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Abstract

A general, recursive algorithm is presented for computing the expected Fisher information matrix
for state-space model parameters. Simulation results are featured where known Fisher informa-
tion matrices corresponding to simple state-space models are estimated using both observed and

expected information matrices. The accuracy of the two approaches is compared.
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1. Introduction

Suppose that 0, represents a vector of maximum likelihood estimates for a model parameterized
by 6 with associated likelihood L(6 |Y;). Let 6, represent the true value of @, and let I,,(#) denote

the Fisher information matrix for § based on Y,; i.e.,

B 0*InL(6 |Yy)

Let

I1(0,) = lim lIn(Qo),

n—00
where it is assumed that this limit exists, and that I(6,) is positive definite.
It is well-known that in most settings, a set of non-restrictive regularity assumptions can be
identified which will ensure that /n(6, — 6,) is asymptotically multivariate normal with mean 0
and covariance matrix I(6,) !.

To estimate I,,(6,) for the approximation of I(6,) !, it is common to use either the ezpected or

the observed Fisher information matrix. The expected information matrix is defined as

N 9% 1n L(6Yy,)
I,(0n) = [E l_WO’n |94, (1.1)
whereas the observed information matrix is defined as
- 0?2 InL(6 |Yy)
Zn(0n,Yy) = [—W |0:0n. (1.2)

Perhaps the primary advantage of using I,(6,) over Z,,(6,, Y;) as an estimator of I,,(6,) is that
I,(0,) is a maximum likelihood estimator (MLE) of I,,(6,). (This fact follows directly from the
invariance property of MLE’s.) Yet in many instances, evaluating the expectation in (1.1) is either
unfeasible or impractical, making In(én, Y,) the estimator of choice. Such has generally been the
case in the setting of the state-space model, where the structure of the Gaussian log-likelihood

often makes I,(6,) inaccessible.
In this paper, we present a relatively simple, recursive algorithm for computing In(én) in the
state-space setting. Our algorithm is general, and does not rely on restrictive simplifying assump-

tions. Moreover, it does not involve numerical differentiation, since all required derivatives are

evaluated analytically. The algorithm is therefore both flexible and stable.



In Section 2, we provide a brief overview of the state-space model and maximum likelihood
estimation in the state-space setting. In Section 3, we present our recursive algorithm for comput-
ing In(én) In Section 4, we discuss simulation results where known Fisher information matrices
corresponding to simple state-space models are estimated using both In(én) and In(én,Yn). The

accuracy of the two methods is compared. Finally, in Section 5, we present a short practical

application.

2. The State-Space Model and ML Estimation

The state-space model is defined by the equations

ye = Ay + vy, (2.1)
Iy = (I):I?tfl + Wi, (22)
for t = 1,...,n time periods. In (2.1), y; is an observed g-dimensional process, A; is a known

q X p design matrix, z; is an unobserved p-dimensional state process, and the v; are g-dimensional,
zero-mean, independent disturbances with common covariance matrix R. In (2.2), ® is a p X p
transition matrix, and the w; are p-dimensional, zero-mean, independent disturbances with common
covariance matrix Q.

The mean and covariance matrix of x, (the initial ;) will be denoted by p and X, respectively.
It is often assumed that p and X are known, since in many applications, y and > are fixed at
values predetermined by the investigator. Also, it is usually assumed that z,, the w;, and the v,
are mutually independent and multivariate normal.

The set of unknown parameters of the system generally consists of components of @, (), and R.
To represent these parameters, we will let § denote a d-dimensional vector that uniquely determines
the model coefficients and correlation structure: ie., ® = ®(0), Q@ = Q(0), R = R(0). We will let
Y; denote the observed data up until time ¢: i.e., Y; = [y1,..., .

The likelihood L(6 |Y,,) is generally written in its innovations form (Schweppe, 1965). The
Kalman (1960, 1961) filter innovation at time ¢ is defined as

er(0) =y — AN (0)  where  z7N(0) = E(zy |Yi_1).



We will let P!~"() denote the conditional covariance matrix of (z; — z/"(#)) given Y; 1; i.e.,

PENO) = B((x — 21 (9)) (w0 — 21(6)) Vi),
This will allow us to write the conditional covariance matrix of the innovation given Y;_1 as follows:
20(0) = E(er(0) e (8) |Yi 1) = AP (0) A + R.

The complete Kalman filter equations provide us with a recursive algorithm for evaluating

successive values of z/71(0), e;(0), PL7'(0), and (), as well as
zj(0) = B(w, [Y;) and  P{(0) = E((z; - #{(9)) (z: — z{(0)) |Y7).

The equations are as follows:

(i) ;7' (0) = ®z;=1(0)

(i) ex(0) =y — Ay '(0)

(iii) PIH0) = P (0) +Q
(iv) 54(0) = A, PI7Y(0)A, + R
(
(
(

v) Ki(0) = P/HO) AT ()
z;(0) + Ki(0)er(9)
vii)  P/(8) = P/7'(0) — Ki(0) AP/ (9)

)
)

vi) zl(6

The starting values 29 = p and P? = ¥ initialize the filter. The matrix K;(0) is called the gain or
weight matrix.

Under the independence and normality assumptions on z,, the wy, and the v;, the innovations
are mutually independent and multivariate normal. Thus, for the log of the likelihood L(6 |Y},), we
can write

1 « 1 & ,
L0 [Ya) oc =5 S [S0)] - 5 3 er0) 3 (0)ea() (2.3)
t=1 t=1
Since (2.3) is generally non-linear in the parameters, the maximum likelihood estimates 6, are

usually found by using an iterative search algorithm. Maximum likelihood estimation can also be

carried out via the EM algorithm. Details are provided in Shumway and Stoffer (1982).



As shown in Harvey (1989, pages 140-142), the (i, )" element of the Fisher information matrix
is given by

L) = B [_821nL(9 |Yn)l _

90;00;
i (ot fgt )2e( (5r) o (%57) ) es

t=1 t=1

where 1 < 14,7 < d. Recursive equations for analytically evaluating

8et(0) 82t(0)
a0, 4 50

for : = 1,...,d can be derived simply by differentiating each of the Kalman filter equations with
respect to 0;. (For details, see Harvey, 1989, pages 142-143.) These differentiated equations can be
evaluated successively alongside the regular filter equations for t =1,...,n.

Sets of conditions which are sufficient to ensure the asymptotic normality of 0,, are referenced
and discussed in Harvey (1989, pages 128-130). Provided that a set of such conditions holds, we

have the familiar result

~

V0, — 0,) = Ny(0,1(6,)74).

3. Evaluating the Expected Fisher Information Matrix

Our goal is to estimate the Fisher information matrix at 6,: I,,(6,).

A typical approach consists of evaluating

8et(0) 8Et(9)
00; |9:é”’ and 00; |0:é”

E;l(én)a

for 1 <7 <d,1 <t < n, and using these quantities in (2.4) without retaining the expectation
operator on the second term (Harvey, 1989, page 142). This essentially amounts to estimating
I,,(6,) using In(én,Yn). Although
PInL@O|Y,) , 1& L 05(0) <y O54(6) " 0 (0)\ .y, [ Oei(6)
——————F = tr| X, (0 3, (0 >, (0
96;00; 7&2;7” 05,2 )5, +Z<ao,~> e O 50, )

t=1

the left-hand and right-hand expressions differ by a factor having expectation zero. Ignoring this
factor in computing In(én, Y,), therefore, amounts to discarding a quantity which estimates zero.
The primary motivation for estimating I,,(6,) with Z,(0,,Y;) is that a straightforward evalua-

tion of the expectation in (2.4) is not typically possible, unless the model is of a simple form (such



as a univariate autoregression). In what follows, we present a recursive algorithm for computing
this expectation in a general setting. The algorithm provides us with an exact expression for (2.4)
involving only 0. Evaluating this expression at 6,, yields the expected information matrix In(én)
The development of our algorithm begins with representing each innovation e;(0) as an explicit
linear combination of y;, y¢—1,...,y1, and p. With y, = 29 = p and K,(0) defined as a p X p

identity, we can write

er(0) =Y Fp(@) yr (1<t<n), (3.1)

where the F}(0) are defined as follows:

FlO) = T (1<t<n),
FL0) = —A®K1(0) (1<t<n),
Fi(0) = =AU — Ki1(0)Ay—1)) -+ (B(I — Ky (0) Ag1)) P K (6)

(2<t<n, 0<k<t—2).

(This result is easily verified by using the Kalman filter equations labeled (i), (ii), and (vi) to
express e1(f) in terms of y; and y, = 2% = p; e2(0) in terms of yo,y1, and y, = 9 = p; e3(0) in
terms of y3, yo, y1, and y, = 2% = u; etc. See, for example, Watanabe, 1985.)

We can express the coefficients F}(0) using convenient recursions by writing

Fi(0) = Ri9) (1<t<n), (3.2)
Fi(6) = —ARL(O) (1<t<n, 0<k<t-—1), (3:3)
where
RiO) = T (1<t<n), (3.4)
R} ((0) = ®K, 1(0) (1<t<n), (3.5)

Ri(0) = (I —K, 1(0)A 1R}, " (0)

(2<t<n, 0<k<t—2). (3.6)

Now with representation (3.1) for e;(#), we can write

der(0) < [OFLO) ,
= — 82 <t< .
20, kz:% 20, ye foralli (1<t <n), (3.7)



where

OF!(6) ORL(0) .

- foralli (1<t<
20, 20, oralli (1<t<n),
OF(0) ORL(0) .

- _A for all
96, top, T

(1<t<n, 0<k<t—1),

and
ORL(0) .
= <t<
20, 0 forall: (1<t<n),
ORi_,(0) _ 09 OK-1(0)
Toi = 8_02 thl(g) + P Tgl for all ¢
(1<t<n),
ORL() 00 i1
20, = %, (I — Ki—1(0)Ai—1) R, (0)
0K 1(0) _
- (g Ae) RO
t—1
+® (I — Ky—1(0)Ai—1) 3}3(,%79(0) for all
i

2<t<n, 0<k<t—2).

Note that in the preceding,
0K, (0)
00;
since K,(#) is an identity. For 1 < ¢ < n, the partials
0K, ()
00;

=0 for alls,

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

can be evaluated for all 7 using the recursions obtained by differentiating the Kalman filter equations

with respect to 0; (Harvey, 1989, page 143).
Representation (3.7), together with (3.8), (3.9), and (3.10), yields

Dey(6) _ « OR} () _
= —A, | ——~ f 11 1<t<n).
20, kz::o ‘ 20, yr foralli (1<t<n)

This expression allows us to write (2.4) as follows:

. 1 & . .
t=1 ¢

o - L ORL () .. [ OR!(0)
+§tr (Etl(g) (ZZAt ( BkHi ) E{yry, } ( 8l0j

k=0 1=0
(1 <1,5 <d).

)

’

)

(3.13)



Note that the only term in this representation for I,,(6;4,7) which is not explicitly written in
terms of @ is E{yry,} (0 < k,I < n). Using the state-space equations (2.1) and (2.2) along with

the convention y, = u, we can show that this expectation may be expressed as follows:



Elyry} = Ak{z °Q(® ) HI-F1 A, + A, 0F (E+W)(<I>')ZA} when 1 < k <1 <n,
- Ak{z(l)s+k DQ(®) YA + A0 (2+W)(<1>’)l,4; when 1 <1<k <mn,

= Ak{z Q) } Ay + Ay (S + ) (@) AL + R when 1 <k =1<n,

E{yoy} = pp ( )Az for 1 <1 <n,
E{yky;} = A®Fpy  for1 <k <n,

!

E{yoy,} = pp- (3.14)

Together, (3.13) and (3.14) provide us with an expression for I,,(0;1, j) written entirely in terms
of . Evaluating I,,(0;4,7) at 6 = ,,, therefore, will give us the elements of I,,(6,,).

The steps in the algorithm can be outlined as follows:
(a) Evaluate E{yyy,} at 6 = 0, for 0 < k,l < n using (3.14).

(b) Proceed through the Kalman filter equations for ¢ = 1,...,n, holding 6 fixed at 6,. Expand

the set of filter equations to evaluate the following at each ¢.

(i) Using the recursions in Harvey (1989, page 143), obtain

0%4(0) 0K,(0)
96, 0=0n 4 55~ lo=0,

(1<i<d).

(ii) Using (3.5), the recursions (3.6), (3.10), (3.11), and the recursions (3.12), obtain

Rt 1(9 ), Rt Z(én)a ceey RZ@n)?
AR!(H) OR!_,(0) ORL(6) .
o0 Vo= =0 g, o= e g g, (LTS

(iii) Obtain the contribution to the expected Fisher information matrix at time t:

Lwig) = L (z (o)azt()zt—l(f))aztw))bgn

00; 00;
t t t t

Tt (ztl(o) (ZZAt (aR 16 )> By} <3R “”) A;)>|9:an
k=01=0

1<ij<d).



(c) At the termination of the Kalman filter equations, obtain the elements of the expected Fisher

information matrix I,,(8,) by evaluating
naILa] ZI (On;i,9) (L <4d,5 <d). (3.15)

It should be noted that in many applications, the number of computations required to evaluate
I,(8,) can be considerably reduced by monitoring the powers of ®(6,) in computing (3.14) (at § =
0,,), and by monitoring the values of It (6,;4, 7). Often, the terms in (3.14) involving “large” powers
of @(én) will be negligible, and the Iﬁ(én; i, 7) will converge to steady-state values as t increases (for
each i, 7). This should be the case when the eigenvalues of ®(6,,) are within the unit circle, meaning
that the state process represented by the fitted model is stable. In such settings, it is efficient to
ignore terms in (3.14) involving powers of @(én) large enough to produce approximately the zero
matrix, and to discontinue evaluating Ifl(én;i, j) once t is large enough so that these terms are
approximately constant. If the Iﬁb(én; i,7) appear nearly constant by time period ¢, and no further

terms are computed, (3.15) can be replaced with
n,Z] ZI n,ZJ (’I’L—to) Iﬁo(énala]) (lglajgd)

4. Simulation Results

In this section, we present simulation results where known Fisher information matrices corre-
sponding to some simple state-space models are estimated using both In(én) and In(én, Y,). The
accuracy of the two methods is compared.

The type of model used in our simulations is the p'’-order univariate autoregression with ob-

servation noise. This model can be written as
Y =2t + vy, v ~ did N(O,a?z),
2t = ¢12i—1 + p2zp—o2 + ... + qﬁpzt_p + €, € ~ iid N(O,Ué).
In state-space form, the model is expressed by writing the observation equation (2.1) as

2t

Zt—1
yt:(laoa"'ao) X + Vg,

Zt—p+1



and the state equation (2.2) as

b1 2 ... Pp1 Py
2t Zt—1 €t
1 0 0 0
Zg—1 29 0
= 0 1 0 0 +
ot 0 0 10 o 0

Here, the covariance matrix @ of the state noise vector is a p X p matrix with all zero entries

except for the entry in the upper left-hand corner, which is 0'22. The observation noise is scalar,

and has variance R = 0%3.

The parameter vector for the model is the (p + 2) x 1 vector

0= (¢1, 62, , Pps 00, 05) -

The parameter estimates 0,, are obtained using the EM algorithm (Shumway and Stoffer, 1982).
In the algorithm, ¥ is fixed at the identity, and p is set equal to the Kalman smoothed estimate
2"(0) = E(x; |Y;) evaluated at the current value of ,,. (See Shumway, 1988, page 180.)

In each simulation set, 200 realizations of size n are generated from a model parameterized by a
selected 6,. For each realization, In(én) and In(én, Y,,) are computed. The accuracy of In(én) and
T, (0,,,Yy) as estimators of I,,(6,) is ascertained by computing the mean square error (MSE) of the
estimates of the ordered eigenvalues of %In(OO) provided by the ordered eigenvalues of %In(én) and
%In(én, Y,). The MSE’s are averaged over the 200 realizations, and the average MSE’s are reported
in Table 1. The ratio of the average MSE for %In(én) over the average MSE for %In(én, Y, ) is also
reported. The elements of I,(6,) are determined by evaluating each of (3.13) and (3.14) at 6,.

Results based on four different stable models (of orders p = 1 and p = 2) and three different
sample sizes (n = 50, n = 100, and n = 150) are featured in Table 1. (The models were chosen so
that the sets of eigenvalues of the four ®(6,) matrices have various magnitudes yet are all within
the unit circle.) The results illustrate two phenomena of interest. First of all, the average MSE
for %In(én) is consistently less than the average MSE for %In(én, Y,,), which is not surprising since
%In(én) serves as a maximum likelihood estimator of %In(OO) and %In(én, Y,) does not. Secondly,
the ratio of the average MSE for %In(én) over the average MSE for %In(én,Yn) becomes close

to one as the sample size increases, which should be expected since %In(én) and %In(én,Yn) are

10



asymptotically equivalent. Nevertheless, the results seem to indicate that in smaller samples, In(én)

serves as a considerably more accurate estimator of I,(6,) than In(én, Ya).

5. An Application

Shumway (1988, pages 180-181) considers a bivariate series consisting of 64 measurements on
the temperature and the salt level of surface soil at equally spaced locations on a rectangular field.
If the temperature measurements are modeled as a univariate series, a first-order autoregression
with observation noise seems to provide an adequate fit to the data. For this model, the maximum
likelihood estimates of the parameters are c;ASI = 0.6779, 6 = 0.1309, and ¢, = 0.088L1.

Using the inverse of I,,(6,) to obtain the estimated standard errors of the maximum likelihood

estimates yields

SE(¢1) =0.2075, SE(6%) = 0.0677, SE(65) = 0.0779.
Using the inverse of In(én, Y, ) produces

SE($1) =0.1985, SE(6%) =0.0671, SE(67) = 0.0765.

In this application, note that the estimated standard errors are quite similar, and that the
estimated standard errors based on In(én, Y,) are less that those based on In(én) In comparable
sample-size applications, the latter is a common occurrence although the former is not. It is
generally the case that the diagonal elements of In(én, Y,) exceed those of In(én), and that the
diagonal elements of the inverse of I, (6,,) exceed those of the inverse of Z,,(6,,, Y, ). Thus, estimated
standard errors based on In(én, Y,,) are generally less than those based on In(én), and may therefore

have a tendency to be overly optimistic.

6. Conclusion

We have developed and summarized a general, recursive algorithm for computing the expected
Fisher information matrix for state-space model parameters. We have also presented simulation
results which indicate that in smaller sample settings, the expected information may more accu-
rately estimate the true information matrix than the observed information. Our algorithm can be
conveniently incorporated into any state-space model fitting routine based on maximum likelihood,

making the expected information readily available for investigation and inference.
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Table 1. Simulation results comparing %In(én) and %In(én, Y,) as estimators of %In(eo).

Ave. MSE | Ave. MSE (Ave. MSE for 11,(6,)) +

n 0, for 11,(0,) | for 17,,(0,,Yy) | (Ave. MSE for 17,(8,,Y,))
1| 50 (0.90,0.50,1.00) 3.449 8.554 0.403
2 1100 (0.90,0.50,1.00) 2.358 3.136 0.752
3 | 150 (0.90,0.50,1.00) 1.971 2.115 0.932
4 | 50 (-0.80,0.25,1.00) 0.786 1.284 0.612
5 | 100 (-0.80,0.25,1.00) 0.399 0.507 0.788
6 | 150 (-0.80,0.25,1.00) 0.262 0.287 0.914
50 (0.99,-0.80,0.50,1.00) 1.660 5.184 0.320
8 | 100 (0.99,-0.80,0.50,1.00) 1.092 1.973 0.553
9 | 150 (0.99,-0.80,0.50,1.00) 0.688 0.855 0.804
10 | 50 (1.40,-0.49,0.25,1.00) |  53.179 95.961 0.554
11 | 100 (1.40,-0.49,0.25,1.00) 41.419 52.158 0.794
12 ] 150 (1.40,-0.49,0.25,1.00) 22.594 23.762 0.951
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