52</td>
<td>40</td>
<td>29.7</td>
</tr>
<tr>
<td>04-TAD-47</td>
<td>120</td>
<td>32.0</td>
</tr>
<tr>
<td>04-TAD-50</td>
<td>130</td>
<td>32.2</td>
</tr>
<tr>
<td>04-TAD-48</td>
<td>140</td>
<td>22.3</td>
</tr>
<tr>
<td>04-TAD-54</td>
<td>140</td>
<td>28.4</td>
</tr>
<tr>
<td>04-TAD-57</td>
<td>200</td>
<td>43.5</td>
</tr>
</tbody>
</table>
Brucite then formed by hydration of periclase on the retrograde path:

\[\text{MgO} + \text{H}_2\text{O} \leftrightarrow \text{Mg(OH)}_2 \]

periclase + water \leftrightarrow\text{brucite}

The progress of reaction (1) was estimated by measuring the volume fraction of brucite in the tomography images. These volume fractions of brucite were converted to volume fractions of periclase by correcting for the volume change accompanying the replacement of periclase by brucite [reaction (2)], assuming a closed system for all oxides with the exception of H\textsubscript{2}O.

The measured volume of grains will depend on the choice of the grey-scale threshold used for grain separation on the images. The uncertainties introduced can be large for complex digital image analyses of rock textures. Measured volumes of small objects of only a few pixels in diameter are especially sensitive to these choices. Based on experiments choosing different thresholds for the X-ray images, the radius of selected grains can vary by one or two pixels. As a result, the uncertainty in the measured volume fraction of periclase could be significant, as shown by the error bars in Fig. 6. An evaluation of the actual size of the error is difficult, as grey-scale contrast and crystal size, as well as heterogeneity of the samples would need to be considered. Nevertheless we believe that this procedure probably overestimates the uncertainty. In any case, the measured volume fractions of periclase in all samples are similar within the uncertainty, and reaction progress exhibits no obvious correlation with distance from the intrusion (Fig. 6).

Dolomite is present in all samples. Retrograde dolomite forming haloes surrounding brucite pseudomorphs is observed only in sample 04-TAD-51 (Fig. 7), which is located nearest the igneous contact. In the other samples dolomite crystals have straight, clean grain boundaries.
with both calcite and brucite in thin section (Fig. 3) and BSE images (Fig. 7). The large dolomite grains can also be recognized in the X-ray tomography images (Fig. 4). These textures indicate that the dolomite grains are non-reacted original grains.

Calcite–dolomite thermometry

Calcite compositions were measured by EMP in six samples of the periclase skarn (Table 2). Cc–Dol thermometry (Table 3) indicates temperatures between 544°C and 591°C. There is no correlation between calculated temperatures and the distance from the igneous contact. Calcite is a metamorphic product of reaction (1) and should record the temperature of periclase formation. However, most of the calculated values are significantly too low to represent metamorphic peak temperatures. Only the highest calculated values are near the minimum of 605°C required to form periclase based on the equilibrium phase diagram (Fig. 5).

Stable isotopes

Stable isotope compositions for oxygen and carbon were obtained for bulk carbonate samples (Table 4). Within about 40 cm of the igneous contact, the marbles are significantly depleted in δ¹⁸O/δ¹⁶O and δ¹³C/δ¹²C to δ¹⁸O and δ¹³C values of 4.6 ± 0.1‰ (VSMOW) and −3.2 ± 0.05‰ (VPDB), respectively. Both δ¹⁸O and δ¹³C values increase rapidly with increasing distance from the magmatic
contact (Fig. 8) to values of ~28%o and about ~14%, respectively, defining sharp isotope exchange fronts for both C and O. Gerdes et al. (1999) found similar C and O values and spatial patterns in brucite marbles near mafic dykes on the southern slopes of Cima Uzza. The isotope exchange fronts for C and O are located at the same distance from the contact (Fig. 8), pointing to the same amount of exchange for C and O. This equivalence in turn would imply an infiltrating fluid composition of X(CO2) = 0.5 assuming local equilibrium or similar reaction kinetics for O and C exchange (e.g. Baumgartner & Rumble, 1988; Baumgartner & Valley, 2001).

Crystal size distributions (CSD)

The X-ray tomography measurements reveal that the brucite crystals are homogeneously distributed in three dimensions in all analyzed cores (Figs 4 and 9). No obvious clustering is observed on the images and the crystals are not aligned on planes that could correspond to annealed fractures. In addition, the absence of apparent veins indicates that fluid flow was pervasive. The data obtained by μ-CT are listed in Table 5. The CSDs indicate that the brucite pseudomorphs range in size from 20 to 200 μm in all samples. CSDs for all samples are calculated using a bin size of 20 μm; this size is based on the estimated uncertainty of the image analyses. Given this uncertainty, the X-ray tomography measurements do not consistently detect or measure reliably the sizes of grains smaller than 20 μm.

CSDs represent the number of crystals (n) within specified size intervals (bin sizes) per unit volume. They are typically plotted as crystal population density on a logarithmic scale (ln n density) vs grain size. Measured CSDs change as a function of their distance from the igneous contact (Fig. 9). The CSDs for the samples along the
profiles are superimposed on one another in Fig. 10 for comparison. It can be seen that the CSDs of brucite pseudomorphs become flatter (i.e. slopes decrease) with increasing distance from the contact. This trend can be observed for both profiles, and occurs because there are progressively larger variations in the size of pseudomorphs and increasing abundance of larger grains in samples further from the contact (Figs 9–11). As a consequence, the number of grains per unit volume (n) decreases with increasing distance from the contact. This trend is verified by a plot of the calculated number of grains per unit volume (n) against distance from the contact.

Table 3: Calcite–dolomite thermometry data determined for selected brucite marbles

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of analyses</th>
<th>Distance to next visible contact (cm)</th>
<th>XMg (Max)</th>
<th>XMg (Mean)</th>
<th>XMg (SD)</th>
<th>Peak temperature ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-TAD-47</td>
<td>124</td>
<td>120</td>
<td>0.064</td>
<td>0.043</td>
<td>0.008</td>
<td>562</td>
</tr>
<tr>
<td>04-TAD-48</td>
<td>128</td>
<td>140</td>
<td>0.059</td>
<td>0.043</td>
<td>0.007</td>
<td>554</td>
</tr>
<tr>
<td>04-TAD-50</td>
<td>124</td>
<td>130</td>
<td>0.069</td>
<td>0.046</td>
<td>0.009</td>
<td>577</td>
</tr>
<tr>
<td>04-TAD-51</td>
<td>145</td>
<td>20</td>
<td>0.068</td>
<td>0.052</td>
<td>0.008</td>
<td>590</td>
</tr>
<tr>
<td>04-TAD-52</td>
<td>142</td>
<td>40</td>
<td>0.060</td>
<td>0.043</td>
<td>0.006</td>
<td>549</td>
</tr>
<tr>
<td>04-TAD-57</td>
<td>146</td>
<td>200</td>
<td>0.059</td>
<td>0.042</td>
<td>0.006</td>
<td>544</td>
</tr>
</tbody>
</table>

Table 4: Summary of O and C stable isotope compositions for bulk-rock powders of carbonate samples from the southern Adamello Massif, Italy

<table>
<thead>
<tr>
<th>Sample</th>
<th>Distance (m)</th>
<th>δ^{13}C (VPDB) (%)</th>
<th>δ^{18}O (VSMOW) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-TAD-46</td>
<td>0.2</td>
<td>-2.2</td>
<td>24.0</td>
</tr>
<tr>
<td>04-TAD-47</td>
<td>1.2</td>
<td>-1.0</td>
<td>28.5</td>
</tr>
<tr>
<td>04-TAD-48</td>
<td>1.4</td>
<td>-1.3</td>
<td>28.5</td>
</tr>
<tr>
<td>04-TAD-50</td>
<td>1.3</td>
<td>-1.4</td>
<td>27.7</td>
</tr>
<tr>
<td>04-TAD-51</td>
<td>0.2</td>
<td>-2.6</td>
<td>20.1</td>
</tr>
<tr>
<td>04-TAD-52</td>
<td>0.4</td>
<td>-1.3</td>
<td>28.3</td>
</tr>
<tr>
<td>04-TAD-54</td>
<td>1.4</td>
<td>-1.2</td>
<td>28.2</td>
</tr>
<tr>
<td>04-TAD-55</td>
<td>2</td>
<td>-1.1</td>
<td>28.0</td>
</tr>
<tr>
<td>04-TAD-56</td>
<td>4.5</td>
<td>-0.8</td>
<td>26.4</td>
</tr>
<tr>
<td>04-TAD-57</td>
<td>1.7</td>
<td>-1.4</td>
<td>27.9</td>
</tr>
<tr>
<td>04-TAD-58</td>
<td>0.1</td>
<td>-3.2</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Fig. 8. Measured isotope compositions for carbon (a) and oxygen (b) of bulk carbonate from the Cima Uzza samples. Depletion of 13C/12C and 18O/16O in the carbonate samples defines sharp C- and O-isotope exchange fronts located near the contact with the mafic intrusion, indicating a limited amount of fluid infiltration. (Note that both fronts are located at the same distance from the contact.)
Fig. 9. Typical X-ray μ-CT slice images are shown at the left and right, and measured CSDs for brucite marbles in these samples in the center. With increasing distance from the igneous contact, the CSDs become progressively flatter, indicating on the one hand a decrease in the number of grains and on the other the presence of larger grain sizes in samples at greater distances from the contact.
volume vs distance from the igneous contact (Fig. 12). Despite these trends, the median grain size (40–60 μm radius) remains approximately the same along both profiles (Table 5).

Table 5: Stereographic data for periclase pseudomorphs, not corrected for volume change caused by hydration to brucite, obtained by computed X-ray microtomography

<table>
<thead>
<tr>
<th>Sample</th>
<th>Distance (cm)</th>
<th>V<sub>analyzed</sub> (cm<sup>3</sup>)</th>
<th>No. of grains detected</th>
<th>V<sub>brucite</sub> (cm<sup>3</sup>)</th>
<th>Average sphericity</th>
<th>Median radius (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-TAD-51</td>
<td>20</td>
<td>1.20E–02</td>
<td>2477</td>
<td>3.30E–03</td>
<td>0.67</td>
<td>53</td>
</tr>
<tr>
<td>04-TAD-52</td>
<td>40</td>
<td>1.32E–02</td>
<td>2220</td>
<td>2.20E–03</td>
<td>0.68</td>
<td>46</td>
</tr>
<tr>
<td>04-TAD-47</td>
<td>120</td>
<td>1.06E–02</td>
<td>1361</td>
<td>2.10E–03</td>
<td>0.71</td>
<td>51</td>
</tr>
<tr>
<td>04-TAD-50</td>
<td>130</td>
<td>1.28E–02</td>
<td>1529</td>
<td>2.40E–03</td>
<td>0.72</td>
<td>53</td>
</tr>
<tr>
<td>04-TAD-48</td>
<td>140</td>
<td>1.07E–02</td>
<td>743</td>
<td>2.50E–03</td>
<td>0.64</td>
<td>73</td>
</tr>
<tr>
<td>04-TAD-54</td>
<td>140</td>
<td>1.32E–02</td>
<td>1206</td>
<td>2.60E–03</td>
<td>0.67</td>
<td>54</td>
</tr>
<tr>
<td>04-TAD-57</td>
<td>200</td>
<td>1.28E–02</td>
<td>1052</td>
<td>2.70E–03</td>
<td>0.74</td>
<td>57</td>
</tr>
</tbody>
</table>

Fig. 10. CSDs of periclase from the two sampled profiles. (Note that the CSDs become flatter with increasing distance from the igneous contact.)

Fig. 11. Frequency–volume plot illustrating the volume proportions of different grain sizes (radius) in the analyzed cores. Samples at increasing distance from the igneous contact exhibit progressively larger proportions of larger grains indicating higher growth rates compared with nucleation rates.
which indicate variable thicknesses of the periclase rims xenoliths. This is in clear contrast to the field observations, small xenoliths should be totally changed into periclase as the thermal diffusivity is roughly the same. In addition, driven formation of periclase should result in similar composition at 1 kbar). Furthermore, purely thermally able intrusive contact temperature for the diorite magma metamorphism are much closer to 600 – 650°C (a reason-

DISCUSSION

At the estimated lithostatic pressure of 1 kbar, phase equilibria require formation of periclase at minimum temperatures at 605°C (Fig. 5) and a water-rich fluid phase. Progressively higher temperatures are required to form periclase as the CO2 content of the pore fluid increases, to \(T > 780°C \) in pure CO2 fluid, when periclase could form without fluid infiltration. Thus, formation of periclase could also be explained by a simple thermal activated reaction if the marbles were heated to sufficiently high temperatures. Indeed, the igneous temperatures of the diorites are estimated at 800 – 850°C, sufficiently high to cause a thermally driven reaction if the mass of surrounding igneous rocks is large enough and igneous rocks surround the carbonates. In contrast, the geology illustrated in Fig. 1b suggests that this is not an area of small single xenoliths in an ocean of magma. Indeed, the outcrop is located at the border of the heavily intruded area close to the summit of Cima Uzza. The absence of detailed knowledge about the relative timing of the various events of magma intrusion makes it very difficult to fully describe the thermal regime. However, simple heat balance and transport considerations, based on the observed sub-equal amounts of intrusion and dolomite exposed in the study area, suggest that maximum temperatures achieved during contact metamorphism are much closer to 600 – 650°C (a reasonable intrusive contact temperature for the diorite magma composition at 1 kbar). Furthermore, purely thermally driven formation of periclase should result in similar (‘equal’) sizes of reaction rims in each xenolith or pendant, as the thermal diffusivity is roughly the same. In addition, small xenoliths should be totally changed into periclase xenoliths. This is in clear contrast to the field observations, which indicate variable thicknesses of the periclase rims and even the preservation of non-reacted cores in relatively small xenoliths as described above. Taken together, these considerations suggest maximum temperatures of \(\sim 650°C \). The formation of periclase is hence at least partially driven by infiltration of a fluid phase.

Temperatures measured by Cc–Dol thermometry in this area are up to 600°C (this study; Bucher-Nurminen, 1982) and slightly too low for periclase formation. Several studies have documented similar results for the periclase zone in other contact aureoles (Cook & Bowman, 1994; Müller et al. 2008). In contrast, however, various studies have shown that Cc–Dol thermometry can record temperatures significantly above 600°C. Sometimes even values that are too high to be considered realistic were obtained; for example, for the Ubehebe contact aureole (Roselle et al., 1999; Müller et al. 2008), the Alta contact aureole (Cook & Bowman, 1994), and for Cc inclusions in forsterite (Ferry, 2001). Müller et al. (2008) presented a combined growth–diffusion–dolomite unmixing model for calcite in contact aureoles, which explains these observations, and applied it to the Ubehebe contact aureole. Consequently, we believe that the measured temperatures are 10 – 50°C too low, and represent partially reset values.

Taking together data from geothermometry and the general heat conduction and geometry arguments discussed above, we suggest that periclase was formed at 605 – 650°C, in excellent agreement with the observations of Bucher-Nurminen (1982). Reaction (1) produces pure CO2 and hence very little reaction progress can occur at H2O-rich conditions, unless temperature increases significantly or the amount of CO2 produced is diluted by an externally derived H2O-rich fluid. Hence we conclude that infiltration of water-rich fluids was needed to produce the periclase zone. In addition, thermal gradients were less than 50°C during its formation.

Stable isotope data provide additional information on the mechanism driving the metamorphic mineral reactions (e.g. Rumble, 1982; Ferry, 1991; Nabelek et al., 1992; Baumgartner & Valley, 2001). The measured \(^{13}C/^{12}C \) and \(^{18}O/^{16}O \) depletions in the marbles within \(\sim 40 \text{ cm} \) of the igneous contact require infiltration of a low \(^{18}O \) and \(^{13}C \) fluid. The source of the isotopic depletion is either the mafic rocks or fluid flowing along the contact between the carbonates, similar to the suggestion of Gerdes et al. (1999) for brucite marbles in the summit area of Cima Uzza. The original sedimentary values (Gerdes et al., 1999) are maintained at about 80 cm away from the contact. Assuming that the fluid infiltrated perpendicular to the contact along the measured profiles into the carbonates, the short distance of isotope alteration suggests a limited amount of fluid infiltration. Further, the equivalent positions of the C- and O-isotope exchange fronts indicate a fluid composition of \(X(\text{CO}_2) = 0.5 \) for the infiltrating fluid (Baumgartner & Valley, 2001). Such a high \(X(\text{CO}_2) \)
fluid composition is incompatible with the phase equilibria, which require \(\text{H}_2\text{O} \)-rich conditions at the preferred temperatures (605–650°C) of periclase formation (Fig. 5). Cathodoluminescence (CL) images obtained on selected samples revealed no zoning, either in single dolomite (indicating retrograde reaction) or calcite crystals. Similarly, no chemical zoning is apparent based on EMP analysis. Consequently, we interpret the absence of such zoning patterns to indicate that the fluid causing the isotopic shift was indeed a high-\(T \) fluid (605–650°C), causing mineral reaction, and not a late-stage meteoric fluid (\(T < 605^\circ \text{C} \)) as has been argued for isotope profiles in Naxos (Lewis et al., 1998).

The relative positions of reaction and isotope exchange fronts have been addressed in several studies using simple infiltration models (Baumgartner & Rumble, 1988; Bickle & Baker, 1990; Ferry, 1991). These models assume isothermal infiltration of a fluid with a different isotopic composition into a rock column, whereas local equilibrium is maintained during isotope exchange and mineral reactions. Baumgartner & Rumble (1988) have shown that the advance of the O-isotope front is independent of temperatures. Baumgartner & Rumble (1988) have shown that the advance of the O-isotope front is independent of temperature and the original isotopic composition of the host rock. The equilibrium assumption reduces the calculation of the velocity of the isotope exchange front to a simple mass-balance calculation, dependent only on the cumulative fluid flux and the relative abundance of oxygen in the fluid and the rock, respectively. However, equilibrium \(X'(\text{CO}_2) \) for the periclase-forming reaction increases with increasing temperature (Fig. 5). Because the reaction progress depends on the difference between equilibrium and infiltrating \(X'(\text{CO}_2) \) (Ferry, 1991), the advance of the reaction front will depend not only upon the amount of fluid infiltration and its composition, but also upon the temperature at which infiltration takes place (Ferry & Rumble, 1997; Ferry & Gerdes, 1998).

The temperature required for the observed location of the reaction front to be compatible with the locations of the C- and O-isotope fronts, assuming 1D fluid flow perpendicular to the contact, can be evaluated according to calculations for a simple infiltration model (Korzhinskii, 1965; Frantz & Weisbrod, 1974; Baumgartner & Rumble, 1988). Assuming a rock column of 1 m length and a cross-sectional area of \(1 \text{ cm}^2 \) consisting of pure dolomite one can calculate the relative positions of the isotope and reaction front as a function of temperature [equilibrium \(X'(\text{CO}_2) \)] and infiltrating \(X'(\text{CO}_2) \). Based on the amount of O in the dolomite, the O-isotope front will advance about 9.5 cm per mole of infiltrating pure \(\text{H}_2\text{O} \) fluid. However, an advancement of the reaction front 10 times further than the isotope alteration front (i.e., about 95 cm per mole infiltrating pure water), as observed in the outcrop, requires equilibration of the fluid phase at an \(X'(\text{CO}_2) \) value of 0.6 for reaction (1) by mass balance. This equilibrium \(X'(\text{CO}_2) \) value in turn suggests a temperature of \(\sim 760^\circ \text{C} \) for the periclase-forming reaction (Fig. 5). Hence, the relative positions of the reaction and isotope exchange fronts could be explained by infiltration of a limited amount of a water-rich, high-\(T \) fluid phase. Nevertheless, this calculated temperature, which has to be regarded as a minimum value as infiltration of essentially pure water was assumed, clearly appears to be too high to be realistic and is in strong disagreement with the thermometry data (Buchner-Nurminen, 1982; this study). Alternatively, the superimposition of the carbon and oxygen isotope fronts could be the result of fluid flow oblique or even perpendicular to the sample traverse (e.g. parallel to the igneous contact; Gerdes et al., 1995). The resulting isotope profiles then represent the side of a propagating infiltration front as suggested by Yardley & Lloyd (1995). Because the principal vector of advection would now be parallel to the igneous contact, the isotope exchange fronts in the measured profile would primarily reflect diffusion and dispersion towards the side. Consequently, the resulting profiles exhibit sharp fronts that are not strongly separated, and that are displaced only a very limited distance from the igneous contact (Gerdes et al., 1995).

In summary, the geometry and the dimension of the outcrop, the sharp reaction front within the xenolith, the Ce–Dol thermometry data (albeit partially reset), and stable isotope compositions suggest a magmatic origin for the fluid phase. The lack of CL zoning patterns argues against significant late re-equilibration of the isotopic compositions of the carbonates.

The simple infiltration models presented above all assume local equilibrium for the mineral reactions. This results in a sharp reaction front regardless of whether fluid transport is assumed to be dominated by diffusion (Frantz & Mao, 1976) or advection (Frantz & Weisbrod, 1974; Baumgartner & Rumble, 1988; Lichtner, 1996). The rock is found to be completely reacted upstream of the front, whereas downstream no reaction occurs. Although the described outcrop exhibits a sharp boundary between brucite marbles and non-reacted carbonate, dolomite is present in all samples from the profiles. Only in the sample closest to the contact are the textures consistent with a retrograde origin for dolomite (Fig. 7). If dolomite in all the other samples is not late (either from retrograde reaction involving periclase or brucite or as a late precipitate), its presence indicates that the periclase reaction did not go to completion, and suggests that reaction kinetics are indeed significant in this case.

The CSDs of periclase provide information on the kinetics of crystallization. Rates for the nucleation and growth of minerals are linked to the reaction affinity (e.g. Rubie & Thompson, 1985; Carlson et al., 1993; Roselle et al., 1997; Lasaga, 1998). The possible relationship between nucleation and growth rates as a function of the reaction affinity
is schematically shown in Fig. 13. The reaction affinity for the periclase-forming reaction is given by

\[\Delta G = -RT \ln \left(\frac{X_{\text{CO}_2}^{\text{eff}}}{X_{\text{CO}_2}^{\text{eq}}} \right). \]

(3)

In equation (3), \(R \) is the universal gas constant, \(X_{\text{CO}_2}^{\text{eff}} \) is the actual mole fraction of CO₂ in the fluid phase, and \(X_{\text{CO}_2}^{\text{eq}} \) is the equilibrium \(X_{\text{CO}_2} \) value. Here we neglected possible temperature gradients, for simplicity.

A kinetic model is shown schematically in Fig. 14a, where an H₂O-rich fluid infiltrates a rock column of dolomite with an arbitrarily chosen equilibrium value for \(X_{\text{CO}_2} \) at a constant temperature, creating an infiltration front. The actual interplay of advection, diffusion and reaction will determine the exact advance and shape of the infiltrating front. The actual reaction affinity for the system at a given position and time is roughly proportional to the deviation of the effective \(X_{\text{CO}_2} \) value from its equilibrium value with time as illustrated in Fig. 14b and c. As the front advances through the column over time, the contributions of diffusion, dispersion, and reaction kinetics will progressively broaden the front. The reaction affinity profile will hence also broaden, increasing the length of time favorable for growth and increasing differences in rates of change in reaction affinity [slope \(\frac{\partial X_{\text{CO}_2}}{\partial t} \)] with time. At the initial stage the front is very sharp, causing a rapid change in \(X_{\text{CO}_2} \). The resulting increase to high reaction affinities will produce high nucleation rates when compared with growth rates (Fig. 14a). Consequently, a large quantity of periclase
crystals will nucleate over a very short time span and start to grow rapidly. Thus, a restricted CSD with high proportions of similar grain sizes, consistent with a surface-controlled growth mechanism (Carlson & Denison, 1992), is predicted (Fig. 15b).

The reaction kinetics, diffusion and dispersion will successively flatten the front with time and the change in $X(\text{CO}_2)\), $\delta X(\text{CO}_2)/\partial t$, decreases (Fig. 14b). During the initial stage of reaction this smaller spatial gradient in CO$_2$ concentration will allow fewer periclase crystals to nucleate over the same time interval, as a result of the smaller rate of increase in reaction affinity. Subsequent increase in slope, $\delta X(\text{CO}_2)/\partial t$, for the next time interval of reaction will increase reaction affinity, which will increase the nucleation rate and allow a relatively large number of crystals to nucleate over a relatively short time interval. The resulting population of crystals would include some early, large crystals and a relatively large number of younger crystals of similar size (Fig. 15c). At progressively later times (greater distances), the maximum slope of the reaction affinity–time profile for this intermediate stage of growth decreases again, expanding the time interval for nucleation and growth but decreasing the rates of increase in nucleation (Figs 14c and 15d). Hence, samples at progressively greater distance from the igneous contact can exhibit similar sizes for the majority of periclase crystals but also contain progressively greater fractions of larger grains, reflecting the early nucleated grains, which subsequently had more time to grow (Fig. 15c and d). Further, CSDs will become progressively flatter with increasing distance from the magmatic contact, reflecting the overall longer time interval of growth (Fig. 10). All these changes are observed in the CSD diagrams (Figs 9–12).

The reactive surface area of the reactant dolomite is another parameter controlling the reaction rate for the periclase-forming reaction. Progressive consumption of dolomite will decrease its reactive surface area and thus also decrease the rate of reaction. A simple rate law is given by the equation

$$\text{rate} = S_A K \left[1 - \left(\frac{X_{\text{eff}}(\text{CO}_2)}{X(\text{CO}_2)}\right)\right]$$

where S_A is the reactive surface area of the rate-limiting mineral, and K is the kinetic constant. In addition, the surfaces of dolomite grains can potentially be isolated during progressive reaction, although fluid infiltration was pervasive. These two effects could potentially stop or at least significantly slow down the reaction, preserving remnant dolomite in parts of the rock.

CONCLUSIONS

Brucite pseudomorphs in contact metamorphic marbles in xenoliths near the Cima Uzza summit of the southern
Adamello Massif are the result of retrograde replacement of periclase crystals. Prograde formation of periclase crystals in these marbles is the result of high-temperature disequilibrium infiltration of H$_2$O-rich fluids. The short distance of 13C/12C and 18O/16O depletion and the coincidence of the C and O isotopic fronts indicate either a relatively small flux of infiltrating fluid with an $X(\text{CO}_2) = 0.5$ normal to the igneous contact or that the infiltration front was oblique to the sample profiles. Although there is a sharp boundary separating the brucite marbles from non-reacted dolomite, reactant dolomite is still present in most samples of brucite marble. The incomplete periclase reaction is interpreted to be the result of kinetically controlled mineral growth at near-isothermal conditions. Progressive reaction may sufficiently decrease the kinetics by decreasing the reactive surface area of dolomite, isolating its crystal surfaces to reduce the rate, or perhaps even to stop the periclase reaction, leaving reactant dolomite in most samples. The reaction affinity in the system is controlled by the shape of the fluid infiltration front. As diffusion and dispersion become more effective with increasing distance from the magmatic contact, the infiltration front and reaction affinity profile broaden progressively. As a result, the reaction affinity will increase more slowly at progressively later positions of the reaction front, yielding initially lower nucleation and growth rates, smaller changes in nucleation and growth rates, but longer time intervals for growth. The results are progressively broader grain size distributions, including greater proportions of larger periclase crystals with increasing distance from the igneous contact but a smaller number of grains. Hence, this interpretation is compatible with the CSDs measured for both profiles in this study (Figs 9–12).

ACKNOWLEDGEMENTS

This study is part of the first author’s Ph.D. thesis. Comments and discussions with M. Cosca and T. W. Vennemann on earlier versions of the manuscript are gratefully acknowledged. Financial support was provided by grant 2100-066996 from the Swiss National Science Foundation. Insightful reviews by S. Penniston-Dorland, B. Yardley, D. Jerram, and M. Herwegh helped us to improve the clarity of the paper significantly. B. Grobéty, P. Ulmer and A. Wohlers are thanked for their help in obtaining the original geological maps of the Cima Uzza area. We also thank R. Giereô for the editorial handling.

REFERENCES

