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ABSTRACT

The Schwarz (1978) information criterion, SIC, is a widely-used tool in model selec-
tion, largely due to its computational simplicity and effective performance in many
modeling frameworks. The derivation of SIC (Schwarz, 1978) establishes the crite-
rion as an asymptotic approximation to a transformation of the Bayesian posterior
probability of a candidate model. In this paper, we investigate the derivation for the
identification of terms which are discarded as being asymptotically negligible, but
which may be significant in small to moderate sample-size applications. We suggest
several SIC variants based on the inclusion of these terms. The results of a simu-
lation study show that the variants improve upon the performance of SIC in two

important areas of application: multiple linear regression and time series analysis.



1. Introduction

One of the most important problems confronting an investigator in statistical
modeling is the choice of an appropriate model to characterize the underlying data.
This determination can often be facilitated through the use of an information theo-
retic criterion, which judges the propriety of a fitted model by assessing whether it
offers an optimal balance between “goodness of fit” and parsimony.

The first information theoretic criterion to gain wide-spread acceptance as a
model selection tool was the Akaike (1973, 1974) information criterion, AIC. Many
other criteria have been subsequently introduced, including well-known measures
by Schwarz (1978), Rissanen (1978), Akaike (1978), Hannan and Quinn (1979), and
Hurvich and Tsai (1989). Although AIC remains arguably the most widely used
of the model selection criteria, the Schwarz information criterion, SIC, is a popular
competitor. In fact, SIC is often preferred over AIC by practitioners who find appeal
in either its Bayesian justification or its tendency to choose more parsimonious
models than AIC.

Schwarz (1978) rigorously establishes SIC “for the case of independent, identi-
cally distributed observations, and linear models,” under the assumption that the
likelihood is from the regular exponential family. Haughton (1988) extends the
derivation to a context where the likelihood is from the curved exponential family.
Cavanaugh, Neath, and Shumway (1995) present a derivation which does not re-
quire that the likelihood has any particular form, but only assumes that it satisfies
a set of non-restrictive regularity conditions. Additional generalizations of Schwarz’s
derivation are considered by Stone (1979), Leonard (1982), and Kashyap (1982).

As conveyed in the original derivation and subsequent extensions, the justifi-
cation of SIC is based on establishing that the criterion serves as an asymptotic
approximation to a transformation of the Bayesian posterior probability of a can-
didate model. Our interest lies in investigating this justification for the possibility
of retaining terms in the criterion which are asymptotically negligible. Such terms

would be of debatable value in large-sample settings, but may improve the effective-



ness of SIC in small to moderate sample-size applications.

In Section 2, we present a hueristic derivation of SIC and indicate how this
derivation suggests certain variants of the criterion. In Section 3, we consider the
performance of these variants in two important areas of application: multiple linear

regression and time series analysis. Section 4 concludes.

2. Variants of SIC

Let Y,, denote the observed data. Assume that Y, is to be described using a
model Mj, selected from a set of candidate models My, Mo, ..., M. Assume that
each My (1 < k < L) is uniquely parameterized by a vector 6, where ;0 is an
element of the parameter space ©(k).

Let L(0 | Yy) denote the likelihood for Y, based on Mj. Also, let kén denote
the maximum likelihood vector obtained by maximizing L(i0 | Y,) over ©(k). We
assume that derivatives of L(;0 | Y;,) up to order three exist with respect to ;60, and
are continuous and suitably bounded for all ;0 € © (k).

The motivation behind SIC can be seen through a Bayesian development of the
model selection problem. Let w(k) (1 < k < L) denote a discrete prior over the
models M, My, ..., My. Let g(x0 | k) (1 <k < L) denote a prior on 0 given the
model M.

Applying Bayes’ Theorem, the joint posterior of My and 0 can be written as

(k) (k0 | k) L(x0 | Yn)

F((hs 18) | V) = e ,

where h(Y),,) denotes the marginal distribution of Y,,.
A Bayesian model selection rule would favor the model M;, which is a posteriori

most probable. The posterior distribution for M}, is given by
Pl | Ya) = h(¥a) " (k) [ LG8 Ya) 968 | B) ot

Now consider minimizing —21In P(k | Y,,) as opposed to maximizing P(k | Y,).

We have

—2Wn Pk | V) = 2In {h(Y,)} — 2In {x(k)} — 21In {/L(ko 1Y) g(x0 | F) dke} .
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Since the first of the three terms on the right-hand side of the preceding expres-
sion is constant with respect to k, we can discard this term for the purpose of model

selection. We then obtain the proportionality

—2InP(k|Y,) o

S(k | Yn)

“2hufn()} -2 { [ 260 ¥) g | B dig} (21)

Now consider the integral which appears in (2.1):

[ LGO1Y0) 968 | 1) dut. (2.2)

In order to obtain an approximation to this term, we take a second-order Taylor

expansion of the log-likelihood about kén We have
» O L(xB,, | Yr)

lnL(kQ | Yn) ~ lnL(kén | Yn) + (kQ_ kén) 9.0
&0
1 ~ o [02InL(,0, | ) R
2(k, 10,) l 9000 (k0 — k9,,)

A n NN A~ ~
= LGh, | Ya) = 508 —48,) [Tn(uln, Yo)| 8 = 18),

where R
1 9InL(, | Y)
n 0100,0’

is the observed Fisher information matrix. Thus,

L0 | Ya) % Lluby | Y2) exp{ =5 (0= 10) [L8 Y] (0 =16

We can therefore rewrite (2.2) as follows:

[ TG0 1 V) g6 | F) dut ~

n A/|: N

L6y | V2) [esn{-3 T, Y2)] (0= 1) b 9601 B) et (2:3)

D
|
>
D
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The preceding Taylor approximation holds when .6 is close to kén Thus, the
approximation (2.3) should be valid for large n. In this instance, L(x0 | Y,) should
dominate the prior g(x0 | k) within a small neighborhood of 16,. Outside of this
neighborhood, L(;0 | Y;,) and the exponential term in (2.3) should be small enough

to force the corresponding integrands near zero.



Now consider evaluating the right-hand side of (2.3) using the noninformative

prior g(x€ | k) = 1. In this case, we have

[en {5 60-10.)" [ 7] (0- 10} o =

(2m) (B2 | 1,4, ¥2)] 72,
Substituting this result into (2.3) yields
[ L0681 2) 08 | k) i~ LG, | Vo) @) RGOV 1,0, v, 712, (2.4

(The preceding can be viewed as a variation on the LaPlace method of approximating
the integral (2.2). See Kass and Raftery, 1995. The approximation (2.4) is valid so
long as g(x@ | k) is noninformative or “flat” over the neighborhood of 16, where
L(;0 | Yy,) is dominant, although the choice of g(;x0 | k) = 1 makes our derivation
more tractable.)

We can use (2.4) and (2.1) to justify writing
Sk | Yy =
2 L0, | V) + dim (40 ) {m (%) } FIn | (0, V)| — 2n{r(k)}.  (2.5)

Ignoring terms in the preceding that are bounded as the sample size grows to infinity,

we obtain
S(k | Yy) ~ —2InL(;0, | ¥y) + (dim (18 ))(Inn) = SIC. (2.6)

Now suppose we reconsider the step which leads from (2.5) to (2.6). Expression

(2.5) involves the terms
In|I,(x0,,Y,)| and —2Inm(k), (2.7)

both of which are discarded for the definition of SIC. The former of these terms
depends on the data and the form of the candidate model; the latter depends on
the prior over the collection of candidate models. Both terms contain information

relevant to assessing the suitability of a fitted candidate model. Moreover, although



both terms are asymptotically negligible, in small to moderate sample-size settings,
either may be significant in relation to the two terms which define SIC.

Retaining either or both of the terms in (2.7) leads to variants of SIC which
are not only computationally accessible, but are also easily justified through the

derivation of the criterion. Define

SIC = —2InL(;0, | Yy,) + (dim (40 ))(Inn), (2.8)
SIC; = SICH In|L,(k0,,Yy)l, (2.9)
SIC, = SIC —2Inx(k), (2.10)
SIC;, = SIC+In|L,(10,,Yn)| — 2Inn(k). (2.11)

Since the Fisher information matrix is important in characterizing the likelihood
function for a candidate model, the term In|I,(10,,Yy)| provides an intuitively
reasonable correction to SIC. The term —2In7(k) would also provide a relevant
correction in instances where a priori, an investigator favors some candidate models
over others. (For instance, in modeling a monthly time series, models which contain
seasonal components may be favored over ones which do not.) Since a certain degree
of prior knowledge is needed to specify the models in the candidate collection, an
investigator enters any modeling problem with a preference towards specific types of
models. Thus, a meaningful definition of w(k) should be possible in many practical
applications. Omitting this correction would be equivalent to taking w(k) to be a
uniform prior over the models My, Ms, ..., My.

It should be noted that the appearance of the observed Fisher information
I, (kén, Y,) in the approximation of (2.2) leading to SIC has been observed in various
discussions and developments of SIC: e.g., Leonard, 1982; Haughton, 1988; Kass and
Raftery, 1995. In particular, Kashyap (1982) recommends a criterion similar to SIC
for order selection in autoregressive moving-average modeling. Yet the inclusion of
the term In |In(kén, Y,,)| in the evaluation of SIC is not practiced, despite the fact
that it could be easily computed in many applications. This is most likely due to

the fact that the term is of a constant order, whereas the two terms comprising SIC



are of orders n and Inn.

We should also note that both SIC and the proposed variants involve the approx-
imation of the integral (2.2) for the purpose of approximating (2.1). Certainly, one
may choose to directly evaluate (2.2) using a computationally intensive technique
such as Gibbs sampling, importance sampling, Gaussian quadrature, etc. (See Kass
and Raftery, 1995.) Such an approach would be a very important component of
a formal Bayesian analysis, since it would lead to an exact determination of (2.1).
We argue, however, that part of the popularity of SIC stems from its computational
simplicity and its wide-spread applicability. The proposed SIC variants share these
same two advantages, both of which would be lost if the direct evaluation of (2.2)

was attempted.

3. Simulation Study

We examine the performance of the SIC variants (2.9), (2.10), (2.11) against
traditional SIC (2.8) in a simulation study which focuses on two important modeling
frameworks: multiple linear regression and time series analysis. We consider small

to moderate sample-size settings.
3.1 Regression

Consider the ordinary linear regression model
y = XB + ¢, e ~ N,(0,0% 1), (3.1)

where y is an n x 1 observation vector, € is an n x 1 error vector, fisa (r+1) x 1
parameter vector, and X is an n X (r + 1) design matrix of full-column rank.

The goal is to determine which potential independent variables should be in-
cluded in X in order to adequately describe the response variable y. For ease of
exposition, we will assume our candidate models are nested. This corresponds to a
practical setting where the predictor variables can be listed in some order of impor-

tance.



The design matrices for the models under consideration will have the following

layouts:

1 1 z11 1 11 ... iR
Xo=1| |, Xi=]: , ..., Xp=
1 1 zp1 1 zp1 ... Tpr
We will denote the corresponding candidate models (3.1) by My, My,..., Mg, re-
spectively.
The quantities necessary to calculate SIC and its variants are easily obtained.

Since the likelihood is given by

Lo 1y) = (2n0%) Fexn {5 Iy — x4},

we have

—2InL(B3,6 | y) = nin(2re) + nIn(5?)

where

6’2

Iy — XB1I*.

>

SEES

For the observed Fisher information matrix for the parameter vector 6 = (ﬁ’a),,

one can easily verify

_laQIDL(@,U |y) 1

no 9000 |Q=(@”&>':§

Since I,,(6) is (r +2) x (r +2) and (X'X) is (r +1) x (r + 1), we have
|In(&)| _ <%>r+2 {2 <%>r+1 ‘X,X‘}

In|1,(6) =2+ mn|X X|— (r+1)Inn — (r + 2) In&>

and

As for choosing a prior over the class of candidate models, one possibility is
to use the Poisson distribution with the mean set equal to the prior estimate of
the number of predictor variables. As a right-skewed distribution with a mode at

this prior estimate, the Poisson may well serve as a suitable quantifier of subjective



information. Since we are placing probabilities on a finite set of models, a truncated
Poisson would be used.

For r =0,1,..., R, the criteria (2.8) through (2.11) can be expressed as

SIC = nIné®+ (r+1)Inn,

SICy = (n—7r—2)Iné> +In|X X|,
SIC, = nlné? + (r+1)Inn — 2In7(r),
SICy, = (n—7—2)Iné> +In|X X| — 2In=(r).

(Here, we have ignored constants which would not vary over different fitted models
within the candidate class.)

We compare the behavior of the four proposed criteria by simulating a setting
where one must decide among seven candidate models My, My, ..., Mg. (Thus,
R = 6.) One thousand sets of data are generated from a true model in the candidate
class. For every data set, the seven models in the candidate class are fit to the
data; SIC, SICy, SIC,, and SICy, are evaluated; and the favored model for each
criterion is recorded. Over the one thousand data sets, the selections are tabulated,
summarized, and reported.

For the prior 7(r), a Poisson distribution is used where the mean is set equal to
the number of predictor variables in the true model. The distribution is truncated
at 6.

Three simulation sets are run using various true models and sample sizes. The
results are reported in Tables I to III.

The first set (Table I) features a true model with three predictor variables, where
each variable has the same influence on the response. The sample size is 20. SICy
greatly outperforms SIC: SIC; correctly chooses the true model 98.1% of the time,
compared to a 78.8% correct selection rate for SIC. Note that SIC; does not exhibit
the same tendency as SIC to choose models which have too many predictor variables.

The second set (Table II) features the same true model and sample size as in

the first set, except that the candidate predictor variables are correlated. This set is



included to check whether the presence of multicollinearity affects the performance
of the criteria. The correct selection rates decline slightly from the first set, yet the
rate for SIC; remains quite high at 94.8%.

The third set (Table IIT) features a true model where the second predictor vari-
able has less influence on the response than the first, and the third has less influence
than the second. The sample size is 15. The performance of SIC; is not diminished
by either the form of the true model or the small sample size: SICy obtains a 97.5%
correct selection rate. On the other hand, SIC chooses the correct model only 65.1%
of the time, and exhibits a strong tendency towards choosing models with too many
predictor variables.

Although SIC and SIC; are asymptotically equivalent, the simulation results
indicate that their selection properties are different for small to moderate sample
sizes. Models chosen by SIC often tend to be larger than necessary. In many
applications, the additional term in SIC; corrects this propensity towards overfitting
without overcompensating and leading the criterion towards choosing undersized
models. Since underfitting is often regarded as a more serious error than overfitting,
the fact that SIC; often guards against the latter without leaning towards the former
makes the variant an attractive alternative to SIC.

The selection criteria depending on the Poisson prior (SIC, and SICj,) out-
perform their counterparts that implicitly assume a uniform prior (SIC and SICy,
respectively). In each case, our prior is chosen so that the prior estimate of the true
model dimension is correct; thus, it is not surprising that the inclusion of the prior
improves the selection performance of the criteria.

Naturally, whether the choice of the prior improves or degrades the performance
of a Bayesian procedure depends upon both the validity and the form of the prior.
Thus, the selection of 7(r) is an important practical issue, yet one which is outside

the scope of the present paper.



TABLE I: Summary of Simulation Set 1.

True Model: yi =1+ xi + Tio + Tis + €,
€; ~ 1id N(0,0.25).
e Predictors z;1, %, ...,z Generated from a uniform distribution on the in-

terval (0,6); i.e., z;; ~ iid U(0,6).

e Sample Size: n = 20.

e Prior 7(r): Poisson distribution with a mean of 3 truncated for r > 6.

Criterion Selections

r | SIC | SIC;| SIC, [SICy,
0] 0 | 0 0 0

1] 0 | 0 0 0

2 0 | 0 0 0

3| 788 | 981 | 845 | 991
4108 | 18 | 95 | 8

5 61 | 1 | 36 | 1

6 | 43 24 | 0
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TABLE II: Summary of Simulation Set 2.

True Model: yi =1+ xi + Tio + Tis + €,

€ ~ iid N(0,0.25).

e Predictors z;1, z2, ..., zis: Each 6 x 1 vector x; = (zj1, %2, - - . ,Zig) is gener-
ated from a multivariate normal distribution. For this distribution, the mean
vector is (3,3,...,3), and the variance/covariance matrix is such that the di-

agonal elements are 1.50 and the off-diagonal elements are 0.75.
e Sample Size: n = 20.

e Prior 7(r): Poisson distribution with a mean of 3 truncated for r > 6.

Criterion Selections

SIC | SIC, | SIC, [ SICy,
0 | 0 0 0
0 | 0 0 0

0 0 0 0
750 | 948 | 819 | 964
133 46 116 34
63 5 34

| U B WIN—-|Of 3
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TABLE III: Summary of Simulation Set 3.

True Model: y; = 1+ 6241 + 3x;0 + 0.52;3 + €,

e ~ iid N(0,0.25).

e Predictors z;1, %, ...,z Generated from a uniform distribution on the in-

terval (0,6); i.e., z;; ~ iid U(0,6).
e Sample Size: n = 15.

e Prior 7(r): Poisson distribution with a mean of 3 truncated for r > 6.

Criterion Selections

SIC | SIC, | SIC, [ SICy,
0 | 0 0 0
0 | 0 0 0
1 5 1 5

651 | 975 | 747 | 980
122 19 111 15
108 1 72 0
118 0 69 0

| U B WIN—-|Of 3
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3.2 Time Series

The state-space model is becoming an increasingly popular tool in time series
analysis due to its versatility and generality. Shumway (1988, page 173) points out
that “[the model] seems to subsume a whole class of special cases of interest in much
the same way that linear regression does.”

Our second collection of simulations focuses on two important models which are
part of the state-space family: the univariate autoregressive model, and the uni-
variate autoregressive model with observation noise. The univariate autoregressive

model of order p can be written as
Y= P1ye1+ doyr2+ ...+ dpyrp+ e, € ~ iid N(0, O'g).

We denote this model as AR(p). The univariate autoregressive model of order p

with observation noise can be written as
Yt Zt+vt, Ut 1 y04)s

2y = nglzt,l + ¢2Zt72 + ...+ qbpzt,p + €, € ~ 21d N(O,Ug).

We denote this model as ARN(p). (We note that this model is equivalent to a
univariate autoregressive moving-average model of orders p and p with parameters
that satisfy certain constraints.)

The parameter vectors for the AR(p) and ARN(p) models are, respectively, the
(p+1) x1and (p+2) x 1 vectors

Q = (¢17¢27"'7¢p702)l and Q = (¢17¢27"'7¢p70270§),'

Our goal is to use a collection of observations yi,¥ys,...,y, to determine an
appropriate order p for the autoregression. We will assume the choices for p are
1 through P, corresponding to the candidate models My, M, ..., Mp.

To fit the candidate models, the models are expressed in state-space form. The

EM algorithm (Shumway and Stoffer, 1982) is used to find the parameter estimates.
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The empirical log-likelihood is evaluated using the innovations form of the likeli-
hood. (See Shumway, 1988, page 178.) The observed Fisher information matrix is
computed using the algorithm described in Harvey (1989, pages 140 to 142).

We compare the behavior of the four proposed criteria by simulating a setting
where one must choose from among the nested candidate models My, Mo, ..., Mp.
One thousand sets of data are generated from a true model in the candidate class.
For every data set, the P models in the candidate class are fit to the data; SIC, SICy,
SIC,, and SICy), are evaluated; and the favored model for each criterion is recorded.
Over the one thousand data sets, the selections are tabulated, summarized, and
reported.

For the prior 7(p), a Poisson distribution is used where the mean is set equal to
the order of the true model. The maximum order P is determined by finding the
point at which the distribution is zero out to three significant digits. The distribution
is then truncated so that mass is only assigned to the points p =1,2,..., P.

Four simulation sets are run using various true models and sample sizes. The
results are reported in Tables IV to VII.

The first set (Table IV) is based on a setting considered by Hurvich and Tsai
(1989) in a simulation to investigate the performance of the “corrected” Akaike
information criterion, AIC.. The true model is an AR(2) and the sample size is
23. In one hundred replications with a maximum order of P = 10, Hurvich and
Tsai report correct selection rates for SIC, AIC,, and AIC of 78%, 80%, and 52%
(respectively). In our set, one thousand replications are considered with a maximum
order of P = 7. Our correct selection rate for SIC is 87.8%, about 10% higher than
that reported by Hurvich and Tsai. (This may not only be due to the different
maximum orders considered, but also due to the different fitting procedures used
and the different definitions of SIC employed. Hurvich and Tsai use nlné? as a
“goodness of fit” term as opposed to —2In L( | Y;).) The correct selection rate for
SICy is somewhat higher than that for SIC: 92.8%.

The second set (Table V) is also based on a setting considered by Hurvich and

14



Tsai (1989). Here, the true model is a nonstationary AR(3). In one hundred repli-
cations with a sample size of 15 and a maximum order of P=6, Hurvich and Tsai
report disappointing correct selection rates for each of the criteria considered: based
on one hundred replications, the rates for SIC, AIC,, and AIC are listed as 19%,
45%, and 10% (respectively). In our set, we consider a larger sample size of 25, and
a higher maximum order of P=10. Based on one thousand replications, SIC obtains
a correct selection rate of 78.1%. The rate for SIC; is again higher than that for
SIC at 83.7%.

The third set (Table VI) features an ARN(1) model with a sample size of 15.
The maximum order is P = 6. Here, SIC obtains a 68.5% correct selection rate, and
exhibits a propensity towards overfitting, choosing a model of order three or higher
19.1% of the time. SIC; obtains an impressive 91.0% correct selection rate, and
chooses a model of order three or higher in only one instance out of one thousand.

The preceding simulation sets may create the impression that the inclusion of the
Fisher information term in SIC provides additional protection against overfitting at
the cost of marginally increasing the likelihood of underfitting. Although the term
often behaves in this manner, it would be incorrect to characterize the correction as
merely an additional penalty term. To illustrate this point, our last simulation set
(Table VII) features a setting where the correction provides protection against both
overfitting and underfitting.

Here, the true model is an ARN(2). The sample size is 25 and the maximum
order is P=7. Without the Fisher information term, SIC obtains only a 46.4%
correct selection rate, choosing a model of order one 42.2% of the time and a model
of order three or higher 11.4% of the time. On the other hand, SIC obtains a 67.4%
correct selection rate, choosing a model of order one 26.3% of the time and a model
of order three or higher 6.3% of the time. Clearly, the poor performance of SIC in
this simulation set is mainly due to its propensity to underfit; a tendency which is
markedly reduced by the inclusion of the Fisher information correction.

Note that in all four sets, the use of the Poisson prior results in a noteworthy

15



improvement in selection performance.

The time series simulations reinforce the same conclusions as the regression sim-
ulations. SICj consistently outperforms SIC in terms of correct order selections,
often by a substantial degree. Also, the use of the correctly specified Poisson prior

improves the selection performance of both SIC and SICy.

4. Conclusion

The Schwarz information criterion is derived as an asymptotic approximation
to a transformation of the Bayesian posterior probability of a candidate model.
Through the investigation of the derivation, we have proposed corrected variants of
SIC which seemingly improve upon the small to moderate sample-size performance
of the criterion. These variants are based on the inclusion of two asymptotically
negligible terms: one which involves the observed Fisher information matrix for the
model parameters, and the other which depends on a prior over the collection of
candidate models.

The inclusion of the first term often improves the performance of SIC by de-
creasing the likelihood of overfitting without unduly increasing the likelihood of
underfitting. In some instances, the term may even decrease the likelihood of un-
derfitting.

The inclusion of the second term has the potential to improve the performance
of SIC, depending on the quality and the form of the prior. At the very least, the
option of incorporating the second term may be attractive to those who object to
the fact that traditional SIC discards all prior information on the grounds that it is
asymptotically negligible.

The appeal of the proposed SIC variants lie in their computational simplicity
and wide-spread applicability. A thorough Bayesian analysis might opt for an exact
evaluation of the posterior probabilities of the various candidate models. We do not
view the suggested variants as being competitors to this approach. Rather, we see
them as incorporating reasonable corrections which have the potential to improve

the effectiveness of traditional SIC in small to moderate sample settings.
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TABLE IV: Summary of Simulation Set 4.

True Model: yr = 0.99y, 1 — 0.80y; o + €,
et ~ 1id N(0,1.00).
e Sample Size: n = 23.
e Maximum Order P: 7.

e Prior m(p): Poisson distribution with a mean of 2 truncated so that its mass is
distributed only among the points p = 1,2,...,7. (The Poisson(2) distribution
is zero out to three significant digits when evaluated for arguments exceeding

7)

Criterion Selections

p | SIC | SIC, | SIC,]SICy,
1 11 18 12 19
2 | 878 | 928 | 933 | 953
3| 59 | 38 | 40 | 23
4 23 | 13| 13 | 5

5| 16 | 3 2 0

6| 9 | 0 0 0

71 4 | o 0 0
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TABLE V: Summary of Simulation Set 5.

True Model: yr = —0.95y:1 +yr-2+0.95y; 3 + €,
€ ~ 1id N(0,1.00).
e Sample Size: n = 25.
e Maximum Order P: 10.

e Prior m(p): Poisson distribution with a mean of 3 truncated so that its mass
is distributed only among the points p = 1,2,...,10. (The Poisson(3) dis-
tribution is zero out to three significant digits when evaluated for arguments

exceeding 10.)

Criterion Selections

SIC | SIC; | SIC, | SICy,
33 | 52 | 27 | 39
36 | 41 | 38 | 44
781 | 837 | 850 | 874
70 | 55 | 59 | 41

NolNe JIEN NN NG NN NSUIN I o
o
©

10 15 2

18 4 6 0

14 1 3 0

7 0 1 0

3 0 0 0

10 9 0 1 0

18



TABLE VI: Summary of Simulation Set 6.

True Model: Yr = 2t + v,
vy ~ iid N(0,0.20),
Zt — 0.602t71 + €,

e ~ 1id N(0,1.00).
e Sample Size: n = 15.
e Maximum Order P: 6.

e Prior m(p): Poisson distribution with a mean of 1 truncated so that its mass is
distributed only among the points p = 1,2,...,6. (The Poisson(1) distribution
is zero out to three significant digits when evaluated for arguments exceeding

6.)

Criterion Selections

p | SIC | SIC, | SIC,]SICy,
1| 685 | 910 | 895 | 980
2| 124 | 89 | 83 | 20
3| 32 | 1 6 0

a1 45 | 0 [ 12 | 0

5| 40 | 0 1 0

6| 74 | 0 3 0
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TABLE VII: Summary of Simulation Set 7.

True Model: Yy = 2t + Uy,
vy ~ did N(0,0.05),
zr = —0.40z; 1 + 0.552; 9 + €,

et ~ 1id N(0,1.00).
e Sample Size: n = 25.
e Maximum Order P: 7.

e Prior m(p): Poisson distribution with a mean of 2 truncated so that its mass is
distributed only among the points p = 1,2,...,7. (The Poisson(2) distribution
is zero out to three significant digits when evaluated for arguments exceeding

7)

Criterion Selections

p | SIC | SIC, | SIC,]SICy,
1 422 263 435 276
2 | 464 | 674 | 505 | 702
3| 54 | 51 | 40 | 22
4 23 11 11 0

5] 18 | 0 | 4 0

6| 9 | 0 | 4 0

7 10 1 1 0
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