GENERALIZING THE DERIVATION
OF THE
SCHWARZ INFORMATION CRITERION

by Joseph E. Cavanaugh and Andrew A. Neath?

f Department of Statistics ! Department of Mathematics
222 Math Sciences Building and Statistics
University of Missouri P.O. Box 1653
Columbia, MO 65211 Southern Illinois University

Edwardsville, IL 62026

Key Words: Bayes factors; Bayesian analysis; Bayesian information criterion;
model selection criterion.

ABSTRACT

The Schwarz information criterion (SIC, BIC, SBC) is one of the most widely
known and used tools in statistical model selection. The criterion was derived
by Schwarz (1978) to serve as an asymptotic approximation to a transforma-
tion of the Bayesian posterior probability of a candidate model. Although the
original derivation assumes that the observed data is independent, identically
distributed, and arising from a probability distribution in the regular expo-
nential family, SIC has traditionally been used in a much larger scope of model
selection problems. To better justify the widespread applicability of SIC, we
derive the criterion in a very general framework: one which does not assume
any specific form for the likelihood function, but only requires that it satisfies

certain non-restrictive regularity conditions.



1. INTRODUCTION

In statistical modeling, an investigator must often choose a suitable model
among a collection of viable candidates. Such a determination may be facili-
tated by the use of a selection criterion, which assigns a score to every fitted
model in a candidate class based on some underlying statistical principle. The
fitted model which is favored is the one corresponding to the minimum score
(or maximum score, depending on how the criterion is defined).

The Schwarz information criterion (SIC, BIC, SBC), introduced by Schwarz
(1978) as a competitor to the Akaike (1973, 1974) information criterion (AIC),
is one of the most popular and effective of the criteria used for model se-
lection. Schwarz derived SIC to serve as an asymptotic approximation to a
transformation of the Bayesian posterior probability of a candidate model. In
large-sample settings, the fitted model favored by SIC ideally corresponds to
the candidate model which is a posteriori most probable; i.e., the model which
is rendered most plausible by the data at hand. The computation of SIC is
based on the empirical log-likelihood and does not require the specification of
priors.

In Bayesian applications, pairwise comparisons between models are often
based on Bayes factors. Assuming two candidate models are regarded as
equally probable a priori, a Bayes factor represents the ratio of the posterior
probabilities of the models. The model which is a posteriori most probable is
determined by whether the Bayes factor is less than or greater than one. In
certain settings, model selection based on SIC is roughly equivalent to model
selection based on Bayes factors (Kass and Raftery, 1995; Kass and Wasser-
man, 1995). Thus, SIC has appeal in many Bayesian modeling problems where
priors are hard to set precisely.

Though motivated from a Bayesian perspective, SIC is also used extensively

in frequentist applications. Unlike many of its competitors (such as AIC), SIC



has the following consistency property: provided that the family of candidate
models under consideration includes the model which generates the data, SIC
will asymptotically identify the true model with probability one. In practice,
this optimality property is exhibited by the tendency of SIC to select models
which are attractively simple.

Schwarz (1978, p. 462) established SIC “for the case of independent, identi-
cally distributed observations, and linear models,” under the assumption that
the likelihood is from the regular exponential family. Haughton (1988) ex-
tended the derivation to the curved exponential family. However, the criterion
has long been applied in a more general array of model selection settings.
Most notably, it has been successfully used in many time series frameworks,
including univariate ARMA modeling, vector AR modeling, and state-space
modeling. (See, respectively, Sneek, 1984; Liitkepohl, 1985; Koehler and Mur-
phree, 1988.) Informal generalizations of the criterion, such as those presented
by Stone (1979), Kashyap (1982), Leonard (1982), Kass (1983), and Neath and
Cavanaugh (1997), suggest that the applicability of SIC extends to a very wide
range of modeling settings. However, a rigorous generalization of Schwarz’s
development seems to be lacking from the literature (cf. Kass and Raftery,
1995, p. 779).

To better justify the widespread use of SIC, we present a derivation which
establishes the validity of the criterion in a very general framework: one which
does not assume any specific form for the likelihood function, but only requires
that it satisfies certain non-restrictive regularity conditions. Our derivation is
presented in the same spirit as the original justification of SIC provided by
Schwarz (1978), in that it is based on the same motivation and involves analo-
gous arguments. Thus, our derivation verifies that the broad-based use of SIC
is defensible by showing that, under general conditions, the criterion can be

developed in the context proposed by Schwarz, rather than by showing that



the criterion can be re-derived from another perspective. (In this regard, Ris-
sanen, 1978, provides an alternate justification of SIC based on the minimum
description length principle from information theory. Under this principle,
the preferred model is the one which permits a reconstruction of the sam-
ple utilizing the smallest possible number of bits. Thus, the preferred model
corresponds to a codification of the data which is complete yet as concise as
possible.)

In the next section, we briefly describe model selection based on SIC. In
Section 3, we list the regularity conditions on the likelihood required for the
derivation, which follows in Section 4. In Section 5, we discuss a practical
modeling framework in which the use of SIC is supported by our derivation,

yet not by the original justification provided by Schwarz.
2. MODEL SELECTION BASED ON SIC

Let Y,, denote the observed data. Assume that Y,, is to be described using
a model M}, selected from a sequence of candidate models My, ..., M, which
are not necessarily nested. Assume that each M is uniquely parameterized by
a vector % presumed to lie in a parameter space ©(k) C R*. Let Dy denote
the dimension of Mj; i.e., the number of functionally independent parameters
in % which must be estimated.

Let L(6*|Y;) represent the likelihood for 6% based on Y. Let 6% denote
the estimator of 0¥ obtained by maximizing the likelihood L(0* | Y,,) over ©(k).
Let L(6*|Y,) denote the corresponding empirical likelihood.

The Schwarz information criterion can be defined as
SIC = —2In L(0* | Y;,) + Dy Inn.

In settings where the sample size n is ambiguous, it is often recommended that
n be chosen to grow at the same rate as the Hessian of —In L(6%|Y;) (see,

e.g., Kass and Raftery, 1995, p. 779). (This recommendation is supported by
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our forthcoming derivation, where division by n must ensure the convergence
of the Hessian to a positive definite matrix.)

In practice, SIC is computed for each of the models M, ..., M, and the
model corresponding to the minimum value of SIC is selected. In our deriva-

tion, we show that SIC provides a large-sample approximation to
—2In P(M | Y,) — 2In{h(Y,)},

where P(Mj,|Y;) denotes the posterior probability of the model My, given the
data Y}, and h(Y;) denotes the marginal density of Y;,. Since h(Y},) does not
depend on My, the model associated with the minimum value of SIC should
therefore correspond to the model with the highest posterior probability among
M, ... M.

As previously mentioned, the original derivation of SIC by Schwarz (1978)
justifies the criterion in a setting where Y,, consists of independent, identically
distributed data, and L(6* | Y;,) belongs to the regular exponential family. Our
generalized derivation extends the justification beyond this context, to appli-
cations where L(0*|Y,) need only satisfy a set of non-restrictive regularity

conditions. These conditions are listed in the next section.
3. REGULARITY CONDITIONS ON THE LIKELIHOOD
Let
V(%) = —% mL@*|Y,) and  W.(0%) = E{V.(05)}.
We assume the following regularity conditions on V,,(6%) and W, (6%).

(1) V,.(6%) has first- and second-order derivatives which are continuous over

O(k). Let
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Nk : . . .
", where 0 is an interior point

(2) V,(6%) has a unique global minimum at 6

of O(k).

(3) As n — oo, W, (%) converges to a function W (#*) that has first- and
second-order derivatives which are continuous over ©(k). The conver-
gence is uniform in 6% over O (k). Let

O*W (6%)
WA (Or) = ——— 1
(%) 00k 00k’
(4) W(0*) has a unique global minimum at 0¥, where 6 is an interior point

of O(k).
(5) V,(0%) — W (%) almost surely as n — oo, uniformly in 0% over O(k).

(6) V.2 (0F) — W2 () almost surely as n — oo, uniformly in 6% over

o (k).

(7) W@ (6*) is positive definite in a neighborhood of #¥. Over this neigh-
borhood, the eigenvalues of W ()(#*) are bounded and bounded away

from zero.

Note that the preceding conditions, in particular (2), (4), and (5), imply
that % converges almost surely to 6% as n — oo.

The preceding conditions are characteristic of those which arise in estab-
lishing the asymptotic normality of the maximum likelihood estimator when
the underlying data is not necessarily independent and the model being fit to
the data is possibly misspecified. See, for example, Ljung and Caines (1979),
Stoffer and Wall (1991), Cavanaugh and Shumway (1997). Demonstrating
the asymptotic normality of /7 (8% — 6%) often proceeds by taking a first-

order expansion of 0 = V,(V(#*%) about 0%
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using the convergence of V(2 (%)
to W (%), and establishing the asymptotic normality of /n V,()(6¥). Our

justification of SIC requires a set of conditions which will allow us to take a



second-order expansion of V;,(#%) about 6, establish asymptotic bounds for the
second-order term over a neighborhood of ¥, and characterize the convergence
of the expansion. Our development does not require assumptions regarding the
model structure or the data dependency, generally utilized in demonstrations
of asymptotic normality pertaining to the behavior of /n V,( (6*%). Thus, the
conditions we require are less technical than those required to demonstrate

asymptotic normality.
4. GENERALIZED DERIVATION OF SIC

The motivation behind SIC can be outlined as follows.

Suppose that the conditional density of the data Y, given both M} (the
k" candidate model) and #* (the parameter vector for M) is denoted by
f(Y, | (My, 0%)). Let w(My,) denote a discrete prior over the set of the candi-
date models which assigns a prior probability to each of the models M, ..., M.
Let g(0% | M},) denote a prior on the parameter vector 8 given the model Mj,.

We assume that the prior m(Mj) assigns a positive probability to each
model My, 1 < k < L. Further, we assume that the prior g(6* | M}) is bounded
over O(k), and is bounded away from zero over a neighborhood of 6*.

Applying Bayes’ theorem, the joint posterior of (Mj, 0) can be written as

(M) g(0% | My) f(Ya | (Mg, 6%))
h(Yn) '

F(My, 0%) | Y,) = (4.1)

A Bayesian model selection procedure could then be based on choosing the
model Mj, which is a posteriori most probable; i.e., choosing the M) which

maximizes P(My |Y,), where
P(M,|Y,) = /f((Mk, 0%) | Y,,) d6*. (4.2)
Since f(Y, | (Mg, 6%)) = L(6% | Y,), we can use (4.1) to write (4.2) as
P(My|Y,) = h(Y) ™ 7 (M) [ L") (6" | ag) doF. (43)
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Now consider minimizing —2 In P(Mj, | Y,) as an alternative to maximizing

P(M; |Y,). From (4.3), we have

—2In P(My|Y,) = 2In{h(Y,)} —2In{mr (M)}

—21n {/ L | Y;) g(0" | M) dek} L (44)

The first of the three terms on the right-hand side of (4.4) does not depend on
the model M;, and is therefore irrelevant for the purpose of model selection.
Consider the third term on the right-hand side of (4.4). Through the appli-
cation of two lemmas, we will demonstrate that this term is asymptotically

bounded between

—21In L(0% | Y,,) + Dy Inn + Ry(Dy) (4.5)
and

—2In L(6* | Y,) + DiInn + Ry (Dy), (4.6)

where Ry(Dy) < Ri(Dg), and Ry(Dy), Ro(Dy) do not depend on n. (Recall
that Dy denotes the dimension of My.) If we then ignore the terms in (4.5),
(4.6), and (4.4) which do not grow in magnitude as n — oo, we obtain from

these expressions the following approximate large-sample relation:
—2In P(M;, |Y,) — 2In {h(Y,)} ~ —2In L(0* | Y},) + Dy Inn.

This motivates the use of SIC for model selection, where we choose the

candidate model M by finding the fitted model which minimizes
SIC = —2In L(#* | Y;) + Dy Inn.

In large-sample applications, this fitted model should correspond to the can-
didate model which maximizes P (M |Yy,).
We now state and prove the two lemmas which will be used to establish

the asymptotic bounds (4.5) and (4.6).
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Lemma 1
For some positive constants A1 and )Xo, the following will hold for 0% in a

neighborhood of 0% provided that n is sufficiently large:

Val) + 52 (6% — 6,)" (6" — 6y)

Proof:
Expanding V, (6%) about 6%, the point at which V, (%) attains its global

minimum, yields

Va(0") = Va(0r) + (6" — 67) V.V (0%)

n

~

1 P
5 (0 — 8 V.O08 (0F - 08)

~ ’

SR SR LD I AN

n n

where ¥ is between 6% and 6%
Let A" (%) and A™(9*) represent, respectively, the smallest and largest

eigenvalues of the matrix V(2 (%). For any 6* in ©(k), we have that
(0F = 65) (6" — Oy Xrm(hk) < (65 — 05) VP (35 (0% — 6F)
< (6F = 08) (0 — B AT (). (48)

Now the regularity conditions imply that for every 6% in ©(k), A™"(9%)
and \™9%(0%) respectively converge, almost surely, to the smallest and largest
eigenvalues of W @ (#%). Within a neighborhood of 8 W ()(9*) is positive
definite and has its eigenvalues bounded between two positive constants. It is
therefore possible to choose an n; and a neighborhood N (6%) of 6% such that

for some constants A;, Ay satisfying 0 < Ay < A\; < 0o, we have

n>ni | gkeN(6F) n>ni | gkeN(9%)

Ay < inf { inf )\nMi”(Gk)} and A\ > sup{ sup )\nm”(ﬁk)}. (4.9)



Thus, by (4.8) and (4.9), for all n > n; and for 4% € N(6%), it follows that

0< (0% — %) (08 — 6F) ),

IN

(08 — 65) V. (k) (6% — 0F)
< (08 — 65" (0% — 0F) A, (4.10)

Now since 6% converges to 0% almost surely, 8% € N(6¥) for all n exceeding
some ny. Moreover, since 7F is between 6% and #*, whenever 6% € N(#*) and
0% € N(0%), it must also hold that v* € N(#%). Thus by (4.7) and (4.10),
the bounds stated in the lemma will hold for all 8 € N(#¥), provided that

n > ng =max{ni,ny}. 0

Lemma 2
Consider two sequences of positive random variables {T,,} and {U,} and a
convergent positive sequence {p,} defined such that [T,, > U,| whenever

[U, > pn]- Suppose there exists two positive constants v and € such that
P((Tw—pn) 29 > forall n.
For any positive constant §, the following holds for sufficiently large n:
{mE(T}) —InEU})} > —4.

Proof:
Let

T, for U, > py.
Consider the difference (R} —T"). If R,, =T, then this difference is zero.

Rn:{ Un forUnépn

If R, = U, and U,, # T,,, then we must have R, = U,, < p,, and this difference

cannot exceed p). Thus, it follows that R} — T < p". This relation implies
E(Ry) < E(TY) + oy,

which leads to

(4.11)



Now using the Markov inequality (Billingsley, p. 74, 1986), one can show

that for any positive sequence {c,},
(BT} > ¢y {P [T, > ca]}",

meaning
@Y
P = o
Choose the sequence {c,} by setting ¢, = p, + . For this ¢,, we have that

{P[T, > cal}'". (4.12)

lim % > 1, (4.13)

n—00 pn

and since

PlT, > cy] = P[(Tn — pn) > 7] > >0,

we also have that

lim {P[T, > ]} = 1. (4.14)

Thus, by (4.12), (4.13), and (4.14), there exists an o > 0 and an ng such

that whenever n > ny,

B(Tm}"
7{ ()} >1+a.
Pn
This implies
: Pn
1 1 =1. 4.15
b {1+ 507 | 1
Now from (4.11) and (4.15), for any ¢ > 0, we can find an n; such that for
all n > nyq,
E(RY)
= 0).
Yet since R,, > U,, the preceding implies that whenever n > ny,
E(Tr)
ZAn) -5
B0 exp(—9),

or equivalently,

{mE(T})-InEUNHY} >-5 O
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Note the result of Lemma 2 implies lim, o {In E(7") —In E(U})} > 0,
provided that the limit exists.
We now use our lemmas to establish the asymptotic bounds (4.5) and (4.6).

Let
Zn(gk) = exp{—Vn(Hk)},
Xua(0h) = exp{—vn<éﬁ>——(o’f R é,’i)},
Xon(6h) = exp{—vn<é:>——(o’f—é5>’<9'f —éﬁ)}.

By application of Lemma 1, we can find an ny and a neighborhood N (6%) of

0% such that for all n > ngy and for all 0% € N(0%), we have
X1,0(0%) < Z,(6%) < Xo,n(07). (4.16)

Now, consider applying Lemma 2 to the positive random variables U, =
X1,(0%) and T;, = Z,,(6%), where the relevant probability measure is g(6% | Mj).
Define

X0 = exp{—wwf) _ Mg gy (f — eff>},
2005 = exp{—W (89},

The regularity conditions indicate that both X;(6*) and Z(#*) attain a com-

mon global maximum at §*. The conditions also ensure

X1,,(0%) — X1(6) almost surely, uniformly in #*, and

Z,(0F) — Z(6%) almost surely, uniformly in 6%,
Thus, there exists an n; and a convergent positive sequence {p,} such that
{0F1 X1n(6%) > pn for n > ny} © N(65). (4.17)

Moreover, n; and {p,} can be chosen so that for some positive constants vy

and e, we have
P [(Zn(ﬁk) - pn) > 7] > ¢ forall n>n. (4.18)
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Now take ny = max{ng,n;}. Note that whenever both X; ,(6*) > p, and
n > ng, (4.17) will apply, and the ordering (4.16) will hold: i.e., we will have
X1a(0%) < Z,(6%). By virtue of this fact and (4.18), application of Lemma 2

(with U,, = X1,(0%), T, = Z,(6%), n > ny) guarantees that for any d, > 0,
(In E{Z(6")} — m E{X7,,(0")}] > —5—2* (4.19)

provided that n is sufficiently large. One can appeal to Lemma 2 in a similar

manner to establish that
B
[In E{X3,,(0%)} — In BE{Z}:(0")}] > ) (4.20)

when n is sufficiently large.

Thus, by (4.19) and (4.20), there exists an n, such that for all n > n,,
In E{XT,(0%)} — 5 < In B{Z;(0")} <In E{X3,(0")} + 5
or equivalently,
—2In E{X7,(0")} — 6. < —2In E{Z}(6*)} < —2In BE{X],(6")} +6.. (4.21)

The relation (4.21) will lead to the justification of the asymptotic bounds
(4.5) and (4.6). Note that the middle term in (4.21) can be written as

oW E{Z"(0")} = _zln/[exp{—vn(ek)}]"g(9k|Mk)d9k
~ 2 / L(0" | Y,) g(60 | Mj) d6*. (4.22)

We will reduce and bound the left-hand and right-hand terms in (4.21) by
utilizing the previously mentioned boundedness requirements on the prior

g(0% | My). Specifically, we assume that for some constants 0 < b < B < oo,
0 < g(0*| M) < B for all 0* € ©(k), (4.23)

b < g(#* | My) for all #* within a neighborhood N, (6%) of 6. (4.24)
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Further, we assume that the n, which ensures (4.21) holds whenever n > n,
is large enough to also ensure #* € N, (#*) whenever n > n,.

For the left-hand term in (4.21), utilizing (4.23), we have

—2In BE{X},(0")}
= —2ln [exp{ V(0 (ek—ég)’(ek—ég)}] g (0% | M) do*
Ak nAy ok Ak ok hk k
> —2ln/kBexp —nVa(08) = “52 (0 — 0%)" (0" — k) ¢ do
R

= 2mV,(6F) —2InB

o [(2) () e G B )

IS

o7\ Pr/2
_ —2lnL(9k|Y)—2lnB—2ln< )
7’L>\2
= —2InL(6*|Y,) + DpInn + Ry(Dy), (4.25)

where Ry(Dy) = DIn )y — Dy In27w — 21n B.
For the right-hand term in (4.21), we must argue the existence of a positive

lower bound for the integral

[(2) e SO B g

where N, denotes the neighborhood N, (0%) referenced in (4.24). Note that

the integrand in (4.26) is a Dj-dimensional Gaussian density with mean 0¥
and variance/covariance matrix (1/nA;)I. As n — oo, 0¥ converges almost
surely to 0% and (1/n)\;) converges to 0; as a result, the density becomes
increasingly concentrated about 6% and the integral (4.26) converges almost
surely to 1. Moreover, since % € N,(6*) whenever n > n,, there exists an
v > 0 (depending on N, (0¥) and );) such that (4.26) is no less than v for any

n > n,. Utilizing (4.24), we therefore have for all n > n,
—2In B{X7, (0")}

A A J A "
- o [exp{—vnw:z) A8 (0 - eﬁ)}] o(6" | M) db*
Ok
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« A N «
< —2ln/ b exp{—nvn(e,’;) _ DAL gk gky gk — 9,’3)} do"
N
= 20V, (6F) —21nb
9 \ Dr/2 Dy/2 1(0% — 68\ (gk — @F
ol [(4) [ ()" e {1 O @ = 0D

[ n\ N. \ 27 2 (1/nA1) J

R o\ Pr/2
< —2InL(0%|Y,) —2Inb—21In (—> —2Inw

7’L>\1

= —2InL(A*|Y,) + Dplnn + Ry (Dy), (4.27)

where Ry(Dy) = DrIn Ay — Diln27 — 2Inb — 21Inw.
Thus, by (4.21), (4.25), and (4.27), expression (4.22) is bounded between
(4.5) and (4.6) whenever n > n,. This completes the proof.

5. CONCLUSION

In addition to extending Schwarz’s derivation to a large collection of likeli-
hoods, our derivation features other important generalizations of the original
development. Unlike Schwarz’s justification, ours does not assume the under-
lying data is independent and identically distributed. Also, the asymptotic
arguments in Schwarz’s derivation assume that the data (exhibited in the
form of a sufficient statistic) is fized while the sample size goes to infinity (see
Schwarz, 1978, Proposition, p. 462). This simplifies the derivation, since the
fixed data translates to a fixed set of parameter estimates for the fitted model.
In our justification, such an assumption is not employed.

As mentioned in the introduction, SIC has long been successfully used as
a selection criterion in time series applications. To illustrate a setting which
is within the scope of our derivation yet beyond the scope of the original
justification, consider the state-space framework. The state-space model is
becoming increasingly popular in time series analysis due to its versatility
and generality. Shumway (1988, p. 173) points out that “[the model] seems

to subsume a whole class of special cases of interest in much the same way
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that linear regression does.” The successful application of SIC in the state-
space framework is illustrated in Koehler and Murphree (1988) and Neath and
Cavanaugh (1997), among others.

Estimation in the state-space setting is routinely accomplished by maxi-
mizing the Gaussian log-likelihood in its innovation form (cf. Shumway, 1988,
p. 178). Ljung and Caines (1979) present an asymptotic theory which can
be used to justify the strong consistency and asymptotic normality of the
Gaussian maximum likelihood estimator, even in the absence of normally dis-
tributed errors or a correctly specified model. (See Caines, 1988, p. 499; Har-
vey, 1989, pp. 128-130.) Our regularity conditions in Section 3 are implied by
the assumptions under which this theory holds. This can be easily verified,
since our notation is quite similar to that used by Ljung and Caines (1979).
Note that our regularity condition (1) is implied by the initial requirement in
their last subsection of Section 2 (see also their definition (2.3)); our condition
(2) is assumed in the statement of their Theorem 1; and our conditions (3),
(4), and (7) follow from the assumptions in the statement of their Corollary
to Theorem 1. Our conditions (5) and (6) are established utilizing their as-
sumptions (2.4) through (2.10) along with (3.11); see their results (3.2) and
(A.11).

The asymptotic theory of Ljung and Caines (1979) therefore encompasses
the regularity conditions used in our derivation: if the requirements of the
theory are accepted to justify maximum likelihood estimation in the state-
space setting, those same requirements will justify the application of SIC. Our
derivation should similarly support the use of SIC in other frameworks where
our regularity conditions are enveloped by a theoretical structure conducive to

maximum likelihood estimation.
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