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1. Introduction

Diagnostics for the detection of influential cases are widely used in statistical mod-
eling. In linear regression, measures such as Cook’s distance, DFBETAS, DFFITS,
studentized residuals, and COVRATIO are routinely applied to flag cases which sub-
stantially affect the fitted model and associated results (see Belsley, Kuh, and Welsch,
1980; Cook and Weisberg, 1982). The purpose of such diagnostics is to gauge the
impact of a case on a specific inferential objective.

In a Bayesian context, Johnson and Geisser (1982, 1983) proposed a measure for
the detection of cases that influence the prediction of future values in linear modeling
applications. Their measure is based on evaluating the disparity between the pre-
dictive densities formulated using the full data set and a case-deleted data set. The
disparity between densities will often be reflected by differences in both location and
shape, and can be characterized via the Kullback-Leibler (1951) directed divergence.
Johnson and Geisser referred to their diagnostic as a predictive influence function. In
a frequentist context, Cavanaugh and Johnson (1999) developed such a function for
detecting cases that affect the prediction of the unobserved states in a state-space
modeling framework. Extending this premise, Cavanaugh and Oleson (2001) pro-
posed such a function for flagging cases that alter the recovery of missing values in
missing data applications.

In this paper, our goal is to assess the impact of a specific case on the prediction
of the random effects in a mixed model. Following Cavanaugh and Oleson (2001), we
define the predictive influence function in this setting. We then derive a computational
formula for its evaluation. This formula depends on parameter estimates based on
both the full data set and a case-deleted data set. Such estimates may be conveniently
obtained via the EM algorithm (Dempster, Laird, and Rubin, 1977) or some other
fitting procedure for mixed models. One advantage of employing the EM algorithm

is that the predicted values for the random effects are produced via the E-step.



Our paper is organized as follows. In Section 2, the diagnostic is introduced and a
formula for its computational evaluation is presented. (The derivation of the formula
is provided in the Appendix.) In Section 3, the performance of the diagnostic is
investigated in an application where exam scores are modeled using a mixed model

containing a fixed exam effect and a random subject effect. Section 4 concludes.

2. Derivation of the Predictive Influence Function

in the Framework of Mixed Models

In this section, we introduce the diagnostic, present a computational formula for
its case-by-case evaluation, and discuss its fundamental properties.

The general linear mixed model can be defined as

where y;, 3, b;, and ¢; are all vectors, and X; and Z; are matrices. Specifically, y;
denotes an n; x 1 vector of n; responses observed on the ith subject; X; and Z; are
n; X p and n; X ¢ design matrices, respectively; [ is a p x 1 fixed effects parameter
vector; b; is a ¢ X 1 random effects vector distributed as N(0,G); and ¢; is an n; x 1
error vector distributed as N(0,0%R;). G and R; are ¢ X q and n; X n; positive
definite matrices, respectively, and o2 is a positive scalar. It is assumed that the
vectors by, ..., by, €1,. ..,y are distributed independently.

We regard case i as the response vector for the ¢th subject, y;. Thus, the total
number of cases is m. The total number of observations will be denoted by N =
2im N

In the preceding model, the fixed effects parameters S need to be estimated, and
the random effects b; need to be predicted. Generally, G will consist of variance
parameters which need to be estimated; R; will be known for i = 1,...,m, but o2

will need to be estimated.



A more succinct representation of model (2.1) can be obtained by combining all

m subject-specific models into one overall model. This model will have the form
Y=X3+2Zb+e. (2.2)

Here, Y denotes the N x 1 response vector (yi',...,ys'); X is an N x p design
matrix defined as X = [X;'--- X,,/]’; Z is an N x mgq block diagonal design matrix
comprised of the m blocks Z1,...,Z,,; B is the p x 1 fixed effects parameter vector;
b is the mg x 1 random effects vector (b;',...,b,'); and € is the N x 1 error vector
(e1y...,em')'. We assume b ~ N (0, D) and € ~ N(0,02R), with b and ¢ distributed
independently. Here, R and D are positive definite block diagonal matrices: R is
N x N and comprised of the m blocks R, ..., R,,, and D is mq x mq and comprised
of m identical blocks, each of which is G.

The conditional distribution of Y given b and the marginal distribution of Y follow

directly from model (2.2). We have

Y|b ~ N(XB+ Zb,d’R), and

Y ~ N(XB,ZDZ'+o’R).

Moreover, with model (2.2), the “posterior” distribution of b given Y can be derived

by the use of Bayes’ rule. With
V = ZDZ' +o*R,
we have
b|Y ~ N(DZ'V YUY — XB),(Z'(c*R)'Z+ D 1)™1). (2.3)

Let 6 denote the unknown parameter vector, consisting of elements of the vector
(3 and the matrix D along with the scalar o2. The evaluation of our diagnostic will
require estimates of # based on both the full data set and the data set with a specific

case y; deleted (i = 1,...,m). The vector ¥ denotes the full data set; let the vector
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Y’ denote Y with case y; removed. Let 0 denote an estimate of # based on Y, and
let 0 denote an estimate of 6 based on Y. The estimates 6,0',...,0™ could be
obtained using maximum likelihood (e.g., via the EM algorithm) or some alternate
fitting procedure for mixed models (e.g., restricted maximum likelihood).

The prediction of the vector of random effects b is governed by the conditional
density f;(b|Y ). The influence of case y; on the prediction of b might then be
evaluated by gauging the disparity between f;(b|Y ) and f; (b]Y ). The Kullback-
Leibler (1951) directed divergence assesses this disparity by reflecting the difference in
expectation between log f;(b|Y ) and log fz (b|Y"), where the expectation is taken
with respect to f;(b]Y").

We define the predictive influence function (PIF) for measuring the influence of

case y; on the prediction of b as

fo(b]Y)
[y (1Y)

PIF (i) is always nonnegative (Kullback, 1968, pp. 14-15). Moreover, the magnitude

PIF (i) = \ log £5(b| Y )db. (2.4)

of PIF (i) will reflect the degree to which the ith case is influential.

In order to apply the predictive influence function to identify unusual cases among
the response vectors yi,...,¥n, the estimates m“ mﬁ .. ;ms must be obtained. The
diagnostic (2.4) is then evaluated using a computational formula that depends upon
Y, 6, and #". This formula is presented and discussed in what follows. A plot of
the PIF (i) values versus the case index i can then be constructed. Peaks in the plot
correspond to cases which are potentially influential.

For the evaluation of PIF(7), the diagnostic can be partitioned into two compo-

nents. Using E,[-|Y ] to denote the expectation under f;(b|Y ), we can write

PIFG) = [llog f3(b1Y)1fs (b1 )b — [Tlog fy (5]Y)1f3 (6] )b
= F3llog f(b[Y) Y]~ Ey[log f:(b] V) | V], (25)

Prior to the presentation of the computational formula for PIF(i), we comment
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on the form of (2.5). The density fp(b|Y ) depends on the conditional mean vector
FEy[b|Y ] and the conditional covariance matrix Vary [b|Y|. Ey[b|Y ] is the predictor
of the random effect vector b; the elements of Vary[b|Y] reflect the accuracy of
the predictor. If case i influences the prediction of b (either through the predictor
itself or through the predictor accuracy), the densities f;(b|Y ) and fz (b]Y") will
be discrepant. This discrepancy should be exhibited in the difference between the
expectations Ej[log f3(b]Y ) |Y] and E;[log f5 (b]|Y ) |Y'], and therefore reflected
in the value of PIF (7).

To present the computational formula for PIF (i), we require notation for parame-
ter estimates based on both the full data set and a case-deleted data set. We will use

A

\wv D, and 62 to denote the estimates of 3, D, and o2 based on Y. Additionally, let

— ZDZ' +6°R,

DZV Y Y —Xp), and

= W =
I

= Z'(6*R)'Z + D7\

Note that B represents E;[b|Y], or equivalently, the predicted value of b under the
model f;(b|Y ). A denotes the inverse of the covariance matrix Vary[b|Y ].
Analogously, we will use 57, D', and (62)" to denote the estimates of 3, D, and o2

based on Y?, and let

Vi = ZD'Z'+ (6*)'R,

B! = D'Z/ (V)Y — XfB),  and

\w@. — N\AAWMV&NV\HNLIAUJ\H.

Note that B represents Ej [b|Y ], or equivalently, the predicted value of b under the
model f4 (b|Y"). A’ denotes the inverse of the covariance matrix Vary [b|Y].
Our computational formula for PIF(7) results from simplifying each of the con-

ditional expectations in (2.5) to expressions based on only B, A, B’, and A’. The



derivation is presented in the Appendix. We obtain

PIFG) = E;llog fy(bY)|Y]— Eyllog fy (b V) [V]
= Wcom |A| — log _\%_v — WSQ — ?T&&Lz
+wzm _ By A(B - BY. (2.6)

Note that the density f;(b|Y") is determined by B and A, whereas the density
[ (b]Y") is determined by B* and A*. Thus, PIF (i) assesses the discrepancy between
f3(b]Y) and f5 (b]Y") by providing a composite reflection of the differences between
the mean vectors and covariance matrices that characterize these densities.

Note also that B, A, B, and A’ depend only on the observed data Y, the estimate
based on the full data set @v and the estimate based on a case-deleted data set 6¢.
Thus, differences between B and B’ and between A and A* originate from differences
between 6 and #'. However, the goal of the diagnostic is not to directly assess esti-
mative influence, yet rather to assess predictive influence. Obviously, the prediction
of the random effects is governed by the estimates of the model parameters, yet the
prediction may be more heavily influenced by certain perturbations in the parameter
estimates than by others. The objective of PIF (i) is to determine whether a differ-
ence between 6 and @ translates to a substantive impact on the prediction of b, either
through the predictor itself or through the predictor accuracy.

Once the estimates m“ mﬁ . 0™ are determined, the calculation of the PIF values

PIF(1),...,PIF(m) can be accomplished.
3. Application

To illustrate the utility of the diagnostic in locating influential cases, we apply the
predictive influence function in the analysis of a set of exam scores. The scores are
modeled using a mixed model containing a fixed exam effect and a random subject

effect. Specifically, the two-way balanced ANOVA mixed model is employed. We



have
@S&Htu+ﬁ.+mﬁ? &HHJ..JS\T .Q.HHJ...:N“ \AHHT..“N“ Awu.v

where the ., pj, 7;, and g;; are all scalars. Here, y;;, denotes the kth response
observed on the ith subject under the jth treatment, u; is a fixed treatment effect,
7; is a random subject effect, and €;5; is an error term. Note that the overall sample
size is m x J x K. We assume that the 7; are distributed as i.i.d. N(0,0?), and that
the &;;; are distributed as i.i.d. N(0,0%). Further, we assume that 7; and ;5 are
independent for all 4, j, k, [.

We can re-express model (3.1) in the format of model (2.1) by writing
yi = Xip + 2T + &, 1=1,...,m, (3.2)

where y;, 1, 2z;, and g; are all vectors, X; is a matrix, and 7; is a scalar. Specifically, y;
denotes a JK x 1 vector of JK responses observed on the ith subject; X;isa JK x J
block diagonal matrix comprised of .J identical blocks, each a K x 1 vector consisting
of all 1’s; u is the J x 1 vector (p1,...,1s)"; z; is a JK X 1 vector consisting of all 1’s;
7; is as defined previously; and ¢; is a JK X 1 error vector distributed as N(0,0?1).
We assume that 7,..., 7, €1,...,&, are distributed independently.

Model (3.2) can be easily represented in the form of model (2.2). The PIF (i) values
can then be obtained via the computational formula (2.6). In our implementation of
(2.6), the EM algorithm is used to obtain parameter estimates.

We consider a data set consisting of midterm examination scores in a mathematical
statistics course held in the fall of 1998 at the University of Missouri-Columbia. This
data set consists of 3 exam scores for each of 72 students. For such a data set, it
is reasonable to assume that the scores for a student are correlated, and yet sets of
scores for different students are uncorrelated. The student effect can be regarded as
random and the exam effect as fixed. Thus, the data is amenable to the mixed model
(3.1). (Note that m = 72,J = 3, K = 1.) The purpose of our analysis will be to

explore which cases have a substantial impact on the prediction of the random effects.
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The PIF(7) values are evaluated using formula (2.6) fori = 1,...,72. In Figure 1,
these values are plotted against the case index . Based on the relative heights of
the peaks in the plot, we designate cases 48, 55, and 71 as influential. The peaks
corresponding to these cases are labelled accordingly.

An alternative approach to Figure 1 for graphically displaying the PIF results
would be to sort the diagnostic values in descending order, and to plot the sorted
values against an index corresponding to the magnitude. Such a plot appears in
Figure 2. In format, this type of graph resembles a scree plot, which is often used in
principal components analysis to choose an optimal number of components. Here, the
prominent peaks appear on the left-hand side of the graph. The point of separation
between these peaks and the more typical diagnostic values, often called the elbow,

specifies the boundary for designating influential cases.
<INSERT FIGURE 1 AND FIGURE 2 NEAR HERE.>

At present, we have not developed a method for objectively determining a baseline
to gauge unusual values of PIF(i). Thus, we subjectively flag influential cases by
using the relative heights of the peaks in the plot of PIF(i) versus i (Figure 1),
or by using the elbow of the sorted PIF plot (Figure 2). In order to permit our
diagnostic to be applied in a more automatic fashion, we hope to develop a baseline
by investigating the distribution of (2.4) under the assumption that no cases are
anomalous. Such benchmarks are often proposed for case-deletion diagnostics to
eliminate any ambiguity in determining which cases should be flagged.

Table 1 lists the estimates of p1, o, u3, 02, and o2 based on the full data set and
the case-deleted data sets corresponding to cases 48, 55, 71. Since PIF(3) is quite
small, for the purpose of comparison, the table also includes the parameter estimates
based on the exclusion of case 3. Note that the removal of case 3 results in virtually
no change in the estimates. In contrast, the exclusion of the influential cases results in

substantial modifications. The estimate of u; (i = 1,2, 3) is marginally altered when
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one influential case is removed. However, the estimate of o2 is markedly reduced
when case 48 or 71 is deleted, and the estimate of o2 is significantly decreased with

the exclusion of case 55.

<INSERT TABLE 1 NEAR HERE.>

2

~ reflects between

Note that o2 and o? reflect different sources of variation: o

subject (case) variability, whereas o>

reflects within subject (case) variability. The
exam scores for student 48 are 45, 50, 48; the scores for student 55 are 32, 86, 92; and
the scores for student 71 are 20, 69, 37. Therefore, for case 48 or 71, the difference
between the case mean (7; ) and the grand mean (7 ) is more substantial than that
for case 55. On the other hand, the differences among the observations comprising
case bH are more substantial than those among the observations comprising case 48
or 71. Thus, the omission of case 48 or case 71 has a more profound impact on the
estimate of 02 than the omission of case 55. The exclusion of case 55 conspicuously
alters the estimate of o2, whereas the exclusion of case 48 or case 71 has only a
marginal effect on this estimate.

In Figure 3 and 4, the case-deleted estimates (f1;)%, (fi2)’, (fi3)*, (62)° and (62)".

are plotted against the case index i. The influential cases are less concealed in the

variance plots than in the mean plots.
<INSERT FIGURE 3 AND FIGURE 4 NEAR HERE.>

Overall estimative influence may be better reflected in scatterplots where one set
of case-deleted estimates is plotted against another. Figure 5 features a 2 x 2 array
of such graphs. The first three plots feature (i)’ versus (i1;)" (1 < j < k < 3); the
last features (62)° versus (62)". In each graph, the influential cases are highlighted
with solid dots; the remaining cases are designated with hollow dots. In the mean
plots, note that the coordinates corresponding to influential cases often appear on

the periphery. These coordinates are especially prominent in the variance plot: since



each of the influential cases has a substantial impact on one of the two variances, each

coordinate is outlying in either the horizontal or the vertical direction.
<INSERT FIGURE 5 NEAR HERE.>

The two-dimensional plots in Figure 5 may be more efficacious at flagging unusual
cases than the one-dimensional plots in Figure 3 and 4. However, in either set of
plots, it would be difficult to consolidate the information to identify cases that may
indirectly impact the prediction of the random effects by influencing the parameter
estimates. In such settings, the utility of the diagnostic becomes readily apparent.

In the present setting, we assume that the primary goal of our analysis is to predict
the random effects 7q,..., 9. It is therefore of interest to investigate differences in
the predicted values produced under the full data set Y and the case-deleted data
sets Y. Table 2 features the predicted values for 7, to 75 based on both the full data
set and the case-deleted data sets corresponding to cases 48, 55, and 71. Since PIF(3)
is quite small, for the purpose of comparison, predicted values based on the omission
of case 3 are also included.

As mentioned previously, the predictor of 7 = (7q,...,772)" based on the full data
set is the expected value of 7 with respect to f;(7]Y"); the predictor based on the
case-deleted data set is the expected value of 7 with respect to fz (7]Y ). Note that
the removal of case 3 results in virtually no change in the recovery of the random
effects, whereas the removal of any of the three influential cases markedly alters the
magnitude of the predicted values. Further investigations indicate that no other case
deletion affects the recovery of the 7; as substantially as the case deletions considered

here.
<INSERT TABLE 2 NEAR HERE.>

We emphasize that Table 2 reflects changes in only the predicted values, not in the

variability estimates associated with the predicted values. As previously mentioned,
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overall predictive influence is characterized not only by changes in the predictors of

the random effects, but also by changes in the accuracy of the predictors.
4. Conclusion and Further Directions

In statistical modeling, it is important to identify cases that have a substantial
impact on key inferential results. Such cases may indicate recording errors or anoma-
lies in the phenomenon that produced the data. Such cases may also serve as an
indication that the underlying model is too simplistic; thus, the problems of model
selection and influential case detection must be addressed jointly.

The application in Section 3 illustrates that the predictive influence function is
effective in flagging cases that impact the prediction of random effects in a mixed
model. Such cases are often not easily identified either by visually inspecting the
data or by assessing estimative influence on parameters.

We note that the diagnostic could be used with either single or multiple case
deletion. The latter approach could be beneficial in detecting possible masking effects
(i.e., where the influence of one case is obscured by the presence of another case).

We also note that the diagnostic could be formulated for other modeling ap-
plications which involve unobservable quantities that are routinely predicted: e.g.,
censored survival times in survival analysis models, latent factors in dynamic factor
analysis models, future values in time series models (see Cavanaugh and Oleson, 2001,

Section 4). We hope to pursue some of these formulations in future work.
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Table 1: Parameter estimates for exam data.

Data set i Lo L3 o2 o?

Full data 69.25 | 84.58 | 73.61 | 125.22 | 120.71
Case 3 deleted | 69.07 | 84.65 | 73.79 | 127.75 | 120.01
Case 48 deleted | 69.59 | 85.07 | 73.97 | 115.81 | 121.96
Case 55 deleted | 69.77 | 84.56 | 73.35 | 130.37 | 110.79
Case 71 deleted | 69.94 | 84.80 | 74.13 | 112.03 | 118.28

Table 2: Predicted values of random effects for exam data.

7; | Full data | Case 3 deleted | Case 48 deleted | Case 55 deleted | Case 71 deleted
T 8.21 8.24 7.74 8.39 7.67

T | —13.23 —13.33 —13.20 —13.69 —13.28

T3 —1.12 —1.14 —1.38 —1.22 —1.45

Ty 3.92 3.93 3.54 3.98 3.48

T 11.49 11.54 10.95 11.77 10.88
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Appendix: Derivation of Computational Formula (2.6)

By (2.3), the log of f;(b|Y ) and the log of fs (b|Y) are given by

1 2oy A1y
log f;(b]Y) = —5log|(Z'(6°R)"'Z+ D7)

|W@|@Nchﬁﬂx9§Na$$Lm+uLv

~

(b—DZ'VHY — X)), (A1)
and
log fo: (b]Y") = |w log|(Z'((6*)'R)™'Z + (D) ™) ™"|
|W@ —D'Z/(V) MY = XB))(Z'((6*)'R) ' Z + (D))

(b— D'Z' (V)= (Y — XJ7)). (A.2)

First, we simplify Fj;[log f; (b|Y ) |Y].
To obtain the expectation of (A.2) with respect to f; (b|Y"), we derive the expec-
tation of the term in (A.2) which involves the quadratic form in b. (Conditional on

Y, b is the only random quantity in (A.2).) We have

A~ .

E;l(b—D'Z'(V) (Y = XBY)(Z'((6°)'R) " Z + (D))
(b= D'Z'(V) (Y = XB)) | Y]
= (' —(B))A (b~ B")|Y]
= tr(A'E; bV |Y]) — E; [V |Y]A'B' — (B")Y A'E;[b|Y ] + (B")A'B’
tr(A'(Varg [0 Y]+ B, [b|Y]E; [b]Y]))
—B'A'B' — (B'YA'B + (B")'A'B"
= tr(A’A™" + A'BB') — B'A'B' — (B"Y A'B + (B")'A'B"
= tr(A'A)+ B'A'B - B'A'B" — (B')'A'B + (B") A'B’
= tr(A'A™") + (B - B")'AY(B - B"). (A.3)
Thus, for the expectation of (A.2) with respect to f;(b|Y ), we have
Ey[log fo: (0]Y) | Y]

Lir(4i4=1) + (B — BIY AI(B - BY)]. (A4)

1 .
= Zlog|Ail - =
wom_ _ 5
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Next, we simplify Ej;[log f;(b|Y ) |Y].
To obtain the expectation of (A.1) with respect to f; (b|Y"), we require the expec-

tation of the term in (A.1) which involves the quadratic form in b. This expectation

A

follows from (A.3) with \w@ = \wv Di = D, (62)" = 62, Vi = ﬂ\v A" = A, and B! = B.
We have

A ~ ~

E;[(b—DZ'VYY — XB))(Z'(6°R)™'Z+ D™ ") (b— DZVHY — XB)) | Y]

Thus, for the expectation of (A.1) with respect to f;(b|Y "), we have
1 1
mmiom@g:\v:\_Hw_om_\»_lwﬁ:@. ?P.mv

Computational formula (2.6) follows from (A.4) and (A.5).
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