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Abstract

An important aspect of statistical modeling involves the identification of cases that have
a significant impact on certain inferential results. In modeling problems where data is miss-
ing, the predicted values for the missing observations are frequently of interest (cf. Little
and Rubin, 1987). To assist in the identification of cases that substantially influence these
predicted values, we introduce a case-deletion diagnostic which is often conveniently evalu-
ated in the setting of the EM algorithm (Dempster, Laird, and Rubin, 1977). Our diagnostic
is defined as the Kullback-Leibler information (Kullback, 1968, p. 5) between two versions
of the conditional density of the missing data given the observed data: one based on the pa-
rameter estimates arising from the full data set, the other based on the parameter estimates
arising from the case-deleted data set. We outline the computation of the diagnostic for two
Gaussian frameworks: for bivariate data applications in which some of the data pairs are
incomplete, and for time series forecasting applications in which the missing observations are
future realizations of the series. Our analyses involve bivariate data from the 1998 Ameri-
can Major League Baseball season and a time series consisting of cardiovascular mortality

readings from the Los Angeles area.

Keywords: Case-deletion diagnostic, EM algorithm, forecasting, influence diagnostic, pre-

dictive influence function, time series.

Corresponding Author: Joseph E. Cavanaugh, Department of Statistics, 222 Mathe-
matical Sciences Building, University of Missouri, Columbia, MO 65211. E-mail: ca-

vanaugh@stat.missouri.edu.



1. Introduction

An important aspect of statistical modeling involves the identification of cases that have a
significant influence on certain inferential results. Influence diagnostics have been extensively
studied in linear regression, where measures such as Cook’s distance, DFBETAS, DFFITS,
and COVRATIO have gained widespread popularity. (See Cook and Weisberg, 1982; Belsley,
Kuh, and Welsch, 1980.) The purpose of these diagnostics is to gauge the impact of a case on
a specific inferential objective. Such measures compare inferential quantities (e.g., regression
parameter estimates, fitted values, estimated generalized variances) based on fitting a model
to the full data set with those based on fitting a model to the data set with a specific case
removed. For this reason, such measures are often called case-deletion diagnostics.

In modeling problems that involve missing data, two goals are commonplace: to estimate
the model parameters in the presence of the missing data, and to impute reasonable values
for the missing observations. For settings where the latter goal is of fundamental interest,
we propose a diagnostic that assesses the influence of a case on the prediction of the missing
entries. Our diagnostic is defined as the Kullback-Leibler information (Kullback, 1968, p. 5)
between two versions of the conditional density of the missing data given the observed
data: one based on the parameter estimates arising from the full data set, the other based
on the parameter estimates arising from the case-deleted data set. The diagnostic is often
conveniently evaluated in the setting of the EM algorithm. The motivation for the diagnostic
arises from the work of Johnson and Geisser (1983), Johnson (1985), and Cavanaugh and
Johnson (1999).

Our paper is organized as follows. In Section 2, the diagnostic is introduced and two
general computational formulae are presented for its evaluation. In Section 3, the imple-
mentation of the first formula is described for applications that involve incomplete bivariate
normal data. The performance of the diagnostic is illustrated in an analysis featuring data
from the 1998 American Major League Baseball season. In Section 4, the implementation
of the second computational formula is outlined for applications that involve time series
forecasting. An analysis is presented which considers cardiovascular mortality readings from

the Los Angeles area. Section 5 concludes.



2. The Predictive Influence Function

Consider a statistical modeling application where a data set Y consists of missing values.
Let Y55 denote the observed part of Y and let Y,,;s denote the missing part.

Suppose the complete data Y consists of a collection of n cases (yi,...,y,). In some
applications (such as the one considered in Section 3), each case will be a vector which may
be comprised of both missing and observed components. The cases may be either correlated
(see Section 4) or uncorrelated (see Section 3).

Let 6 denote the parameter vector for the model to be fit to the data. Assume 6 is to be
estimated using the method of maximum likelihood, perhaps via the EM algorithm. Let 0
represent the estimates based on all of the cases, and let g represent the estimates based on
all of the cases except case 1.

The conditional density that dictates the prediction of the missing data is f(Yonis | Yobs, 0 ).
One might therefore judge the influence of the i** case on the prediction of Y,,;; by measuring
the extent to which the inclusion or the exclusion of this case affects f(Ynis |Yobs,é): ie.,
by measuring the disparity between f(Y s |Y0bs,é) and f(Yomis | Yobs, iz ). To gauge this
disparity, we choose the Kullback-Leibler information.

We define the predictive influence function for assessing the impact of case 7 on the

prediction of Y,,;s as

~
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It is well-known that (2.1) is nonnegative. Moreover, the magnitude of (2.1) will reflect the
divergence of f(Ymis | Yobs, 0% ) from f(Ymis | Yovs, 0 ).

The evaluation of PIF(7) is accomplished through one of the the following two formulas.
To present these formulas, let L(# | Y ) denote the complete-data likelihood and let L(0 | Y s )
denote the incomplete-data likelihood. Define the functions Q(# |6, ) and H(# |6, ) as follows:

QO)6.) = /{log LO|Y )Y (Yomis | Yobss 02 ) dY mis, (2.2)

H(9 | 9* ) - /{log f(sz's | Yobs; 9 )}f(szs | Yobs; 9* ) deis- (23)



The function Q(# |6, ) is a familiar tool used in the implementation of the EM algorithm.
The function H (66, ) can be interpreted as a measure of discrepancy between the densities
F (Yomis | Yobs, 0) and f(Yomis | Yobs, Os )-

We have the following results, the first of which is justified in the Appendix, and the
second of which follows directly from (2.1) and (2.3).

Proposition.
PIF()) = {Q(010)—Q(0'|0)} + {log L(0" | Yops ) — log L(0 | Yous ) } - (2.4)
PIF(i) = H(A|0)— H(0"|9). (2.5)

The computation of PIF(:) via (2.4) is often convenient in missing-data applications
where the EM algorithm is employed. With many EM implementations, the evaluation of
both Q(6 |6, ) and L(6|Y s ) is straightforward, even though the maximization of L(0 | Y s )
with respect to # may be inconvenient or problematic. In these instances, the four terms
comprising (2.4) are accessible once the EM algorithm is used to obtain the MLEs 0 and 6.

The computation of PIF (i) via (2.5) is possible in missing-data applications where H (6 | 6, )
may be easily reduced and evaluated in terms of Y, 6, and 6,. For such settings, the EM
algorithm may still be useful as a means for obtaining quantities that appear in the reduced
formula: in particular, the MLEs 0 and éi, and the predictors for the elements of Y,,;.

We now outline the evaluation of PIF(i) in two Gaussian frameworks. In Section 3 the
computational formula involves the four terms in (2.4), whereas in Section 4 the formula is

based on the two terms in (2.5).
3. Incomplete Bivariate Normal Applications
3a. Evaluation of the Diagnostic

Suppose that the complete data Y consists of a collection of n data pairs (yi,.-..,Yn),
where each case y; is a 2 x 1 vector of the form y; = (y1i, ), i = 1,...,n. Assume that in
some of the data pairs, an element is missing. The data pairs will be modeled as independent,,

identically distributed realizations of a bivariate normal distribution. The parameters of this



distribution are given by 6 = (p1, pi, 011, 092, 012) , Where

H1 = E(yu), M2 = E(ym), 011 = Var(yli), 0922 = Val"(ym'), 012 = COV(yliay2i)-

The evaluation of PIF (i) via (2.4) requires the sufficient statistics for the parameters in

Si = Zyu, Sy = Z?Jzi, Si1 = Z?J%p Sop = Zyi, Si12 = Zyuyzi-
i=1 i=1 i=1 i=1

i=1
In the preceding formulae, if an element y;; (j = 1,2) of a data pair is missing, the element
and its square must be replaced by their optimal predictors, E{y;; | Yo} and E{yjzz | Yobs }-
Specifically, if yy; is missing in case i, it is replaced in S; and S5 by
- 012
Ui = pin+ — (Y20 — o),
022

and its square is replaced in S;; by

2
o
~9 12
yutlon——1.
022

If y5; is missing in case 7, it is replaced in S, and Sy by

_ o
Yo, = Mo + ﬁ(yu — p),
011

and its square is replaced in Syy by

2
o
~2 12
Yo +|02—— ).
on

Of course, the predictors for the missing values and their squares depend on the parameters of
the model; thus, so do the complete-data sufficient statistics. To emphasize this dependence,
we will denote the sufficient statistics by S;(6),S2(6), S11(6), Se2(0), S12(0).

The first term in (2.4) is given by

A 1
QO10) = —nlog2r — 5”10g(&11&2z )
1 o . T ~ . ~ . ~
—5(011022 - 0'%2) ! [022811(9) + 011822(9) - 2012812(9)
~2{81(0) (ju1622 — j12612) + S2(0) (fr601 — j11612) }
+n (ﬂ?522 + fi3611 — 2111112(312)] ; (3.1)
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where [i1, fig, 011, 022, 012 are the maximum likelihood estimates based on the data set con-
sisting of all the cases: i.e., (fi1, fi2, 511, Gag, O12) = 0. (See McLachlan and Krishnan, 1997,

p. 47.) It may be shown that (3.1) reduces to
PO 1 o .
QO10)=—nlog2m — inlog(auan —6%) —n.

The second term in (2.4), Q(#|6), is computed in the same manner as (3.1), except
that iy, fio, 011,092, 012 are replaced with the maximum likelihood estimates based on the
data set consisting of all the cases except case i: i.e., (i, fib, 61,,6%,,6%,) = 0'. Note that
both Q(A|6) and Q(0" | 0) utilize the sufficient statistics associated with the fit of the model
based on the full data set.

The third term in (2.4) is the incomplete-data empirical log-likelihood log L(0 | Y s ).
This term is computed by adding the contributions for each of the n cases separately. These
n cases can be split into three groups of data pairs. The first group consists of pairs where
y1; 1s missing and ys; is observed; the second group consists of pairs where y; is observed
and y9; is missing; the third group consists of pairs where both ¥;; and y; are observed.

For cases in the first and the second groups, where only one element is observed, the
log-likelihood contribution is defined in terms of the univariate normal distribution based on

only the observed portion of the data pair. For cases in the first group, the contribution is

of the form
1 1. 1 [ (y2i — f12)?
——log2m — -1 - === 3.2
5 0g 2T 5 08 022 5 { P ) (3.2)
and for cases in the second group, the contribution is of the form
1 1 . 1 ((y1i — f1n)?
—ilOgQﬂ'—ilOgUu—i{%}. (33)

For cases in the third group, where both elements are observed, the log-likelihood con-

tribution is defined in terms of the bivariate normal distribution and is of the form

1 A N
—log 2w — 3 log (611622 — 015

L. . 52 V=1 (5. 02 1 6 02 _ o5
—5(011022—012) O22Y1; + 011Y2; — 2012Y1iY2i

—2{y1i (1022 — [12012) + Yoi (f12611 — [1012) }
+ (ﬂ?&m + 13011 — 2/11,&2612)} : (3.4)
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The sum of the log-likehood contributions (3.2), (3.3), and (3.4) over all n cases yields
log L(é|Yobs). We emphasize that j[iq, fis, 011, 092,012 are the maximum likelihood esti-
mates based on the full data set: i.e., (fiy, fi2, 511,50, 012) = . The same approach is
used to find the fourth term in (2.4), log L(0" | Yo, ), except that in (3.2), (3.3), and (3.4),
1, fl2, 011, 029, 019 are replaced with the maximum likelihood estimates based on the data
set with case i removed: i.e., (fii, i, 6%, 64, 61,) = 0.

We now illustrate the application of the diagnostic to a bivariate data set from the 1998

American Major League Baseball season.
3b. An Application

We begin by defining some terms and concepts in baseball which are pertinent to our
application.

The premise of baseball is to score more runs than the opposition. A run is scored when
a player successfully touches all four bases before his team acquires three outs. The bases
are 90 feet apart and form a diamond.

A player begins at home plate (the 4th base) holding a bat. The opposing team’s pitcher
throws the baseball to the batter who attempts to hit the ball with the bat. If the batter
swings at a pitch and misses, a strike is called. If he elects not to swing at a pitch, a strike
is called if the baseball’s trajectory passes through a well-defined strike zone, and a ball is
called otherwise. If the batter accumulates three strikes, he is called out; if he accumulates
four balls, he is given a walk and advances to first base. If the batter hits the baseball into
fair territory, he runs towards first base. Any teammates on base may also advance at this
time. The batter is called out if his baseball is caught before it hits the ground. A player
advancing towards a base, i.e., a runner, is called out if the baseball reaches the base before
he does.

Whenever a batter hits a baseball that results in a run being scored, the batter is credited
with a run batted in (RBI). If the batter hits the baseball out of the ballpark into fair territory,
he is credited with a home run. In this instance, the batter along with each of his teammates

currently on base automatically advances to home plate. The batter is then credited with



between one and four RBIs, depending on the number of teammates on base. Intuitively,
a fairly strong positive correlation should exist between the number of home runs and the
number of RBIs earned by a player over a certain time period, since both indices reflect the
overall ability of a player at bat.

From the 1998 American Major League Baseball season, we examine a collection of 105
data pairs consisting of home runs and RBIs for players from the National League. In this
season, the home run record held since 1961 by Roger Maris was broken by both Mark
McGwire of the St. Louis Cardinals and Sammy Sosa of the Chicago Cubs.

Only players who had at least 350 at bats were included in the data set; all such players
from the National League are represented. (An at bat is defined as the number of times a
player bats, excluding when the player receives a walk, is hit by a pitched ball, or hits a
sacrifice.) By eliminating players who do not satisfy the aforementioned criterion, we greatly
attenuate the degree of right skewness that is inherent in both the home run and RBI data
sets, thereby making the assumption of bivariate normality more reasonable.

Letting y1; denote the number of home runs and y,; the number of RBIs for player i, we
assume that the data pairs (y1;, y2;) can be at least approximately described by the bivariate
normal model. To make the data set incomplete, we randomly discard 3 home run entries (for
cases 45, 58, and 94) and 3 RBI entries (for cases 3, 8, and 88). By artificially introducing
missing values in a data set which is fully observed, we are then able to check the accuracy
of the predicted values for the missing elements against the actual entries.

The EM algorithm is used to compute maximum likelihood estimates of 11, o, 011, 029, 012
for the full data set. Predicted values are found for the missing observations using the
resulting MLEs. The EM algorithm is then used to compute MLEs for the data set with
the i'" case removed, i = 1,...,105. Predicted values are subsequently found using the
case-deleted MLEs. PIF values are finally calculated using (2.4).

The plot of the PIF (i) against the index i is provided in Figure 1. Based on the magnitude
of PIF(32), case 32 appears to be highly influential in the prediction of the missing values.
The vast majority of the PIF values are less than 1% the size of PIF(32), including all the

values associated with the incomplete cases.



The following table features the parameter estimates for the full data set along with the
estimates for the data set with case 32 removed. Note that the deletion of case 32 reduces
both variances as well as the covariance. The correlation is left relatively unchanged.

Data Set ‘ M1 M2 011 022 012

All Cases 18.48 73.27 162.44 785.77 316.16
All Cases Except 32 | 17.97 72.57 137.44 745.15 282.69

The scatterplot of the 105 data pairs is presented in Figure 2. Dots are used to designate
cases where both entries are observed; circles are used to indicate incomplete cases. Case 32 is
marked with a diamond. Note that this case appears to lie below the linear trend established
by the remainder of the data.

The following table features the predicted values for the missing entries based on both the
fitted model for the full data set and the fitted model for the data set with case 32 removed.
The predicted values are rounded to the nearest integer. The actual entries are also featured
for the purpose of comparison. Clearly, the deletion of case 32 results in a fitted model that
predicts the missing observations with greater overall accuracy. (Note that the mean square
error of prediction is 350 based on the full data set and 232 based on the data set without
case 32.)

Missing Home Run Entry

Predicted Value: Predicted Value:
Case Actual Value All Cases All Cases Except 32

45 2 0 1
28 31 33 32
94 23 24 23

Missing RBI Entry

Predicted Value: Predicted Value:
Case Actual Value All Cases All Cases Except 32

3 39 45 44
8 45 49 48
88 144 127 130



Case 32 represents the RBIs and home runs for Mark McGwire. McGwire broke a 37-
year-old home run record by hitting 9 more home runs than had ever been hit before in a
single season. McGwire led the major leagues in walks as well, setting a National League
record for the most walks in a single season. When McGwire was at bat with runners in
scoring position, the opposing team would often choose to deliberately walk him and take its
chances with the next batter. Thus, many of McGwire’s home runs resulted in solo scoring.
This caused McGwire’s RBIs to be lower than expected given the number of home runs he
hit. Hence, in a plot of RBIs versus home runs (Figure 2), McGwire’s case falls below the
trend established by the remainder of the data. Additionally, his case has high leverage,
thereby influencing the parameter estimates and consequently the predicted values for the
missing entries.

Sammy Sosa also broke the home run record during the 1998 season: Sosa hit 66 home
runs as opposed to McGwire’s 70. One may therefore suspect that Sosa’s case is influential.
Sosa’s case corresponds to the index 19. Note in Figure 1 that PIF(19) is not unusually large;
thus, the deletion of case 19 should not substantially impact the prediction of the missing
values. In fact, when rounded to the nearest integer, the predicted values for cases 3, 8, 45,
58, and 94 are exactly the same for the full data set as they are for the data set with case 19
deleted, and the predicted value for case 88 differs only by a factor of one (127 versus 128).

Case 19 is marked by a triangle in Figure 2; this case also has high leverage, yet appears
better aligned with the overall trend than case 32.

Sosa was not walked as often as McGwire when there were runners in scoring position: in
fact, Sosa was walked 89 fewer times than McGwire over the course of the season. This al-
lowed Sosa to accrue more RBIs than McGwire. As a result, Sosa’s RBIs are more consistent

with the number of home runs he hit.
4. Gaussian Time Series Forecasting Applications
4a. FEvaluation of the Diagnostic

Consider a univariate Gaussian time series of length T represented by (v, ..., yr). Sup-

pose our objective is to model the time series parametrically, and to use the fitted model to



produce the h-step forecast yrip, h > 1.
In the present context, we can regard Y,,;s as the point to be forecast, y;,,. The observed
data is Yops = (Y1,-- > yr)-

We will use 6 to denote the model parameters. The forecast (best predictor) for yr is

E{yT+h | Yobs} = y%+h(9)7

and the conditional variance for the forecast is

E{(rsn — y14n(0))* | Yobs} = Py (0).
In the Appendix, we derive the following computational formula for PIF, (i), which as-
sesses the effect of the deletion of case ¢ on the forecast for yrp:

| 1 1
PIF, (i) = {—ilogP%’Jrh(G)—i}

1 Ai 1 ) i
— {—5 logPﬁrh(e ) — §(P11:+h(9)/PTT+h(9 )

—%(y%}h(é) — yra(09)? /P,T%(éi)} . (4.1)

Note that the two bracketed terms in the preceding respectively correspond to H(f|6) and
H(0"]6) in (2.5).

In many applications, our interest may lie in forecasting a sequence of future values, say
yr.1 through yr,. To obtain a diagnostic that reflects the impact of case ¢ on this entire
set of forecasts, we may simply add together the PIF's for each of the individual forecasts:
ie.,

PIF(i) = XLj PIF,(i). (4.2)

An alternative approach consists of developing a PIF where the missing data is regarded
as Yois = (Yra1, - - - yror). This leads to a formula that is analogous to (4.1), yet one which
requires the evaluation of the covariances between forecasts. The formula is therefore more
computationally cumbersome to evaluate than (4.2).

We now illustrate the application of the diagnostic to a time series consisting of cardio-

vascular mortality readings.
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4b. An Application

Figure 3 features a plot of cardiovascular mortality readings recorded for the Los Angeles
area during the 1970s. Each reading represents an average taken over a 6-day period, so that
the 180 displayed observations cover a time span of roughly 3 years. Note that yearly cycles
are evident in the series.

If the series is modeled using the autoregressive moving-average (ARMA) framework, a

simple autoregressive model of order two appears to provide an adequate fit of the data:
Yo =+ OrY 1+ G2y o + Wy wy ~ N(0,0%); t=1,...,180.

For the fitted AR(2) model, Ljung-Box (1978) tests do not detect autocorrelations in the
residuals, and the residuals appear to be approximately normally distributed.

In the ARMA framework, case-deleted MLEs may be found by representing the model
in state-space form, and by either applying the EM algorithm or numerically maximizing
the innovations form of the likelihood. (See, respectively, Shumway and Stoffer, 1982; Jones,
1980.) Since the evaluation of the complete-data tool Q(0 |6, ) is not required in (4.1), we
use the latter approach. The h-step forecasts y7..,(0) and their associated variances P}, (6)
may be determined simply by extending the Kalman filter recursions for A steps beyond the
end of the series. (See Brockwell and Davis, 1991, pp. 477-482.)

We consider the influence of each case on the forecasts for 1,5, through 1,55. PIF values
are evaluated using (4.2) (with T'=180; L = 6;i = 1,...,180).

The plot of the PIF(7) against the index i is provided in Figure 4. Based on the magnitude
of PIF(77), case 77 appears to be highly influential in the forecasting of the next 6 realizations
of the series. This case is marked with an asterisk in Figure 3. Note that this observation
corresponds to an unusually high spike that appears during the low part of the cycle for the
second year.

The following table features the forecasts for y5; through y;36 based on the fitted AR(2)
model for both the full data set and the data set with case 77 removed. For the purpose
of comparison, the table also features the forecasts based on the fitted AR(2) model for the

11



data set with case 20 removed. Note from Figure 4 that PIF(20) is quite small; we would

therefore suspect that the deletion of this case has little impact on the forecasts.

Time Forecast: Forecast: Forecast:
Point All Cases  Case 20 Deleted Case 77 Deleted

181 83.8 83.8 83.6

182 84.9 84.9 84.6

183 85.8 85.8 85.4

184 86.6 86.6 86.2

185 87.3 87.3 86.9

186 88.0 88.0 87.5

Whereas the removal of case 20 has no effect on the forecasts, the deletion of case 77
reduces the magnitude of each predicted value. This decrease becomes more extreme as the
forecasts move further into the future.

The following table features the AR(2) model parameter estimates for the full data set
along with the estimates for the data set with case 77 removed. Note that the deletion of
case 77 reduces the estimates for both the mean adjustment o and the error variance 2.
The former leads to the decrease in the forecasts; the latter leads to a decrease in the forecast
variances. Both types of reductions affect the relevant forecast densities: i.e., the conditional
densities of the yig04n (h = 1,...,6) given Y,s. This results in the large value of the PIF
for case 77.

Data Set ‘ a o3} b o?

All Cases 14.47 0.350 0.496 38.98
All Cases Except 77 | 13.20 0.342 0.517 36.36

Clearly, changes in predicted values result from changes in the fitted model. Thus, one
may question whether PIF tends to flag the same cases as more conventional case-deletion
diagnostics, specifically those designed to detect shifts in parameter estimates. To investigate
this issue, we employ several such diagnostics in the present application.

First, we consider three diagnostics which are analogous to the DFBETAS used in linear
regression. Let p = E(y;) (i.e., « = u — ¢ — ¢op), and let SE(-) represent an estimated
standard error for an MLE. We define

12



DFMU = 2= ppag1i = 2% ppapa - 279
SE(4') SE(¢1) SE(¢%)

Second, we consider two diagnostics introduced by Bruce and Martin (1989). Let ¢ =

(¢1,02), let X(-) denote the large-sample variance/covariance matrix for a vector of MLEs,
and let n denote the sample size. The first diagnostic, which assesses changes in the estimate

of the error variance, is defined as
. 2
(6%)
DV = (n/2 - — 1] .
of2 ({5
The second, which reflects changes in the estimates of the autoregressive parameters, is

defined as

DC = n(¢ — ¢') T(9) (¢ — &)

The values of PIF(i) featured in Figure 4 show that the magnitude of the diagnostic
for case 77 is much larger than that for any other case. This is not true for any of the
estimate-based influence measures.

With DFMU, DFAR1, DFAR2, and DC, no individual case produces an extreme value.
Moreover, case 77 does not produce the largest value for any of these diagnostics. It is worth
noting that all of the values of the DFBETAS measures are well below 0.5: thus, no single
case deletion shifts a parameter estimate more than half a standard error.

With DV, the value for case 77 is the largest; this is not surprising since the deletion of
case 77 has a greater impact on the estimate of the error variance than on the estimates of
the other model parameters. However, cases 91 and 151 also have unusually large values of
DV.

The preceding results imply that an analysis based on case-deletion diagnostics which
assess changes in parameter estimates may fail to reflect the influence of case 77 on the fore-
casts. The results are not paradoxical, since the forecasts (and forecast variances) produced
by a model may be more sensitive to certain perturbations in the model coefficients than to
others. Hence, the deletion of a case may have a more pronounced impact on the parameter
estimates for the fitted model than it has on the forecasts produced by the fitted model, or

vice versa.
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5. Conclusion

In statistical modeling, it is important to identify cases that have a substantial impact
on key inferential results. Such cases may indicate recording errors or anomalies in the
phenomenon that produced the data. Such cases may also serve as an indication that the
underlying model is too simplistic; thus, the problems of model selection and influential case
detection must be addressed jointly.

The applications in Section 3 and 4 illustrate that the predictive influence function is
effective in flagging cases which impact the prediction of missing values. Such cases are
often not apparent from a visual inspection of the data.

We note that the diagnostic could easily be developed for many modeling frameworks
where the EM algorithm is used. This not only includes applications in which the missing
data is missing in the conventional sense, but also applications in which the missing data
represents unobservable quantities that are routinely predicted: e.g., random effects in mixed
models, latent factors in factor analysis models, etc.

We also note that the diagnostic could be used with either single or multiple case deletion.
The latter approach could be beneficial to identify possible masking effects (i.e., where the
influence of one case is obscured by the presence of another case), or to detect influential
“patches” in time series analysis (cf., Bruce and Martin, 1989).

In future work, we hope to derive a baseline to determine when a value of the diagnos-

tic is “large.”

Our initial investigations, which utilize results from Shimodaira (1994) and
Cavanaugh and Shumway (1997), suggest that such a baseline would depend on the amount
of missing information present in the application, and may require quantities obtained from

the SEM algorithm (Meng and Rubin, 1991).
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Appendix
Proof of (2.4) in Proposition of Section 2
Note that
10g f(Ymis | Yobs,0) = log L(0| Y ) — log L(6| Yobs ). (A.1)
Using (A.1) along with the definition (2.2), we have
J 4108 F (Yo [ Yobos 00} F(Yois | Yorss0) @Yo = Q(010) =105 L(B | Yo ), (A:2)
/ {108 £ (Yumis | Yobss )} F(Yrmis | Yobs, 0) dY mis = Q(07|0) —log L( | Yops ). (A.3)
Expression (2.4) then follows from utilizing (A.2) and (A.3) in conjunction with the definition
of PIF (i) provided by (2.1). O

Derivation of (4.1)

The complete-data likelihood L(6]Y ) may be factored into a product of the incomplete-
data likelihood L(€ | Y5 ) and the conditional density of yry, given Y. This yields

logL(0|Y) = logL(f]|Yops)

1 1 1
510827~ log PR, (0) — 5 (yran — v (0)/ PR, (). (A4)

Let E.(- | Yops) denote the expectation operator with respect to the conditional density

f(yrsn| Yobs, 0 ). With reference to (A.4), we have

Q(016.) = EflogL(0]Y) | Yous}
1 1
= lOg L(g | Yobs ) - 5 log 21 — 5 log P’l?-l—h(e)

3B [{ren = Fn0) + GFan0) = O] | Yous] /PE(0)

2
1 1
= logL(0| Yobs ) — B log 21 — B log Pr..,,(6)
1 1
~E. {(yT+h — oyl (0.))? | Yobs} JPL L (0) — §(y%’+h(9*) — yrin(0))?/ Prop (0)
1

— W1 (02) = Y1 (OB { (yron — 9721(0.)) | Yous } /P4 (0)

2
1 1
= logL(0|Yos) — 5 log 21 — 5 log P/, (0)
1 1
—5 (Pron(0)/Prn () = 5 (rin(0:) — yron(0))*/ Pry(0). (A.5)
2 2

The computational formula for PIF, (i), (4.1), then follows by using (A.5) to evaluate
Q(01]0) and Q(#"| ), and by substituting these expressions into (2.4). O
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