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Abstract: A Bayesian hierarchical mixed model is developed for multiple comparisons under

a simple order restriction. The model facilitates inferences on the successive differences of

the population means, for which we choose independent prior distributions that are mixtures

of an exponential distribution and a discrete distribution with its entire mass at zero. We

employ Markov Chain Monte Carlo (MCMC) techniques to obtain parameter estimates and

estimates of the posterior probabilities that any two of the means are equal. The latter

estimates allow one both to determine if any two means are significantly different and to test

the homogeneity of all of the means. We investigate the performance of the model-based

inferences with simulated data sets, focusing on parameter estimation and successive-mean

comparisons using posterior probabilities. We then illustrate the utility of the model in an

application based on data from a study designed to reduce lead blood concentrations in

children with elevated levels. Our results show that the proposed hierarchical model can

effectively unify parameter estimation, tests of hypotheses, and multiple comparisons in one

setting.
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1 Introduction

In certain applications, researchers may believe before the data is collected that the un-

derlying parameters satisfy an order restriction. For instance, in a drug efficacy experiment,

investigators might study the effect of different dose levels of a compound on a response vari-

able, such as blood pressure or toxicity. The investigators may believe that for the dosages

considered, the mean response is a nonincreasing or nondecreasing function of the dose level.

Therefore, the simple order assumption (i.e., µ1 ≤ · · · ≤ µk) is rational and realistic. Other

orders such as a tree order or a loop order may also be considered, but here we restrict

attention to a simple order.

In a frequentist context, for the one-way analysis of variance (ANOVA) with a simple or-

der restriction, a number of procedures for hypothesis testing and multiple comparisons have

been developed. Hypothesis testing results are discussed in Chapter 2 of Robertson, Wright,

and Dykstra (1988). Marcus and Peritz (1976), Williams (1977), and Marcus (1982) obtained

lower confidence bounds for monotone contrasts. However, the only pairwise comparison that

arises from a monotone contrast is based on µk − µ1. Considering pairwise comparisons in

this setting, Hayter (1990) developed a one-sided Studentized-range test, and also showed the

resulting order-restricted multiple comparison procedure is substantially more efficient than

its traditional counterpart when the assumed order restriction holds. Liu (2001) developed

another one-sided multiple comparison procedure that is very efficient when comparing µ1

and µk, but not when comparing µi and µi+1. Liu, Lee, and Peng (2002) proposed improved

two-sided simultaneous confidence intervals (“max-min” multiple comparison procedures)

for simply ordered means. Nashimoto and Wright (2005) studied several pairwise multiple

comparison procedures for a simple order and recommended a two-stage procedure.

Frequentist results for a mixed model with a simple order on the treatment effects are

discussed in Mukerjee (1988) and Singh and Wright (1990). Mukerjee’s results show that

multiple comparison techniques for the one-way ANOVA lead to such techniques for a mixed
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model provided there is no missing data.

In the 1990s, significant developments were made in Bayesian methods for order-restricted

inferences. Gelfand, Hills, Racine-Poon, and Smith (1990) provided Bayesian estimates of

order-restricted normal means with arbitrary variances. Gelfand, Smith, and Lee (1992)

extended these results to other types of inequality constraints. Pauler, Wakefield, and Kass

(1999) used Bayes factors to test hypotheses involving inequality constraints. In life-testing

models, Kim and Sun (2001) studied the use of intrinsic priors and Bayes factors to choose

between the model specified by homogeneity of means and that determined by an order

restriction on the means. Molitor and Sun (2002) considered situations in which means

and variances simultaneously satisfy order restrictions and provided Bayesian estimates of

the means and variances. These Bayesian developments incorporate ordering information,

but none treat estimation, testing, and multiple comparisons in a unified setting. However,

Dunson and Herring (2003) obtained such results for a life-testing framework.

In this paper, we propose a hierarchical model in the setting of a mixed model based on

a fixed treatment effect and a random subject effect. The model assumes that the treatment

means satisfy a simple order assumption. On the successive differences of the means, we

place independent prior distributions that are mixtures of an exponential distribution and

a discrete distribution with its entire mass at zero. We utilize Markov Chain Monte Carlo

(MCMC) methods to obtain parameter estimates and estimates of the posterior probabilities

that any two of the means are equal. The latter estimates allow one both to determine if

any two means are significantly different and to test the homogeneity of all of the means.

This paper is arranged as follows. In Section 2, we present our hierarchical model.

Section 3 outlines approaches to hypothesis testing under the hierarchical model and reviews

the frequentist method of Mukerjee (1988). In Section 4, we investigate the performance of

the model-based inferences with simulated data sets, focusing on parameter estimation and

successive-mean comparisons using posterior probabilities. We then illustrate the utility
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of the model in an application based on data from a study designed to reduce lead blood

concentrations in children with elevated levels. The results are compared with those obtained

using frequentist methods. Some concluding remarks are given in Section 5. The derivations

of the full conditional posterior distributions for the hierarchical model are presented in the

Appendix, along with the steps of the Gibbs sampling procedure.

2 A Bayesian Hierarchical Mixed Model for Multiple Comparisons

2.1 Model

The two-way ANOVA mixed model (or repeated measures model) is defined as

yij = µi + bj + εij, i = 1, . . . , k, j = 1, . . . , m, (2.1)

where yij, µi, bj , and εij are all scalars. Here, yij denotes the response observed on the jth

subject under the ith treatment, µi is a fixed treatment effect for the ith treatment, bj is a

random subject effect, and εij is an error term. Note that the overall sample size is m × k.

We assume that the bj are distributed as N(0, σ2
τ ), that the εij are distributed as N(0, σ2),

and that the m(k+1) variables bj and εij, i = 1, . . . , k and j = 1, . . . , m, are all independent.

We can re-express model (2.1) in a more succinct format by writing

yj = µ + zbj + εj, j = 1, . . . , m, (2.2)

where yj, µ, z, and εj are all vectors, and bj is a scalar. Specifically, yj denotes a k × 1

vector of responses observed on the jth subject; µ is the k × 1 vector (µ1, . . . , µk)
′; z is a

k × 1 vector consisting of all 1’s; bj is as defined previously; and εj is a k × 1 error vector

distributed as N(0, σ2I).

With µ1 denoting the first mean and µ1 ≤ · · · ≤ µk, we parameterize each of the remaining

means based on the difference between the preceding mean and itself. Specifically, with

δi−1 = µi − µi−1 (2 ≤ i ≤ k), the second mean can be denoted as µ1 + δ1, the third mean as

µ1 + δ1 + δ2, etc. In general, the ith mean (2 ≤ i ≤ k) can be denoted as µ1 + δ1 + · · ·+ δi−1.
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Our goal is to compare the population means µi, i = 1, . . . , k, in model (2.1) via a

Bayesian hierarchical model.

2.2 Priors and Hyperpriors

Because δi is positive or zero, we choose a prior distribution for δi that is a mixture of

an exponential distribution and a discrete distribution with its entire mass at δi = 0. The

discrete component of the mixture allows the difference between two successive means to be

zero. With I(A) denoting the indicator function corresponding to the event A, the density

function for δi can be represented as

[δi | ρi, θi] = ρiI(δi=0) + ∆I(δi>0), (2.3)

where ∆ = (1 − ρi)
1
θi

exp
{

− δi

θi

}

.

For the hyperparameter ρi, which represents the prior probability of δi = 0, we will utilize

a beta hyperprior distribution, i.e., BETA(αo, βo). Note that this hyperprior distribution

will be uniform when αo = 1 and βo = 1. For θi, we consider an inverse-gamma hyperprior,

θi ∼ IG(ao, bo), which has density function

[θi | ao, bo] =
1

Γ(ao)(bo)ao

exp(− 1
boθi

)

θi
ao+1 , θi > 0, i = 1, . . . , k − 1. (2.4)

For µ1, we use a conjugate prior, namely

µ1 ∼ N(µo, τ
2
o ). (2.5)

We choose a vague normal prior with an arbitrary mean µo and a large variance τ 2
o .

For the variance components, we consider a noninformative prior distribution as a joint

prior for σ2
τ and σ2,

π(σ2
τ , σ

2) ∝
1

σ2(kσ2
τ + σ2)

.

4



This prior was used by Box and Tiao (1992) in the balanced mixed model case. The model

considered here also assumes balance, so we can apply this prior to our model. If we let

τ 2 = kσ2
τ + σ2, the prior distribution will be

π(τ 2, σ2) ∝
1

σ2τ 2
. (2.6)

With this prior, we need to obtain the full conditional posterior distribution for τ 2 instead

of σ2
τ , and then based on σ2 and τ 2, we can obtain σ2

τ .

Kass and Wasserman (1996) provide a good review of prior distributions and relevant

historical perspectives, with an emphasis on Jeffreys’ rules and a complete discussion of

the evolution of his viewpoint. In practice, many Bayesian analyses are performed with

noninformative priors to reduce subjectivity and to allow the data to play a dominant role

in the analysis. In the setting considered in this paper, it seems quite reasonable to assign

a mixture distribution prior to δi, i = 1, . . . , k − 1, and a flat prior to the first population

mean µ1. Because the full conditional posterior distribution for θi is improper when based

on a noninformative prior, we choose a flat informative prior for θi. For the hyperparameter

ρi, we can adjust the parameters αo and βo in our approach to reduce the Type I error rate.

With the preceding independent priors, all full conditional posterior distributions (ex-

cept for δi) are standard ones, such as normal, inverse-gamma, and beta distributions. The

derivations of the full conditional posterior distributions are presented in Appendix A. Gibbs

sampling is employed to estimate the parameters and the posterior probabilities of the

successive-mean differences. In the Gibbs sampling iterations, τ 2 and σ2 are generated

from the corresponding full conditional posterior distributions, and then σ2
τ is updated by

(τ 2 − σ2)/k. The details of the Gibbs sampling are presented in Appendix B.

The primary goal for the proposed hierarchical model is to compute the posterior proba-

bilities of δi > 0 and of δi = 0 (1 ≤ i ≤ k−1). Using the magnitude of these two probabilities

in conjunction with a decision rule, we can test the hypotheses Hoi : µi = µi + δi versus

H1i : µi < µi + δi for i = 1, . . . , k − 1. Also, with the hypotheses Ho : µ1 = · · · = µk and
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H1 : µ1 ≤ · · · ≤ µk with µ1 < µk, we can conduct the global test of Ho versus H1.

3 Approaches to Hypothesis Testing

3.1 Hypothesis Testing via the Posterior Probability

Under the proposed hierarchical model, we use posterior probabilities to test hypotheses

about the means. Consider the hypotheses for successive pairwise comparisons of the means,

Hoi : µi = µi+δi versus H1i : µi < µi+δi, or Hoi : δi = 0 versus H1i : δi > 0 for i = 1, . . . , k−1.

If we assign equal prior probabilities to Hoi and H1i, we may reject Hoi when Pr{δi = 0 | Y } is

less than some predetermined cutoff value. This cutoff value could be 0.5, as in a traditional

scheme, or another value dictated by the context of the application.

For the global test of Ho : µ1 = · · · = µk versus H1 : µ1 ≤ · · · ≤ µk with µ1 < µk, we may

naturally accept H1 if at least one of the pairwise tests accepts H1i, i = 1, . . . , k − 1; that

is, accept H1 if min1≤i≤k−1{Pr{δi = 0 | Y }} is less than the aforementioned cutoff value for

rejecting Hoi.

We emphasize that the preceding rules for the pairwise and global tests are formulated

to be consistent. By employing these rules, the test results are coherent. Note that for

the preceding rules, the initial probabilities of the individual null hypotheses, Hoi : δi = 0,

1 ≤ i ≤ k − 1, are traditionally set at Pr{Hoi} = 0.5. Some might argue that this cutoff

value should be even larger because the null hypothesis is often the “established theory”

(Berger and Sellke, 1987, page 115).

However, if several tests are conducted in the same experiment, assigning the initial

probabilities of the individual null hypotheses to be 0.5, i.e., Pr{Hoi} = 0.5, may result in

too many false rejections of the individual null hypotheses. Therefore, we may need to adjust

the prior probability of the null hypotheses so that the Type I error rate can be effectively

controlled.

Following the intuitive rule proposed by Westfall, Johnson, and Utts (1997), in order to
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obtain Pr{Ho} = 0.5 for the model with a total of k− 1 mutually independent priors for the

δi’s, we calibrate the prior probabilities for Hoi via Pr{Hoi}
∗ = 0.51/(k−1).

We observe that

Pr{Hoi} = Pr{δi = 0} = E[E(I{δi=0} | ρi, θi)]

= E(ρi) =
αo

αo + βo
.

Thus, if one wants the initial prior probabilities of Pr{Hoi} = 0.5, then one could choose

αo = βo and select 1 as the common value. Note that for any given k, there exist an infinite

number of choices for αo and βo that satisfy Pr{Hoi}
∗ = 0.51/(k−1) = αo

αo+βo
.

For pairwise comparisons, we adopt the conventional scheme of using 0.5 as the decision

criterion for the posterior probability. For Hoi : µi = µi + δi versus H1i : µi < µi + δi, with

1 ≤ i ≤ k − 1, we declare H1i if

Pr{δi = 0 | Y } < 0.5, (3.1)

where Pr{δi = 0 | Y } is the posterior probability of the null hypothesis resulting from the

use of Pr{Hoi}
∗.

For the global test of Ho : µ1 = µ2 = · · · = µk versus H1 : µ1 ≤ · · · ≤ µk with µ1 < µk,

we declare H1 if at least one of the pairwise tests declares H1i, i.e., if

min1≤i≤k−1 {Pr{δi = 0 | Y }} < 0.5. (3.2)

One could conduct the global test based on the joint posterior probability of the δi’s, by

rejecting the global null Ho if

Pr

{

k−1
⋂

i=1

δi = 0 | Y

}

< 0.5. (3.3)

However, we recommend conducting the test based on (3.2). First, note the test based

on (3.3) is not compatible with the tests in (3.1). That is, using (3.3) and the pairwise

comparisons in (3.1) may lead to inconsistent decisions. Second, we found that the global
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test based on (3.3) may be too liberal, i.e., it tends to reject Ho more often than the test

based on (3.2). In particular, our Monte Carlo study showed a strong tendency for the

left-hand inequality in the following and the right-hand inequality clearly holds:

Pr

{

k−1
⋂

i=1

δi = 0 | Y

}

<

k−1
∏

i=1

Pr {δi = 0 | Y } ≤ min1≤i≤k−1 {Pr{δi = 0 | Y }} .

Thus, the test based on (3.2) has a smaller Type I error rate and smaller power than

the test based on (3.3). However, the results of our simulation study and the results in

the application considered in Section 4 suggest the procedure based on (3.1) and (3.2) has

reasonable power.

3.2 Hypothesis Testing via the Frequentist Method

Based on Mukerjee’s (1988) results, Singh and Wright (1990) proposed a method to

conduct the global test for the means in mixed-effects models. Let

ȳi. =
1

m

m
∑

j=1

yij, i = 1, . . . , k,

ȳ.j =
1

k

k
∑

i=1

yij , j = 1, . . . , m,

and µ̂T be the overall mean for all the observations. Let µ̂∗ = (µ̂∗
1, . . . , µ̂

∗
k) denote the

maximum likelihood estimator (MLE) of µ subject to the restriction µ1 ≤ · · · ≤ µk, which can

be found by the minimum-lower-sets algorithm (Brunk, 1955, and Brunk, Ewing, and Utz,

1957) or by the pool-adjacent-violator algorithm (Ayer, Brunk, Ewing, Reid, and Silverman,

1955).

If one believes that the fixed effects are nondecreasing, one could test the statistical

significance of the fixed effects by testing Ho : µ1 = · · · = µk versus H1 : µ1 ≤ · · · ≤ µk with

µ1 < µk. If all the parameters are unknown, with ν = (k − 1)(m − 1) and

S2
1 =

k
∑

i=1

m
∑

j=1

(yij − ȳi. − ȳ.j + µ̂T )2,
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the likelihood-ratio test (LRT) statistic is

S01 =
ν
∑k

i=1(µ̂
∗
i − µ̂T )2

∑k
i=1(µ̂i − µ̂∗

i )
2 + S2

1/m
.

The LRT rejects Ho for large values of S01. Critical values for S01 can be found in the

Appendix of Robertson, Wright, and Dykstra (1988).

4 Examples Based on Simulated Data and an Application

In this section, we evaluate the performance of the model-based inferences using simulated

data, where the tests of hypotheses are implemented via the posterior probabilities in (3.1)

and (3.2). We then illustrate the utility of the model in a biostatistical application.

4.1 Brief Description of Examples Based on Simulated Data

As previously mentioned, we compute the posterior probabilities for the model by Gibbs

sampling. Since the convergence is not slow, the number of burn-in samples is taken to

be 3,000, and the subsequent 7,000 iterations are used to estimate the parameters. In

the iterations after burn-in, the frequency of the event δi = 0 is recorded, leading to the

approximation of Pr(δi = 0 | Y ). We consider k = 3 means.

For the prior on µ1, the hyperparameters µo and τ 2
o do not have much effect on the results

provided that the normal prior distribution is relatively flat, i.e., τ 2
o is very large. In our

simulations, µo = 0 and τ 2
o = 100. To make the prior on θi flat, hyperparameters ao = 2.2

and bo = 0.05 are used. With k = 3, the prior probability of Hoi must be calibrated via

Pr{Hoi}
∗ = 0.51/(3−1) = 0.707. This is closely approximated by the choice ρi ∼ BETA(2.4, 1),

which gives Pr{Hoi}
∗ = E(ρi) = 0.706.

For the simulated data, we choose the mean parameters µ = (10, 11, 12)′. We consider

both small variances with σ2
τ = 2 and σ2 = 1, and large variances with σ2

τ = 100 and σ2 = 80.

For each of these variance specifications, we generate a moderate-size sample (m = 30) and

a large-size sample (m = 100). Therefore, four simulated data sets are featured.
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For each of the four data sets, we compute the posterior model parameter estimates

and their variances, as well as the corresponding posterior probabilities. For reference pur-

poses, we also compute the unrestricted MLEs of the model parameters via the expectation-

maximization (EM) algorithm.

4.2 Results of Analyses for Simulated Data

For m = 30 and m = 100, σ2
τ = 2 and σ2 = 1, Table 1 features the parameter estimates

and their variances, and the posterior probabilities of δi = 0 for each i. Note that the

unrestricted MLE of δi (i = 1, 2) is the difference between the unrestricted MLEs of the

mean µi+1 and the preceding mean µi.

For m = 30, the mean parameter estimates are (9.9328, 10.8054, 11.5673)′, and the

variance estimates are 2.4211 and 1.3586, respectively. These estimates are quite close

to the MLEs computed by the EM algorithm, which are µ̂ = (9.7233, 10.8451, 11.6919)′,

σ̂2
τ = 2.2451, and σ̂2 = 1.0272. Among the variances of the parameter estimates in Ta-

ble 1, the variance of the σ2
τ estimate is the largest. Note that σ2

τ reflects between subject

variability; its estimate is very sensitive to changes in the data. Based on the posterior

probabilities, the pairwise tests favor H11 and H12, which means that there is a significant

difference between µ1 and µ2 and between µ2 and µ3.

It is of interest to compare this conclusion to the result of the frequentist test in subsec-

tion 3.2. Assuming the variances are unknown, we obtain S01 = 55.04 based on 58 degrees of

freedom. With α = 0.01, the critical value is 7.211 from Table A.6 of Robertson, Wright, and

Dykstra (1988). The LRT therefore rejects Ho, the null hypothesis of equal means. Thus,

the Bayesian and frequentist methods both reject Ho.

For m = 100, we note that the parameter estimates for means and variances are quite

close to both the true parameters and the EM algorithm estimates. Because the posterior

probabilities are all far less than 0.5, we observe that the Bayesian tests reject Hoi, i = 1, 2.

For the frequentist approach, the LRT statistic for testing Ho : µ1 = µ2 = µ3 is S01 =
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Table 1: Posterior Parameter Estimates and MLEs

µ = (10, 11, 12)′, σ2
τ = 2, σ2 = 1

m = 30 m = 100

parameter mean variance MLE mean variance MLE

µ1 9.9328 0.2991 9.7233 9.8565 0.0595 9.8489

δ1 0.8726 0.4952 1.1218 1.0052 0.0664 1.0059

δ2 0.7619 0.3983 0.8468 1.0567 0.0519 1.0591

σ2
τ 2.4211 0.6655 2.2451 1.8181 0.1051 1.7672

σ2 1.3586 0.1215 1.0272 1.2148 0.0182 1.1583

posterior probability

Pr(δ1 = 0 | Y ) 0.2997 0.0700

Pr(δ2 = 0 | Y ) 0.3131 0.0011

Table 2: Posterior Parameter Estimates and MLEs

µ = (10, 11, 12)′, σ2
τ = 100, σ2 = 80

m = 30 m = 100

parameter mean variance MLE mean variance MLE

µ1 8.3615 7.6138 7.8269 9.7456 2.0450 9.0951

δ1 0.8989 4.1447 2.0890 0.4971 1.2946 1.0533

δ2 0.4160 1.6084 -0.3704 0.6670 1.6760 1.5289

σ2
τ 127.9883 1951.7600 114.3849 85.4398 295.2145 82.5628

σ2 87.5824 294.5952 82.1771 95.2454 91.0982 92.6610

posterior probability

Pr(δ1 = 0 | Y ) 0.7643 0.7835

Pr(δ2 = 0 | Y ) 0.8446 0.7232

182.27 (ν = 198), and the α = 0.01 critical value is 6.940. Therefore, the test results for the

Bayesian and frequentist approaches are consistent.

Table 2 features the results when the variance components are σ2
τ = 100 and σ2 = 80.

For the two simulated data sets (m = 30, m = 100), the posterior probabilities of δi = 0

(i = 1, 2) are larger than 0.5. Thus, we retain Hoi, i = 1, 2. When the frequentist method
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is applied to these two data sets, the LRT statistic S01 is 0.8526 for the smaller sample and

3.6022 for the larger sample. The α = 0.05 critical values are 3.931 and 3.852, respectively.

Thus, the Bayesian and frequentist global tests lead to similar conclusions, although S01 for

the larger sample approaches statistical significance.

Comparing the posterior parameter estimates with the unrestricted MLEs in Table 2,

relatively large differences are detected. Here, the true variance components are quite large

compared to the means, which allows the sample means to violate the simple order restriction.

The posterior parameter estimates are evaluated under the order restriction, whereas the

unrestricted MLEs are not. These MLEs show that the simple order is violated, but the

posterior estimates adhere to the restriction. Of course, the order-restricted MLEs (not

featured here) do not violate the simple order restriction.

A simulation study has been performed to study the Type I errors of the proposed decision

rules for pairwise and global tests. The simulation results, which are not presented here,

are briefly summarized. Our results demonstrate that using the proposed hierarchical mixed

model with the decision rules in (3.1) and (3.2) can generally keep the pairwise Type I error

rate and experimentwise error rate (EER) quite small (below 0.05) and maintain reasonable

test power. For instance, pairwise Type I error rates and EERs can be made smaller than

those via the frequentist method, while test powers can be retained at an appropriately high

level. As a result, provided that the treatment means in the mixed model satisfy a simple

order restriction, we can use the proposed procedure to test hypotheses and avoid logical

inconsistencies between the pairwise tests and the global test.

The hierarchical model with informative prior distributions for the variance components

could be used for the multiple comparisons, but we do not study informative priors here. The

discussion and theoretical results of Hill (1965) indicate that in some settings the likelihood

contributes very little to the posterior distribution of the variance components. The appli-

cability of informative prior distributions for σ2
τ and σ2 is considered by Chaloner (1987). In
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situations where a researcher is very confident that informative priors are more appropriate

than noninformative ones, the use of informative priors may lead to superior results.

An extensive study of informative priors could also be quite valuable. There are many

useful types of informative priors that could be applied in the current framework. For in-

stance, inverse-exponential distributions for the variance components could be utilized. One

could also study the effects of informative priors (such as inverse-exponential distributions)

for the θi.

4.3 Application

To illustrate the utility of our model, we present an application based on data from a

study designed to reduce lead blood concentrations in children with elevated levels. The

study is a placebo-controlled, randomized trial described in a 2000 article from Pediatric

Research written by the TLC (Treatment of Lead-Exposed Children) Trial Group. The data

is provided and analyzed in Fitzmaurice, Laird, and Ware (2004).

The study involved children between 12 and 33 months in age who had blood lead levels

between 20 and 44 µg/dL. Most of the children were African-American (77%) and lived in

deteriorating inner city housing. The participants were randomly assigned to two groups. At

the outset of the study, all participants were provided with a month’s supply of vitamin and

mineral supplements, and their homes were inspected and cleaned based on a TLC regimen

designed to suppress exposure to leaded dust. Participants in the “treatment” group were

then provided with succimer capsules, whereas those in the “control” group were provided

with a placebo. Blood lead levels were measured at baseline (week 0), week 1, week 4, and

week 6.

In our application, we consider blood lead levels collected for 50 of the children who did

not receive the succimer capsules. Since the homes of these children were cleaned using an

established TLC regimen, one might expect that the mean blood lead levels of these children

would decrease over time, or at least remain the same.
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In the context of model (2.1), yij will denote the blood lead level for child j (j = 1, . . . , 50)

at time i (i = 1, . . . 4). Thus, µi will denote the mean blood lead level at time i. However,

since we anticipate that the means are nonincreasing over time, to apply the simple ordering

µ1 ≤ µ2 ≤ µ3 ≤ µ4 to our setting, we need to reverse the time order associated with our index

i. Accordingly, time 1 (i = 1) will correspond to week 6, time 2 (i = 2) to week 4, time 3

(i = 3) to week 1, and time 4 (i = 4) to baseline. The simple ordering µ1 ≤ µ2 ≤ µ3 ≤ µ4

then represents the hypothesis that the mean blood levels are not elevating as time elapses

past baseline.

The basic repeated measures model (2.1) implies a compound symmetric structure for

the variance-covariance matrix of the subject-specific response vectors represented in (2.2).

Although this type of covariance structure is often inappropriate for longitudinal data, our

preliminary analyses shows that the compound symmetric structure adequately describes

the control subject measurements. (For instance, the Bayesian information criterion favors

the compound symmetric covariance structure over the general covariance structure.) Model

(2.1) also assumes normality. At each time period, the blood lead levels are slightly skewed

right, yet the skewness does not appear to be strong enough to warrant a transformation.

To set the prior probability Pr{Ho} = 0.5 with k = 4, the prior probability of each Hoi

must be 0.51/(4−1) = 0.7937. The choice ρi ∼ BETA(4, 1) yields Pr{Hoi}
∗ = E(ρi) = 0.80.

The results of our data analysis are listed in Table 3. Based on the posterior estimates

µ̂1, δ̂1, δ̂2, and δ̂3, the estimates for the mean blood lead levels (µ1, µ2, µ3, µ4)
′ are (23.7911,

24.1309, 24.5864, 26.1180)′. For comparison, the MLEs obtained by the EM algorithm are

µ̂ = (23.6211, 24.0451, 24.6352, 26.2472)′. Both sets of estimates are reasonably close to

the sample means ȳ = (23.6460, 24.0700, 24.6600, 26.2720)′, and all satisfy the simple order

restriction.

The variance estimates for σ2
τ and σ2 resulting from our analyses are 25.4409 and 6.2763,

respectively. For comparison, the MLEs obtained by the EM algorithm are σ̂2
τ = 24.0226 and
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σ̂2 = 5.3713. Thus, the between-subject variation is quite high relative to the within-subject

variation, reflecting a substantial degree of subject heterogeneity.

Table 3: Posterior Parameter Estimates for Blood Lead Level Application

sample means: ȳ = (23.6460, 24.0700, 24.6600, 26.2720)′

parameter µ1 σ2
τ σ2 δ1 δ2 δ3

mean 23.7911 25.4409 6.2763 0.3398 0.4555 1.5316

variance 1.2998 32.5558 1.7157 0.5216 0.5493 1.1652

posterior probability Pr(δi = 0 | Y ) 0.7752 0.6688 0.2346

The posterior probabilities and the δi estimates in Table 3 suggest that δ3 > 0 (µ4 > µ3),

yet imply that δ2 = 0 (µ3 = µ2) and that δ1 = 0 (µ2 = µ1). Thus, the baseline mean

is significantly higher than the week 1 mean, yet the week 1, week 4, and week 6 means

are not significantly different. From a physiological perspective, this conclusion is sensible.

The most dramatic decrease in the blood lead level should occur during a period of time

immediately following the cleaning of the home, reflecting the attenuation of environmental

exposure to lead particulates. Over time, the level should begin to stabilize.

Based on the results in Table 3, we might conclude that the means are decreasing over

time, yet since the rate of decrease is attenuating, the differences between µ3, µ2, and µ1 are

not large enough to achieve significance. Of course, our prior assigns positive probability to

the outcomes µ3 = µ2 (δ2 = 0) and µ4 = µ3 (δ3 = 0). Yet before the collection of data,

we would not know whether the cleaning regimen will have a clinically meaningful effect

on lowering the blood levels of the children. By placing positive prior probability on the

outcomes δi = 0, we are requiring that the weight of evidence in favor of δi > 0 must be

sufficiently strong to reject the null hypothesis of equality. In the case of µ3, µ2, and µ1, the

evidence is insufficient to overcome the prior.

For the global test, the values of the posterior probabilities for δi = 0 favor the alternative

hypothesis H1. For the frequentist test, since the variance parameters need to be estimated,
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we use the test statistic S01. The value of this statistic is S01 = 36.2550 (ν = 147), and the

α = 0.01 critical value is 7.858. Hence, the frequentist method also strongly favors H1.

The global test based on the joint posterior probability Pr{
⋂k−1

i=1 δi = 0 | Y } favors H1

as well. This joint probability is 0.1692. The inequality Pr{
⋂k−1

i=1 δi = 0 | Y } < 0.5 therefore

holds, providing further reinforcement of our decision to reject the global null hypothesis.

Figure 1 features histograms that illustrate the posterior distributions for δ1, δ2 and δ3.

These histograms are constructed based on the 7,000 iterations used to estimate the param-

eters in the Gibbs sampling (i.e., the iterations after burn-in). The iterates are generated

from the full conditional posterior distributions of the δi’s, and are therefore distributed in

accordance with the posterior distributions of the δi’s.

The frequencies for δi = 0 and δi > 0 are of particular interest. The heights of the

leftmost bars in the histograms suggest the existence of a preponderance of zero iterates for

both δ1 and δ2, yet not for δ3. With δ3, the majority of the iterates correspond to the event

δ3 > 0. Therefore, Figure 1 provides additional evidence to support the previous conclusions:

that is, the posteriors imply that δ3 > 0 (µ4 > µ3), yet also suggest that δ2 = 0 (µ3 = µ2)

and δ1 = 0 (µ2 = µ1). The posteriors also support the rejection of the global null hypothesis.

5 Discussion

We have focused on multiple comparisons in a two-way ANOVA mixed model, or ba-

sic repeated measures model. The simulation and application results demonstrate that the

proposed Bayesian hierarchical model is an effective tool for multiple comparisons. Further-

more, by employing the model, estimation of parameters, tests of the global hypotheses,

and multiple comparisons are unified. Thus, with a common decision criterion, such as one

based on the posterior probability, the use of this hierarchical model can maintain logical

consistency between the global test and the pairwise tests.

To extend this methodology in our future research, we plan to modify the hierarchical

model for the tree order assumption. For a tree order, we may set the control mean as µo,
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Figure 1: Histograms Representing Posterior Probability Distributions for δ1, δ2, and δ3 in
Blood Lead Level Application
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and each treatment mean may be defined as µo + δi, 1 ≤ i ≤ k, with δi ≥ 0. The same priors

can be considered as for the simple order setting.

The hierarchical model we propose can be used to deal with missing values in unbal-

anced data. For instance, multiple imputation and the computation of inferential results

for multiple comparisons can be merged into one MCMC algorithm. This approach is quite

feasible provided that the conditional predictive distribution for missing values and the full

conditional posterior distributions for parameters are accessible.

Finally, our work in this paper only considers the comparison of multiple treatment means

for a specific type of linear mixed model: the basic repeated measures model, or two-way

ANOVA mixed model. For additional mixed modeling frameworks of practical interest, it

would be desirable to formulate a Bayesian hierarchical model and to derive the appropriate

posterior distributions.
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Appendix A: Full Conditional Posterior Distributions

First, we need to obtain the density function for the data. With reference to model (2.2),

we have

yj | µ1, {δi}, σ
2
τ , σ

2 ∼ N(µ, zσ2
τz

′ + σ2I), j = 1, . . . , m.

Let Y = (y′
1, . . . , y

′
m)′ and δo = 0. Given that the cases are independent, the joint density

function of the data vector Y is given by

[Y | µ1, {δi}, σ
2
τ , σ

2] ∝ (σ2)−
m(k−1)

2 (kσ2
τ + σ2)−

m

2 exp

{

−
1

2σ2

[

s1 −
σ2

τ

kσ2
τ + σ2

s2

]}

, (A.1)

where

s1 =

m
∑

j=1

k
∑

i=1

(

yij − µ1 −

i−1
∑

l=0

δl

)2

, and

s2 =

m
∑

j=1

(

k
∑

i=1

(yij − µ1 −

i−1
∑

l=0

δl)

)2

.

Now, we need to obtain the full conditional posterior distributions for the parameters.

1. Full Conditional Posterior Distribution of µ1

For µ1, we have

m
∑

j=1

k
∑

i=1

(

yij − µ1 −
i−1
∑

l=0

δl

)2

∝
m
∑

j=1

k
∑

i=1

(

µ2
1 − 2µ1(yij −

i−1
∑

l=0

δl)

)

= kmµ2
1 − 2µ1

m
∑

j=1

k
∑

i=1

(

yij −
i−1
∑

l=0

δl

)

, and

m
∑

j=1

(

k
∑

i=1

(yij − µ1 −

i−1
∑

l=0

δl)

)2

=

m
∑

j=1

(

kµ1 −

k
∑

i=1

(yij −

i−1
∑

l=0

δl)

)2

∝

m
∑

j=1

(

k2µ2
1 − 2kµ1

(

k
∑

i=1

(yij −

i−1
∑

l=0

δl)

))

= k2mµ2
1 − 2kµ1

m
∑

j=1

k
∑

i=1

(

yij −

i−1
∑

l=0

δl

)

.

Let

s3 =
m
∑

j=1

k
∑

i=1

(

yij −
i−1
∑

l=0

δl

)

.

19



Then using the density function of Y in (A.1) and the prior for µ1 in (2.5), we can establish

[µ1 | Y, σ2, σ2
τ , {δi}]

∝ exp

{

−
µ2

1

2

(

1

τ 2
o

+
km

σ2
−

σ2
τk

2m

σ2(kσ2
τ + σ2)

)

+ µ1

[

µo

τ 2
o

+
s3

σ2
−

σ2
τks3

σ2(kσ2
τ + σ2)

]}

= exp

{

−
µ2

1

2

(

1

τ 2
o

+
km

kσ2
τ + σ2

)

+ µ1

(

µo

τ 2
o

+
s3

kσ2
τ + σ2

)}

. (A.2)

Setting

u =
µo

τ 2
o

+
s3

kσ2
τ + σ2

and

v =
1

τ 2
o

+
km

kσ2
τ + σ2

,

and completing the square in (A.2), one can show that the full conditional posterior distri-

bution of µ1 is

[µ1 | Y, σ2, σ2
τ , {δi}] = N

(

u

v
,
1

v

)

.

As mentioned previously, we set τ 2 = kσ2
τ + σ2. Making use of the density function of Y

in (A.1) and the joint prior for σ2 and τ 2 in (2.6), one can obtain

[σ2, τ 2 | Y, µ1, {δi}] ∝ (σ2)−
k(m−1)

2
−1 exp

{

−
1

2σ2

(

s1 −
1

k
s2

)}

(τ 2)−
m

2
−1 exp

{

−
s2

2kτ 2

}

. (A.3)

2. Full Conditional Posterior Distribution of σ2

Based on (A.3), it can be shown that

[σ2 | Y, µ1, σ
2
τ , {δi}] = IG

(

(k − 1)m

2
,

2

s1 −
1
k
s2

)

.

3. Full Conditional Posterior Distribution of τ 2 (for the calculation of σ2
τ )

As described in Section 2.2, if we let τ 2 = kσ2
τ + σ2, it is straightforward to show that

[τ 2 | Y, µ1, σ
2, {δi}] = IG

(

m

2
,
2k

s2

)

.

Note that after knowing τ 2 and σ2, we can calculate σ2
τ by using τ2−σ2

k
.
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4. Full Conditional Posterior Distribution of δi

For a given δi, we have

m
∑

j=1

k
∑

p=i+1

(

ypj − µ1 −

p−1
∑

q=1

δq

)2

=

m
∑

j=1

k
∑

p=i+1

(

δi − (ypj − µ1 −

p−1
∑

q=1

δq + δi)

)2

∝ (k − i)mδ2
i − 2δi

m
∑

j=1

k
∑

p=i+1

(

ypj − µ1 −

p−1
∑

q=1

δq + δi

)

, and

m
∑

j=1

(

k
∑

p=i+1

(ypj − µ1 −

p−1
∑

q=1

δq + δi − δi)

)2

=
m
∑

j=1

(

(k − i)δi −
k
∑

p=i+1

(ypj − µ1 −

p−1
∑

q=1

δq + δi)

)2

∝ (k − i)2mδ2
i − 2(k − i)δi

m
∑

j=1

k
∑

p=i+1

(

ypj − µ1 −

p−1
∑

q=1

δq + δi

)

.

With regard to (A.1), the preceding relations, and the prior for δi in (2.3), for i = 1, · · · , k−1,

we then have

[δi | Y, µ1, σ
2, σ2

τ , {δ1, · · · , δi−1, δi+1, · · · , δk−1}, ρi, θi]

∝ exp

{

−
1

2σ2

[(

(k − i) −
σ2

τ (k − i)2

kσ2
τ + σ2

)

mδ2
i − 2δi

(

1 −
(k − i)σ2

τ

kσ2
τ + σ2

)

s4

]}

(

ρiI{δi=0} + (1 − ρi)
1

θi

exp

{

−
δi

θi

})

,

where

s4 =

m
∑

j=1

k
∑

p=i+1

(

ypj − µ1 −

p−1
∑

q=1

δq + δi

)

.

The full conditional distribution of δi can therefore be summarized as a mixture of a discrete

part and a continuous part.

[δi | · ] =











cρih(δi), δi = 0

c(1 − ρi)
1
θi

h(δi), δi > 0, where

0, δi < 0
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h(δi) =
1

√

2π( 1
ai

)
exp







−
1

2( 1
ai

)

(

δi −
gi −

∆i

θi

ai

)2






exp











(

gi −
∆i

θi

)2

2ai











, with

∆i = I{δi>0},

ai = (k − i)
m

σ2

(

1 −
σ2

τ (k − i)

kσ2
τ + σ2

)

,

gi =
1

σ2

(

1 −
σ2

τ (k − i)

kσ2
τ + σ2

)

s4, and

c =
1

ρih(0) + (1 − ρi)
1
θi

∫∞

0
h(δi)dδi

. (A.4)

5. Full Conditional Posterior Distribution of ρi

By the prior on ρi, BETA(αo, βo), and the mixture prior on δi in (2.3), the full conditional

distribution of ρi can be expressed as

[ρi | δi, θi] =

{

BETA(αo + 1, βo), δi = 0

BETA(αo, βo + 1), δi > 0
.

With αo = βo = 1 (uniform), we have

[ρi | δi, θi] =

{

BETA(2, 1), δi = 0

BETA(1, 2), δi > 0
.

6. Full Conditional Posterior Distribution of θi

For the prior on θi in (2.4) and the mixture prior on δi in (2.3), the full conditional

distribution of θi is given by

[θi | δi, ρi] =







IG(ao, bo), δi = 0

IG

(

ao + 1,
[

δi + 1
bo

]−1
)

, δi > 0
.
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Appendix B: Gibbs Sampling Steps

Step 0

In this step, set the starting values δi
(0), ρi

(0), and θi
(0) for 1 ≤ i ≤ k− 1, µ1

(0), σ2
τ
(0)

, and

σ2(0)
.

Step t

(i) First, compute ai
(t) and gi

(t) by

a
(t)
i = (k − i)

m

σ2(t−1)

(

1 −
σ2

τ
(t−1)

(k − i)

kσ2
τ
(t−1) + σ2(t−1)

)

, and

g
(t)
i =

1

σ2(t−1)

(

1 −
σ2

τ
(t−1)

(k − i)

kσ2
τ
(t−1) + σ2(t−1)

)

s
(t−1)
4 ,

where

s
(t−1)
4 =

m
∑

j=1

k
∑

p=i+1

(

ypj − µ1
(t−1) −

p−1
∑

q=1

δq
(t−1) + δi

(t−1)

)

.

Second, compute the conditional posterior probability of δi
(t) = 0 (i.e., λi

(t)) for 1 ≤ i ≤

k − 1 by

λi
(t) = Pr(δi

(t) = 0 | · )

=
ρi

(t−1)h(0; ai
(t), gi

(t))

ρi
(t−1)h(0; ai

(t), gi
(t)) + (1 − ρi

(t−1)) 1

θi
(t−1)

∫∞

0
h(δ

(t−1)
i ; ai

(t), gi
(t), θi

(t−1))dδi
(t−1)

.

Here, h(·) is defined in (A.4).

Next, sample Bi
(t) from a Bernoulli distribution with success probability λi

(t), i.e., Pr(Bi
(t) =

1) = λi
(t). If Bi

(t) = 1, set δi
(t) = 0. If Bi

(t) = 0, sample (δi
(t) | · ) from a truncated normal

distribution (0 < δi
(t) < ∞) with mean (gi

(t) − 1
θi

(t−1) )/ai
(t) and variance 1/ai

(t).

(ii) Sample ρi
(t), θi

(t), µ1
(t), σ2(t)

, and τ 2(t)
from their full conditional posterior distribu-

tions, respectively, for 1 ≤ i ≤ k − 1 and j = 1, . . . , m. Subsequently, σ2
τ
(t)

can be computed

using τ 2(t)
and σ2(t)

.

Then, repeat Step t, t =1, 2, . . ., and continue.
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