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SUMMARY

An important inferential objective in state-space modelling is to recover unob-
served states using fixed-interval smoothing. Thus, the identification of cases which
have a substantial influence on the smoothers is a relevant practical problem. To
facilitate this identification, we propose a case-deletion diagnostic which can be easily
computed using the outputs of the standard filtering and smoothing algorithms. Our
diagnostic is defined as the Kullback-Leibler directed divergence between two versions
of the conditional density which determines the smoothers, one based on all the data,
the other based on all the data except for the case or cases in question. We investigate

the detection performance of the diagnostic in a practical application.

Some key words: Case-deletion diagnostic; EM algorithm; Fixed-interval smooth-
ing; Kalman filtering; Kullback-Leibler divergence; Prediction; Predictive influence

function; State-space modelling; Time series analysis.



1. INTRODUCTION

Influence diagnostics have been widely discussed in the linear regression setting
(see Belsley, Kuh & Welsch, 1980; Cook & Weisberg, 1982). In time series anal-
ysis, such diagnostics have received limited attention, although extensive research
has appeared on the characterisation and classification of outliers. References on in-
fluence assessment in time series include Chernick, Downing & Pike (1982), Lattin
(1983), Martin & Yohai (1986), Li & Hui (1987), Pena (1987, 1990, 1991), Abraham
& Chuang (1989), Bruce & Martin (1989), Ledolter (1989), LeFrancois (1991) and
Van Hui & Lee (1992).

In the state-space setting, a primary inferential goal is to recover unobserved states
using fixed-interval smoothing (de Jong, 1988; Kohn & Ansley, 1989); we introduce
a diagnostic which assesses the influence of a case or set of cases on the smoothers.
Our diagnostic is defined as the Kullback-Leibler directed divergence (Kullback, 1968,
p. 5) between two versions of the conditional density which governs the smoothers,
one based on all the data, and the other based on all the data except for the case
or cases in question. This type of measure was first suggested by Johnson & Geisser
(1983) for the detection of influential cases in linear regression.

Our diagnostic can be easily obtained using only the ordinary outputs of the
Kalman filtering and fixed-interval smoothing algorithms, often jointly referred to as
the Kalman filter smoother. Moreover, if the model parameter estimates are obtained
using the EM algorithm (Shumway & Stoffer, 1982), the evaluation of the diagnostic
is particularly simple.

Very little work has been published on state-space modelling diagnostics. Kohn
& Ansley (1989) extend the concept of leverage to the state-space framework, and
propose natural definitions for studentised and deleted residuals. Harrison & West

(1991) introduce an influence diagnostic in a Bayesian context which, though related



to ours, is distinctly different; see §2.
In §2, our diagnostic is introduced and a computational formula is developed for
its evaluation. Important related results are also discussed. In §3, the detection

performance of the diagnostic is illustrated in a practical application.
2. ASSESSING PREDICTIVE INFLUENCE IN A STATE-SPACE PROCESS

A g-dimensional state-space process y; can be represented as
yi = Ay + vy, Ty = Pxyp g + wy, t=1,...,n, (2.1)

where x; is an unobserved p-dimensional state process, A; is a ¢ X p design matrix,
assumed known for each ¢, ® is a p X p transition matrix, and v; and w; are zero-mean
white noise processes (c.f. Shumway, 1988, p. 175).

Let R = cov(v),Q = cov(wy),n = E(x,) and ¥ = cov(z,). Let 6 denote a
parameter vector that uniquely determines the model coefficients and correlation
structure. We assume that z,, the v; and the w; are mutually independent and
multivariate normal.

Modern work on the state-space model often considers a more general version of
(2.1) (de Jong, 1989). We utilise (2.1) since it is the same as or similar to the form
of the model usually employed in EM algorithm implementations (c.f. Shumway &
Stoffer, 1982; Watson & Engle, 1983; Koopman, 1993).

Let V; = (y1, -, u1), Xy = (00,21, .., 24), Y =Y, X = X, and let Y* represent,
Y with case y; omitted.

To predict the unobserved z;, the smoother computes z,(8) = E(x;|Y) for each
t. Under the previously mentioned independence and normality assumptions, the
7;(f) are linear in the data Y, and can be efficiently evaluated along with their
error covariance matrices P,(0) = E[{z, — #,(0)}{z; — 7,(0)} | Y] using well-known

recursions developed in de Jong (1988) and Kohn & Ansley (1989).



Unknown parameters in € are generally estimated via maximum likelihood, by
computing the likelihood L(# | Y") using the Kalman filter and numerically maximising
it, or by using the EM algorithm. We will use 0 and éi, respectively, to denote the
estimators of # which maximise the likelihoods L(#|Y) and L(f|Y?).

The conditional density which determines the smoothers is f(X |Y,#). Thus, the
influence of the case y; on the smoothers might be judged by measuring the disparity
between f(X|Y,0) and f(X |V #"). We gauge this disparity by the Kullback-
Leibler directed divergence (c.f. Johnson & Geisser, 1983; Johnson, 1985).

We define the predictive influence function for assessing the impact of y; on the

smoothers as

PIF(i) :/llog{%}] F(X|Y,0) dX. (2.2)

It is well known that (2.2) is nonnegative (Kullback, 1968, pp. 14-15). Moreover, its
magnitude will be indicative of the impact the deletion of y; has on f(X |Y,0).

A formula for the exact evaluation of (2.2) is provided in the following proposition.
The derivation of the result is presented in the Appendix.

Let L(#|X,Y) denote the complete-data likelihood of ¥ and X (Shumway &
Stoffer, 1982, p. 256; Shumway, 1988, p. 179), and define

Q(010.) = Ex{log L(O | X,Y) [ Y}, (2.3)

a familiar tool in the EM algorithm, where F,( - |Y) denotes the expectation with

respect to the conditional density f(X |Y,6,). Similarly, let
q:(010.) = Ef{log f(yi|2:,0) | Y} (2.4)
PROPOSITION 1.
PIF(i)={Q(0]0) — Q(0710) + ¢:(6"10)} + {log L(O" [ V") —log L(O | V) } . (2.5)

As illustrated by the formulae which follow, the functions Q(6|6,) and ¢;(@|6.)



have convenient representations based on ordinary outputs from the smoother.
Following Shumway & Stoffer (1982, pp. 256-257) and Shumway (1988, p. 179),

we have
1
Qt(9|9*) = —510g|R|
—% tr (R [y — A0 Hu — Ad(0.)) + AP0.)4) . (26)

Moreover, with P;; ;(0) = E[{z; — #,(0) =z ; — 7 ;(0)} | Y],

QO10,) = —glog|z|—§tr(zl [Po(6.) + {&(0.) — n}{E(0.) — p}'])

—g log |Q| — % tr[Q 7 {C(6.) — B(0.)d — ®B(0.) + A(0.)2'}]

+2n2qt(9 10.), (2.7)

t=1
where

n n
’

A0:) =Y {Pa(0) + 21 (0)7-1(0.) }, - B(0.) = D _{Pre1(0.) + 2(0:)7-1(0) },

t=1 t=1

Z{Pt ) + E4(0.)7:(6.) ).

Note that, aside from the data y; and the model parameters p, ¥, R, @, and @, (2.6)
and (2.7) involve only the smoothers Z;(6,), their error covariance matrices P;(f,),
and the cross-covariance matrices P, (6,). The Z,(f,) and the P,(f,) are the main
outputs of the smoother. The basic smoother recursions can be easily augmented to
provide for the evaluation of the P, ,(f.); see de Jong (1989, p. 1087). Alterna-
tive expressions for ¢;(0|6,) and Q(#|6.) may be derived based on the disturbance
smoother of Koopman (1993).

The terms in (2.5) can be conveniently computed for each y;. Once the maximum
likelihood vector § is obtained, log L( | Y) and Q(f|0) are easily found, the latter
from (2.7). The vectors f' can then be successively determined, using 0 as the starting

value for f in the estimation algorithm. The computations are not prohibitive, even



when the EM algorithm is used to obtain the 6t Although the EM algorithm is
known to have a slow convergence rate, our investigations suggest PIF (i) performs
effectively even if the §¢ are based on a relatively small number of iterations. For
cach 0%, log L(8 | Y'?) can be found by evaluating log L(#|Y) with = 7 and with
y; treated as missing data, and Q(A?|6) and ¢;(#|0) can be computed from (2.7)
and (2.6).

In time series, outliers and influential values often appear in ‘patches,” i.e. in sets
of contiguous cases. Bruce & Martin (1989) introduce diagnostics that can detect such
patches in the ARIMA framework, and discuss the issue of choosing a suitable patch
length. An important property of PIF'(i) is that it can be used to measure influence
for any subset of cases in a series. If the subsets of interest consist of adjacent cases,
the derivation and implementation of the computational formula (2.5) follow simply
by writing the state-space model (2.1) so that the y; vectors represent consecutive
patches. If the subsets do not consist of adjacent cases, the modifications needed to
derive and implement (2.5) are straightforward.

Variations on the diagnostic PIF(i) may be proposed based on related divergence
measures considered by Kullback (1968, pp. 6-7). We might use the alternative
directed divergence that reverses the roles of f(X|Y,6) and f(X |Y? 0%) in (2.2),
or the symmetric divergence, defined as the sum of the two directed divergences. We
will refer to these three divergences by PIFi(i), PIF;(i), and PIFy5(i), respectively.
It is straightforward to derive computational expressions for PIFy(i) and PIF;5(i)
which are analogous to (2.5). Of the three measures, we prefer PIF}(i), since it is
based on the averaging density f(X |V, é) which remains fixed as ¢ varies.

Harrison & West (1991) introduce an influence diagnostic which is related to
PIF,(i). They consider a state-space model where the parameter matrices R, ) and ®

are allowed to vary over time. Their initial diagnostic presumes all model parameters



are known. A more general variant is then derived which allows for uncertainty in
the time-varying R. Their diagnostic assesses the effect that the deletion of a case
y; has on the smoother for the associated state x;. The evaluation of their measure
is accomplished using ‘dynamic model jacknife’ recursions which are a special case of
the formulae provided in de Jong (1989). We introduce their diagnostic in the context
of model (2.1) using our notation.

With # assumed known, the Harrison & West diagnostic (1991, p. 801, exp. (7))

can be written as

HW(i) :/llog{%}] Fl@:| Y, 0) das.

If 6 is unknown, we might use either HW?(i) or HW?'(i). It may seem appealing
to define a variant of HW?(i) by replacing # with 6 in f(x;| Y, 0) and 6 with  in
f(z;|Y,8), but exact evaluation seems impossible.

The following proposition relates HW?(i) to the analogue of PIFy(i) with 0 as-
sumed known, denoted by PIF{(i). The proposition applies to a case or a collection
of cases denoted by y; and to the associated state(s) denoted by z;. The proof is
presented in the Appendix.

PROPOSITION 2. Assuming 0 is known, we have

HW(i) = /[m{%” Flai| Y 0) da,

_ /llog{%}] FIX|YE0)dX = PIFI(i).  (2.8)

Thus, when € is known, the effect of deleting the case y; on the conditional density
f(X]Y,0) for the entire collection of states X is the same as the effect of deleting y;
on the conditional density f(x;|Y,6) for only the corresponding state z;. In such a
setting, HW(i) = PIFY(i) can be computed using either the appropriate analogue
of (2.5) or the recursions employed in Harrison & West (1991). The latter approach

is arguably more efficient, since (2.5) involves likelihood-based terms which need not



be evaluated when € is known.

In more practical settings where # is unknown, one could substitute an estimate
for 6 into (2.8) and use the result as a diagnostic, e.g. HWé(i) = PIFQé(i). However,
if # is unknown, the influence of y; on the prediction of the states is largely dictated
by the effect of y; on the estimation of . Our investigations suggest that a diagnostic
which ignores the estimative influence of y; tends to be over-sensitive, in that it flags
an excessive number of cases as being influential. Our measure PIF;(i) = PIF(i)

does not appear to have this difficulty.
3. AN APPLICATION OF THE DIAGNOSTIC

Box, Jenkins & Reinsel (1994, p. 545) analyse 310 hourly viscosity measurements
taken on a chemical process. They model the series both as a first-order autoregression
and as an integrated moving average where the order of differencing and the order
of the moving average are both one. Using the former model, they apply an outlier
detection procedure suggested by Chang, Tiao & Chen (1988) to identify values in
the series which substantially affect the fitted model. Based on this method, they
identify an outlier at hour ¢t = 217 (Box et al., 1994, pp. 473-474). The viscosity
measurements are shown in Fig. 1(a), with case 217 specially marked.

We consider using a local-level model to describe the viscosity series, i.e.

Ye =T+, U N(Oa 0—7271)7

vy =x, 1 +w, w, ~ N(0,0?), t=1,...,310 (3.1)

(c.f. Harvey, 1989, pp. 18-19). The model appears to provide an adequate fit to
the series, although the discrete nature of the viscosity measurements makes the
propriety of the normality assumptions debatable. The innovations from the fitted
model appear approximately normal, except for one outlying value corresponding to

case 217.



In fitting (3.1), we use a diffuse prior for z,: we fix the variance of z, at a
relatively large value, and allow the mean of z, to be estimated by Z,(0) (c.f. Shumway,
1988, p. 180). The estimates of the variances of w; and v; are 62 = 0.08518 and
62 = 0.00567.

To determine if any of the observations exert a substantial influence on the
smoothers, we compute PIF(i) fori =1,...,310; see Fig. 1(b). Note that PIF(217)
is relatively large, which supports the classification of case 217 as an outlier in the
Box et al. (1994) analysis. However, PIF(170) is appreciably larger than PIF(217),
even though case 170 was not flagged as suspicious in the Box et al. (1994) analysis
and does not appear unusually prominent in Fig. 1(a).

One way in which an outlying value may influence the smoothers is by having
an impact on the model parameter estimates. The estimates of o2 when case 217
and case 170 are individually omitted are respectively 0.08351 and 0.08852. The
corresponding estimates of o2, are 0.00402 and 0.00255.

Although 62 is only marginally affected by the omission of case 217 or 170, 62,
is substantially reduced when either case is omitted. Note also that both variance
estimates change to a greater extent when case 170 is deleted than when case 217 is

deleted. This reinforces the implication of the PIF (i) results.

Because 62, is deflated when either case 170 or 217 is deleted, the smoothers
resulting from the omission of either case tend to track the original series more closely
than the smoothers based on the complete set of cases. Since the smoothers are
thought to represent a filtered reconstruction of the true viscosity levels, any case
which has substantial impact on such a reconstruction warrants attention.

In multivariate settings, where even dramatically atypical values may be difficult

to spot visually, our diagnostic should serve as a valuable tool for detecting potentially

problematic cases.
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APPENDIX
Proofs of Propositions 1 and 2
Proof of Proposition 1. Note that
log f(X|Y,0) = log f(X,Y|0)—log f(Y'|0), (A1)
log f(X|Y",0) = log f(X,Y"|0)—log f(Y"|0)
= {log f(X,Y|0) —log f(y; | X, Y",0)} —log f(Y"|0). (A2)
Additionally, the properties of the state-space process (2.1) allow us to argue that
f(yi|X7Yiv9):f(yi|xi79)' (A3)
Using (A.1) along with the definition (2.3), we have
[Hog F(X|,0)} F(X|Y.0) dX =Q(0]8) —1og LBIY).  (A4)
Using (A.2) and (A.3) along with the definitions (2.3) and (2.4), we have
[Dog F(X|Y%,07)} F(X|Y,0) dX = Q(0°18) — (B |6) —10g LB |Y). (A.5)

Expression (2.5) then follows from utilising (A.4) and (A.5) in conjunction with the
definition of PIF (i) provided by (2.2). O

Proof of Proposition 2. We suppress # in our notation since # is fixed throughout.

Note that
PO FOXY ) (] X,Y9) A
FXY) g , (4.6)
. f(Yi)f(% | Yi)f(yi | i, Yi)
Fli]Y) = o . (A7)
The properties of the state-space process (2.1) also allow us to argue that
Flyil XY = flyilea YY) = flyi| ). (A.8)

10



Utilising (A.8) in conjunction with (A.6) and (A.7), we establish the relation
fXNYY  f@]Y) _ f) ot YY)

_ ENACD - . A.
FXIY) ~ F@lY) ~ F07) Fla) ~ Fle) (49
Note that (A.9) allows us to write the two divergences in (2.8) as
PIF(i) = log f(yi| V")~ [{log fus| w)} (XY X, (A10)
HW () = log flyi|Y)) = [{log flysw)}f(wi |V) dmic (A1)

Since the integrals in (A.10) and (A.11) are equal, it follows that PIFy(i) = HW (i).

O
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Figure 1. (a) Hourly viscosity readings taken on a chemical process. Influential cases
at hours 170 and 217 are marked with solid dots. (b) PIF(i) values for viscosity

readings modelled by (3.1). Largest peaks correspond to i = 170 and i = 217.
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