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Abstract

The conceptual predictive statistic, Cp, is a widely used criterion for model selection in

linear regression. Cp serves as an estimator of a discrepancy, a measure that reflects the

disparity between the generating model and a fitted candidate model. This discrepancy,

based on scaled squared error loss, is asymmetric: an alternate measure is obtained by

reversing the roles of the two models in the definition of the measure. We propose a variant

of the Cp statistic based on estimating a symmetrized version of the discrepancy targeted by

Cp. We claim that the resulting criterion provides better protection against overfitting than

Cp, since the symmetric discrepancy is more sensitive towards detecting overspecification

than its asymmetric counterpart. We illustrate our claim by presenting simulation results.

Finally, we demonstrate the practical utility of the new criterion by discussing a modeling

application based on data collected in a cardiac rehabilitation program at University of Iowa

Hospitals and Clinics.
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1. Introduction

An important component of any linear modeling problem consists of determining an

appropriate size and form for the design matrix. Improper specification may substantially

impact both estimators of the model parameters and predictors of the response variable.

Specifically, underspecification may lead to results which are severely biased, whereas over-

specification may lead to results with unnecessarily high variability.

The determination of a suitable design matrix can often be facilitated by the use of a

model selection criterion, such as Mallows’ (1973) conceptual predictive statistic, Cp. A

selection criterion scores every fitted model in a candidate collection in accordance with

how effectively the model balances the competing objectives of parsimony and conformity

to the data. Ideally, undesirable scores are assigned not only to models which omit essential

variables, but also to models which adequately accommodate the data yet involve extraneous

or irrelevant variables.

Cp serves as an estimator of a discrepancy, a measure that reflects the disparity between

the generating model and a fitted candidate model. This discrepancy, based on scaled

squared error loss, is asymmetric: a companion measure is obtained by reversing the roles

of the two models in the definition of the measure. A symmetric discrepancy can be formed

by adding the discrepancy and its counterpart.

When used to evaluate fitted approximating models which are improperly specified, the

discrepancy targeted by Cp is more sensitive towards detecting underfitted models than

overfitted models. As a result, Cp has the propensity to select models that are overparam-

eterized. We argue that the symmetrized discrepancy provides a more balanced gauge of

model misspecification, and therefore serves as a better basis for the formulation of a selec-

tion criterion. With this motivation, we propose a variant of the Cp statistic based on the

symmetrized discrepancy. We refer to this variant as symmetrized Cp, SCp.

We claim that SCp provides better protection against overfitting than Cp. We illustrate

this claim through a simulation study. We demonstrate the practical utility of the new crite-

rion by presenting a modeling application based on data collected in a cardiac rehabilitation

program at University of Iowa Hospitals and Clinics.

In Section 2, we present the framework for regression model selection. We discuss
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discrepancy-based model selection criteria in Section 3. In Section 4, we outline the deriva-

tion of SCp. Our simulation study is featured in Section 5, and our application in Section 6.

2. Framework for Regression Model Selection

Assume the generating or true model Mo corresponds to the normal linear regression

model

y = Xoβo + eo, eo ∼ Nn(0, σ2

o I).

Here, βo is a po × 1 parameter vector, and Xo is an n× po design matrix of full-column rank.

Consider an approximating model Mp which has the same fundamental structure as Mo,

but may be based on a different set of predictor variables:

y = Xβ + e, e ∼ Nn(0, σ2 I),

where β is a p × 1 parameter vector, and X is an n × p design matrix of full-column rank.

Let β̂, σ̂2 denote the maximum likelihood estimators (MLEs) of β, σ2 based on this model.

In practice, we consider a candidate collection F of models that consists of different

approximating models based on different design matrices of various ranks, say

F = {Mp1
,Mp2

, . . . ,MpL
}.

Note that some of the models in this collection may be based on design matrices having the

same rank yet different column spaces. For ease of notation, we do not include an index to

delineate between such models.

Each approximating model in F is fit to the data, resulting in a candidate collection of

fitted models {M̂p1
,M̂p2

, . . . ,M̂pL
}. Our objective is to identify the fitted model which is

“nearest” to the generating model Mo. To facilitate this objective, we require a measure

that provides a suitable reflection of the disparity between the generating model and a fitted

model. Such a measure is often called a discrepancy.

To define a discrepancy, let Mo denote the generating model and let M̂ denote a fitted

candidate model. Assume that Mo and M̂ belong to the class C. Consider a mapping ∆

from C × C to ℜ that has the property

∆(M̂,Mo) ≥ ∆(Mo,Mo). (2.1)
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A discrepancy is defined as a mapping ∆ that satisfies the property (2.1). (See Linhart

and Zucchini, 1986, p. 11.) Such a mapping need not be a formal metric, since the range

of the mapping need not be necessarily positive, the mapping need not be symmetric, and

the mapping need not satisfy the triangle inequality. However, for a discrepancy to be

useful in the present context, the measure ∆ should have the same utility as a distance: the

magnitude of ∆(M̂,Mo) should increase in accordance with the disparity between Mo and

M̂. The definition of a discrepancy is inherently vague so as to accommodate a wide variety

of separation measures.

Model selection criteria are often derived by constructing approximately unbiased estima-

tors of expected discrepancies. For instance, the Akaike (1973, 1974) information criterion

(AIC) estimates an expected discrepancy based on Kullback-Leibler information (Kullback,

1968). Akaike’s (1969) final prediction error, FPE, and the predictive sum of squares (Allen,

1974), PRESS, estimate an expected discrepancy based on squared prediction error. Mal-

lows’ (1973) Cp estimates an expected discrepancy based on scaled squared error loss.

The selection patterns of discrepancy-based selection criteria can often be linked to the

characteristics of the underlying discrepancy. For instance, certain model selection criteria

exhibit a propensity towards selecting underfitted or overfitted models. This propensity may

be exceptionally strong in smaller-sample settings. If the targeted discrepancy is asymmetric,

a more balanced criterion can often be obtained by formulating an estimator of a symmetrized

version of the discrepancy (e.g., Cavanaugh, 1999, 2004; Kim and Cavanaugh, 2005). A key

advantage of this approach is that the new criterion often retains the fundamental large-

sample properties as well as some of the interpretive characteristics of the original. In the

next two sections, we explore these conceptual and methodological ideas in the context of

the conceptual predictive statistic.

3. The Cp Discrepancy and Its Counterpart

Mallows’ conceptual predictive statistic is traditionally defined in terms of variance esti-

mators based on both the fitted candidate model of interest and the largest fitted model in

the candidate collection. Let M∗ denote the largest model in F , with design matrix X∗ of

rank p∗. Let σ̂2

∗
and MSE∗ respectively denote the MLE of the variance and the mean square
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error based on the fitted model M̂∗. Recall that σ̂2

∗
= [(n − p∗)MSE∗] /n. The conceptual

predictive statistic is then defined as

Cp =
n σ̂2

MSE∗

+ 2p − n.

The discrepancy targeted by Cp is given by

∆1

(
M̂p,Mo

)
=

‖ Xβ̂−Xoβo ‖
2

σ2
o

.

This discrepancy is asymmetric in that an alternate measure may be obtained by reversing

the roles of the two models in the definition. Take

∆2

(
M̂p,Mo

)
=

‖ Xoβo − Xβ̂‖2

σ̂2

= ∆1

(
Mo,M̂p

)
.

Cp provides an approximately unbiased estimator of E
{

∆1

(
M̂p,Mo

)}
, where E rep-

resents expectation taken with respect to the generating model. That is, as we argue more

formally in the next section, E (Cp) ≈ E
{

∆1

(
M̂p,Mo

)}
. Thus, in choosing the fitted

model corresponding to the minimum value of Cp, one is hoping to identify the fitted model

which is “nearest” on average to Mo, where proximity is gauged by the ∆1 discrepancy.

Let H = X (X ′X)−1 X ′ be the projection matrix onto C (X), the column space of X.

Then

E
{

∆1

(
M̂p,Mo

)}
= E

{
‖ Xβ̂ − HXoβo‖

2

σ2
o

}
+

‖ Xoβo − HXoβo ‖
2

σ2
o

. (3.1)

Linhart and Zucchini (1986) refer to the two terms on the right-hand side of (3.1) as the dis-

crepancy due to estimation and the discrepancy due to approximation, respectively. Consider

the former. We have

‖ Xβ̂ − HXoβo‖
2

σ2
o

=
‖ H (y − Xoβo) ‖

2

σ2
o

=
(y − Xoβo)

′ H (y − Xoβo)

σ2
o

.

The preceding quadratic form is a random variable distributed as χ2 with degrees of freedom

df = r (H) = r (X) = p, where r (·) denotes the rank. Thus,

E

{
‖ Xβ̂ − HXoβo ‖

2

σ2
o

}
= p.
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The discrepancy due to estimation thereby increases with the complexity of the model,

characterized by the design matrix X and its rank r (X).

Let

λ =
‖ Xoβo − HXoβo ‖

2

σ2
o

(3.2)

denote the discrepancy due to approximation. If C (Xo) ⊂ C (X), then the model Mp is

overspecified, since the model includes all of the regressors in the true model in addition to

certain false regressors. In this case, λ = 0. If C (Xo) * C (X), then we call the model Mp

underspecified, since the model excludes at least some of the regressors in the true model. In

this case, the size of λ reflects the extent of the underspecification. Therefore, the expected

value of the discrepancy targeted by Cp (3.1) is given as

E
{

∆1

(
M̂p,Mo

)}
= p + λ. (3.3)

Based on our convention, the class of underspecified models is comprised of two char-

acteristically different types of candidate models: those for which C (X) ⊂ C (Xo), where

no false regressors are included, and models for which C(X) * C(Xo) and C(X) + C(Xo),

where at least some false predictors are included. Models in the first subclass are necessarily

smaller than the true model, whereas models in the second subclass may be larger than,

smaller than, or the same size as the true model.

The concepts of underspecification and overspecification are pertinent in considering the

behavior of Cp as a model selection criterion. A well documented problem with the use

of Cp is its tendency to select overfitted models. (See, for instance, McQuarrie and Tsai,

1998, pp. 35–45.) This propensity can be at least partly attributed to the behavior of

∆1. Relative to its counterpart ∆2, the discrepancy ∆1 is more sensitive towards detecting

underspecification, and less sensitive towards detecting overspecification.

We can gain insight into the preceding property by comparing the expected values of the

two measures. From linear model theory, we have that Xβ̂ is independent of σ̂2, with

E
{
‖ Xoβo − Xβ̂‖2

}
= σ2

o (p + λ) ,
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as derived for equation (3.3). Now,

‖ y − Xβ̂ ‖
2

σ2
o

=
‖ (I − H) y‖2

σ2
o

=
y′ (I − H) y

σ2
o

is a random variable distributed as χ2 with degrees of freedom df = r (I − H) = n − p and

noncentrality parameter

(Xoβo)
′ (I − H) (Xoβo)

σ2
o

=
‖ Xoβo − HXoβo ‖

2

σ2
o

= λ.

Thus,

σ̂2 ∼
σ2

o

n
· χ2 (n − p, λ) .

To find E
{

∆2

(
M̂p,Mo

)}
, we need E {1/σ̂2}. With the intention of providing better

mathematical tractability, we will use the second-order approximation

E

{
1

W

}
≈

1

E (W )

(
1 +

V ar (W )

E2 (W )

)
.

(The preceding is derived by taking a second-order Taylor series expansion of 1/W in

the argument W about its mean E(W ), and then taking the expected values of both

sides of the resulting expression.) Since E (σ̂2) = (σ2

o/n)(n − p + λ) and V ar (σ̂2) =

(σ2

o/n)
2
(2(n − p) + 4λ) , we have

E

{
1

σ̂2

}
≈

n

σ2
o

(
1

n − p + λ

)(
1 +

2(n − p) + 4λ

(n − p + λ)2

)
.

We thereby obtain

E
{

∆2

(
M̂p,Mo

)}
= E

{
1

σ̂2

}
· E
{
‖ Xoβo − Xβ̂‖2

}

≈
n(p + λ)

n − p + λ

(
1 +

2(n − p) + 4λ

(n − p + λ)2

)
. (3.4)

We will later use approximation (3.4) in the development of our criterion. For now, let’s

simplify the comparison between ∆1 and ∆2 by comparing (3.3) and

E
{

∆2

(
M̂p,Mo

)}
≈

n(p + λ)

n − p + λ
. (3.5)
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As the degree of underspecification becomes more pronounced, λ grows. One can see from the

partial derivatives of (3.3) and (3.5) that, on average, as λ grows, the growth in ∆1 exceeds

that of ∆2. For overspecified models, λ = 0. As the degree of overspecification becomes

more pronounced, p grows. Again from partial differentiation, on average, as p grows, the

growth in ∆2 exceeds that of ∆1. Hence, ∆1 is more sensitive than ∆2 towards detecting

underspecification, and ∆2 is more sensitive than ∆1 towards detecting overspecification.

The discrepancy ∆1 is scaled by the true error variance, σ2

o . Since σ2

o is constant across

the candidate collection of fitted models, candidate models are judged according to ∆1

exclusively by whether they yield an accurate estimate of the mean vector. The discrepancy

∆2 is scaled using the approximating model variance σ̂2, so candidate models are additionally

judged according to ∆2 by whether they yield a maximum likelihood estimate that provides

an appropriate accounting of the variance. The inadequacy of an underspecified model with

large model variance will be better reflected by ∆1; the redundancy of an overspecified model

with small model variance will be better reflected by ∆2.

Since Cp targets ∆1, we see that while Cp provides relatively strong protection from

choosing an underfitted model, it provides relatively weak protection from choosing an over-

fitted model. We can further illustrate the model selection properties of Cp by exploring its

target discrepancy ∆1 and its counterpart ∆2 in a simple example. Suppose that samples of

size n are generated from the true model Mo :

yi = 1 + xi1 + xi2 + xi3 + 0.5 xi4 + eoi,

where eoi ∼ iid N (0, 4), and all covariates xij are distributed as independent replicates from

N (0, 12). For each sample, we fit three approximating models to the data:

M4 : yi = β0 + β1 xi1 + β2 xi2 + β3 xi3 + ei,

M5 : yi = β0 + β1 xi1 + β2 xi2 + β3 xi3 + β4 xi4 + ei,

M11 : yi = β0 + β1 xi1 + β2 xi2 + β3 xi3 + β4 xi4 + β5 xi5 + . . . + β10 xi,10 + ei,

where ei ∼ iid N (0, σ2). Candidate model M5 is correctly specified. Candidate model M4

is underspecified whereas candidate model M11 is overspecified. We generate 1000 samples

from Mo in order to approximate E
{

∆1

(
M̂p,Mo

)}
and E

{
∆2

(
M̂p,Mo

)}
for each of
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M4, M5, and M11. We consider sample sizes n = 15, n = 30, and n = 100. The simulated

averages for ∆1

(
M̂p,Mo

)
= ‖ Xβ̂−Xoβo ‖

2/σ2

o and ∆2

(
M̂p,Mo

)
= ‖ Xβ̂−Xoβo ‖

2/σ̂2

are given in Table 1. The table also features the model selections obtained by Cp for each

set of 1000 samples.

Table 1. Cp selections and simulated expected values of ∆1, ∆2 for three candidate models.

n Model Cp Selections ∆1 ∆2

M4 117 12.16 11.04

15 M5 644 4.94 9.14

M11 239 10.93 73.57

M4 6 23.72 16.31

30 M5 872 4.99 6.57

M11 122 10.94 19.64

M4 0 75.80 45.76

100 M5 924 4.92 5.29

M11 76 10.94 12.57

In all three settings, we see that ∆2 penalizes the overspecified model M11 to a greater

extent than ∆1. However, ∆2 is not a uniformly more discriminating measure than ∆1, since

∆1 penalizes the underspecified model M4 to a greater extent than ∆2. Among the incorrect

model selections, Cp chooses the overspecified model M11 much more frequently than the

underspecified model M4. This propensity is entirely consistent with the behavior of the

discrepancy ∆1 that is targeted by Cp.

4. The Symmetrized Conceptual Predictive Statistic

To attenuate the overfitting tendencies of Cp, we propose a model selection criterion

based on the symmetrized discrepancy

∆S

(
M̂p,Mo

)
= ∆1

(
M̂p,Mo

)
+ ∆2

(
M̂p,Mo

)
. (4.1)
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The symmetrized conceptual predictive statistic, SCp, will serve as an approximately unbi-

ased estimator of E
{

∆S

(
M̂p,Mo

)}
. To derive this criterion, recall that M∗ denotes the

largest model in the candidate collection F , with design matrix X∗ of rank p∗. Henceforth,

we impose the assumption that the largest candidate model subsumes the true model. That

is, C (Xo) ⊆ C (X∗). This assumption is also required for the derivation of Cp.

An estimate of the expected symmetrized discrepancy function E
{

∆S

(
M̂p,Mo

)}
will

be developed by first defining an estimate of the parameter λ.

Theorem 4.1: Under the conditions set forth previously,

λ̂ = (n − p∗ − 2)
σ̂2

σ̂2
∗

− (n − p − 2) (4.2)

is an unbiased estimator of λ, as defined in (3.2).

Proof: We begin by considering the quadratic forms y′ (H∗ − H) y and y′(I − H∗)y,

where H∗ is the projection matrix onto C (X∗). These quadratic forms, which appear in the

F statistic for testing model Mp against model M∗, are independently distributed chi-square

random variables. We have
1

σ2
o

y′ (H∗ − H) y ∼ χ2,

with degrees of freedom df1 = r (H∗ − H) = p∗ − p and noncentrality parameter

ncp1 =
1

σ2
o

‖ H
∗
Xoβo − HXoβo ‖

2.

Also,
1

σ2
o

y′ (I − H∗) y ∼ χ2,

with degrees of freedom df2 = r (I − H∗) = n − p∗ and noncentrality parameter

ncp2 =
1

σ2
o

‖ Xoβo − H
∗
Xoβo ‖

2.

Since H∗Xoβo = Xoβo from the condition C (Xo) ⊆ C (X∗), it follows that ncp1 = λ and

ncp2 = 0. So

E

{
y′(H∗ − H)y

y′(I − H∗)y

}
=

p∗ − p + λ

n − p∗ − 2
.

Now, n σ̂2 = y′(I − H)y = y′(I − H∗)y + y′(H∗ − H)y. Thus,

σ̂2 = σ̂2

∗
+

y′(H∗ − H)y

n
,
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E

{
y′(H∗ − H)y

y′(I − H∗)y

}
= E

{
σ̂2 − σ̂2

∗

σ̂2
∗

}
,

and

E

{
σ̂2

σ̂2
∗

}
=

p∗ − p + λ

n − p∗ − 2
+ 1.

Algebraic manipulation yields the stated result for λ̂. �

The derivation of Cp initially assumes that σ2

o is known. It is then established that

E

{
n σ̂2

σ2
o

+ 2p − n

}
= E

{
∆1

(
M̂p,Mo

)}
.

In the preceding, σ2

o is subsequently estimated using the mean square error from the largest

candidate model, MSE∗. Under the condition C (Xo) ⊆ C (X∗), MSE∗ is unbiased for σ2

o ,

yet

Cp =
n σ̂2

MSE∗

+ 2p − n

is not unbiased for E
{

∆1

(
M̂p,Mo

)}
. From (3.3), the statistic p + λ̂ is exactly unbiased

for E
{

∆1

(
M̂p,Mo

)}
. The statistic Cp is not defined as p + λ̂. Rather, using (4.2), one

can show that

Cp =
(
p + λ̂

)
+ 2

(
σ̂2

σ̂2
∗

− 1

)
,

implying that the bias of Cp is in the positive direction. Fujikoshi and Satoh (1997) discuss

correcting for the bias of Cp induced when σ2

o is estimated by MSE∗. Their correction

amounts to using p + λ̂ to estimate E
{

∆1

(
M̂p,Mo

)}
. Following Fujikoshi and Satoh, we

define the modified conceptual predictive statistic, MCp, as

MCp = p + λ̂.

Under suitable conditions, Davies, Neath, and Cavanaugh (2006) establish that MCp

serves as the minimum variance unbiased estimator of E
{

∆1

(
M̂p,Mo

)}
. Our proposal in

the current paper is to estimate the expected symmetric discrepancy E
{

∆S

(
M̂p,Mo

)}
.

To this end, we define the symmetrized conceptual predictive statistic, SCp, from (4.1), (3.3),

and (3.4) by replacing λ with λ̂ from (4.2). The resulting criterion,

SCp = (p + λ̂) +
n(p + λ̂)

n − p + λ̂

(
1 +

2(n − p) + 4λ̂

(n − p + λ̂)2

)
,
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provides an approximately unbiased estimator of E
{

∆S

(
M̂p,Mo

)}
. Thus, in large-sample

settings, E {SCp} ≈ E
{

∆S

(
M̂p,Mo

)}
.

5. A Simulation Study

We look to compare the performance of the conceptual predictive statistics. In each of

four simulation sets, one thousand samples of size n are generated from a true regression

model having an n × po design matrix, a parameter vector of the form βo = (1, 1, . . . , 1)′,

and an error variance of σ2

o = 4. For every sample, candidate models with design matrices

of ranks p = 2, 3, . . . , p∗ are fit to the data. The first column of each design matrix is a

vector of ones. All other covariates are generated as independent replicates from a N(0, 8)

distribution. In each of the simulation sets, the condition C (Xo) ⊆ C (X∗) is met. Our

examination focuses on the effectiveness of Cp, MCp, and SCp at selecting po, the true order

of the generating model.

In the first two sets, the candidate models are nested. Simulation set I features a sample

size of n = 16, a largest candidate model of order p∗ = 11, and a true order of po =

5. Simulation set II has n = 20, p∗ = 16, and po = 7. The results are displayed in

Tables 2 and 3. The MCp criterion greatly outperforms Cp in the number of correct selections.

The modification of Cp to an exactly unbiased estimator of E
{

∆1

(
M̂p,Mo

)}
has led to

improved model selection. It is also seen that SCp provides further improvement over MCp

by increasing the number of correct selections. This improvement can be attributed to a

decrease in the propensity to choose an overspecified model.

In simulation sets I and II, the expectations of the target discrepancies E
{

∆1

(
M̂p,Mo

)}

and E
{

∆S

(
M̂p,Mo

)}
are computed for each of the candidate model orders. These ex-

pectations are displayed graphically in Figures 1 and 2. To maintain comparable scaling for

the two discrepancy curves, values of E
{

∆S

(
M̂p,Mo

)}
are divided by two.

In these figures, we see the reason for the strong performance of SCp in the simulations.

The target of SCp provides a greater degree of delineation among the overspecified models

than the target of MCp and Cp. For the ∆S curve, note that the rate of change increases in

accordance with the extent of the overparameterization; for the ∆1 curve, the rate of change

is constant. Thus, SCp has fewer errors in selecting overspecified models.
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Table 2. Order selections for simulation set I.

p 2 3 4 5 6 7 8 9 10 11

Cp 1 0 7 586 104 54 45 57 53 93

MCp 1 6 16 749 74 32 30 28 24 40

SCp 1 9 20 887 53 15 8 3 3 1

Table 3. Order selections for simulation set II.

p 2–5 6 7 8 9 10 11 12 13 14 15 16

Cp 0 2 541 79 49 39 27 31 36 33 51 112

MCp 9 15 772 58 32 13 7 13 12 11 16 42

SCp 8 18 893 37 21 9 4 4 2 3 1 0

In the next two sets, candidate models are formulated using all possible subsets of the

(p∗ − 1) regressor variables. In simulation set III, n = 16, p∗ = 6, and po = 4; in simulation

set IV, n = 16, p∗ = 6, and po = 3. Tables 4 and 5 summarize the number of selections of

underspecified models, correctly specified models, and overspecified models, for each of Cp,

MCp, and SCp. The all possible subsets case is a harder model selection problem than the

nested candidate models case because of the increase in the size of the candidate collection in

general, and the increase of the number of overspecified models in the candidate collection in

particular. But the behaviors of the selection criteria here are similar to the sets with nested

candidate models, with SCp having more correct selections than MCp and Cp by providing

better protection against overfitting. Specifically, note that in Table 4, Cp is over 20 times

more likely to select an overspecified model as opposed to an underspecified model, while

MCp is 10 times, and SCp is only 5 times. Similarly, in Table 5, Cp is over 30 times more

likely to select an overspecified model as opposed to an underspecified model, while MCp is

22 times, and SCp is only 16 times. In both scenarios, Cp and MCp exhibit a much more

extreme propensity than SCp to select overspecified models.
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Table 4. Model selections for simulation set III.

Underspecified Correctly Specified Overspecified

C (Xo) * C (X)

C (X) ⊂ C (Xo) and C (Xo) = C (X) C (Xo) ⊂ C (X)

C (X) * C (Xo)

Cp 11 4 663 322

MCp 20 5 716 259

SCp 24 9 805 162

Table 5. Model selections for simulation set IV.

Underspecified Correctly Specified Overspecified

C (Xo) * C (X)

C (X) ⊂ C (Xo) and C (Xo) = C (X) C (Xo) ⊂ C (X)

C (X) * C (Xo)

Cp 5 8 579 408

MCp 8 7 648 337

SCp 8 9 708 275

To illustrate how other popular model selection criteria perform in these simulation sets,

we summarize the selection results in sets I through IV for the Akaike (1973) information cri-

terion, AIC, the corrected Akaike information criterion (Hurvich and Tsai, 1989), AICc, the

final prediction error (Akaike, 1969), FPE, and the Bayesian or Schwarz (1978) information

criterion, BIC. Table 6 presents the number of correct and overspecified model selections in

each set. Due to the small sample sizes considered in the simulation sets, AIC, FPE, and BIC

all exhibit strong tendencies to choose overfitted models. AICc performs well, and obtains

more correct selections than the conceptual predictive criteria. These results are consistent

with those reported in similar simulation studies: see, for instance, Hurvich and Tsai, 1989,

pp. 300-301.

However, despite the strong performance of AICc, conceptual predictive statistics are

often preferred to Akaike information criteria since values of the latter cannot be compared
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to benchmarks for detecting model misspecification. As evident from (3.3), (3.4), and (4.1),

p serves as a benchmark for Cp and MCp, whereas 2p serves as a benchmark for SCp. Cp

and MCp should be close to p when λ ≈ 0 (reflecting low approximation error), whereas SCp

should be close to 2p when λ ≈ 0 and n is much larger than p (reflecting low approximation

error and low estimation error). Such references do not exist for the criteria considered in

Table 6; thus, criterion values are only meaningful when the differences between them are

considered.

Table 6. Correct model selections for AIC, AICc, FPE, and BIC

in simulation sets I through IV.

(Number of overspecified selections in parentheses.)

Criterion Set

I II III IV

AIC 300 (697) 146 (853) 540 (451) 432 (559)

AICc 918 (51) 933 (53) 853 (103) 776 (205)

FPE 420 (577) 317 (682) 571 (420) 461 (530)

BIC 467 (529) 366 (633) 660 (323) 592 (395)

6. An Application

We consider a regression modeling application based on data from a cardiac rehabil-

itation program at University of Iowa Hospitals and Clinics. The data consist of mea-

surements based on 35 patients who have had a myocardial infarction and have completed

the program. The data may be obtained by either downloading a text file from the first

author’s website (http://myweb.uiowa.edu/cavaaugh/) or by e-mailing the first author (joe-

cavanaugh@uiowa.edu).

The response variable is the final score on a test that reflects the capability of the patient

to physically exert himself / herself. The score is in units of metabolic equivalents (METs).

One MET corresponds to the rate of oxygen consumption for an average person at rest.

The covariates include the patient’s initial score on this test. Additional covariates include
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the patient’s age, the patient’s gender, and the patient’s baseline body mass index (BMI)

dichotomized based on whether BMI is less than 30. (A BMI of 30 is the standard cutoff

for obesity.) Interactions under consideration include (a) initial score and gender, (b) initial

score and BMI, (c) age and gender, (d) age and BMI. In defining the candidate collection,

we consider models corresponding to all possible regressor subsets that satisfy the following

criteria: (1) the initial test score is included, (2) if an interaction is included, both of the

covariates represented in the interaction are also included.

The conceptual predictive statistics Cp, MCp, and SCp are computed for each of the

models in the candidate collection. Cp and MCp choose a model that includes initial score,

age, gender, BMI, and the age/gender interaction (model M6, p = 6). SCp chooses a model

that includes initial score, age, gender, the age/gender interaction, but not BMI (model M5,

p = 5). Model M6 is ranked second by SCp; model M5 is ranked third by Cp and second

by MCp.

The criteria differ on the inclusion of BMI in the final candidate model. From a clin-

ical standpoint, BMI might initially seem like a relevant predictor. However, much of the

information conveyed by this dichotomous variable is represented by the other explanatory

variables, and the marginal relationship between this variable and the response is relatively

weak. All 12 obese patients, with BMI ≥ 30, were male. Furthermore, the obese patients

were considerably younger: the mean age for the obese group was 53.3 years versus 66.9

years for the non-obese group. The obese patients had slightly higher initial test scores,

most likely because they were younger: the mean initial score was 6.2 METs for the obese

group versus 5.2 METs for the non-obese group. This difference still persists in the final

test scores: the mean final score was 9.1 METs for the obese group versus 8.3 METs for the

non-obese group. In the multivariable candidate models, it is plausible that the difference

in final test scores between the weight groups is explained by the variation in age, gender,

and initial test scores.

We have seen in our theoretical development and simulations that SCp provides better

protection against overfitting than Cp and MCp. It is not surprising to see in practice that

the SCp criterion is more stringent about including input variables which have a questionable

effect on response.
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7. Conclusion

By formulating an estimator of a symmetrized version of the discrepancy targeted by

traditional Cp, we obtain an alternate version of Cp that provides better protection from

overfitting and tends to favor more parsimonious models. The new criterion, SCp, is devel-

oped in the same spirit as Cp, although the interpretability of the symmetric discrepancy

targeted by SCp is less transparent than that of the asymmetric discrepancy targeted by Cp.

Because of the common basis for SCp and Cp, the criteria share certain key characteristics

and may be used in a similar manner. In particular, as previously mentioned, both criteria

may be compared to benchmarks for assessing model misspecification: Cp to p, and SCp

to 2p. Based on these benchmarks, Cp–type plots constructed using either set of criterion

values may be utilized in screening candidate models. However, since SCp is more sensitive

towards detecting overspecification than its traditional counterpart, plots based on SCp may

have greater utility in identifying models that include extraneous or irrelevant regressors.

In interpreting such plots, fitted models for which SCp ≈ 2p should be viewed as viable

candidates. Values of SCp exceeding 2p represent models that are potentially undesirable,

due to either (1) the exclusion of important variables, or (2) the inclusion of unnecessary

variables in settings where the sample size is insufficient to permit accurate estimation of

the corresponding regression parameters.
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Figure 1. Expected discrepancy comparison for simulation set I.
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