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Abstract

In statistical modeling, selecting an optimal model from a class of candidates is a critical
issue. During the past three decades, a number of model selection criteria have been proposed
based on estimating Kullback’s (1968, p. 5) directed divergence between the model generating
the data and a fitted candidate model. The Akaike (1973, 1974) information criterion, AIC,
was the first of these. AIC is justified in a very general framework, and as a result, offers a
crude estimator of the directed divergence: one which exhibits a potentially high degree of
negative bias in small-sample applications (Hurvich and Tsai, 1989). The “corrected” Akaike
information criterion (Hurvich and Tsai, 1989), AICc, adjusts for this bias, and consequently
often outperforms AIC as a selection criterion. However, AICc is less broadly applicable
than AIC since its justification depends upon the structure of the candidate model. AIC;
(Hurvich, Shumway, and Tsai, 1990) is an “improved” version of AIC featuring a simulated
bias correction.

Recently, model selection criteria have been proposed based on estimating Kullback’s
(1968, p. 6) symmetric divergence between the generating model and a fitted candidate
model (Cavanaugh, 1999, 2004). KIC, KICc, and KIC; are criteria devised to target the
symmetric divergence in the same manner that AIC, AICc, and AIC; target the directed
divergence.

AlICc has been justified for the nonlinear regression framework by Hurvich and Tsai
(1989). In this paper, we justify KICc for this framework, and propose versions of AIC; and
KICy suitable for nonlinear regression applications. We evaluate the selection performance of
AIC, AICc, AIC;, KIC, KICc, and KICy in a simulation study. Our results generally indicate
that the “improved” criteria outperform the “corrected” criteria, which in turn outperform
the non-adjusted criteria. Moreover, the KIC family performs favorably against the AIC
family.

Key Words: AIC, Akaike information criterion, I-divergence, J-divergence, Kullback-
Leibler information, nonlinear regression.



1. Introduction

In statistical modeling, one of the main objectives is to select a suitable model from a
candidate class to characterize the underlying data. Model selection criteria provide a useful
tool in this regard. A selection criterion assesses whether a fitted model offers an optimal
balance between goodness-of-fit and parsimony. Ideally, a criterion will identify candidate
models which are either too simplistic to accommodate the data or unnecessarily complex.

The first model selection criterion to gain widespread acceptance was the Akaike (1973,
1974) information criterion, AIC. AIC is applicable in a broad array of modeling frameworks,
since its large-sample justification only requires conventional asymptotic properties of max-
imum likelihood estimators. However, in settings where the sample size is small, AIC tends
to favor inappropriately high dimensional candidate models (Hurvich and Tsai, 1989); this
limits its effectiveness as a model selection criterion.

AIC serves as an estimator of Kullback’s (1968, p. 5) directed divergence between the
generating or “true” model (i.e., the model which presumably gave rise to the data) and a
fitted candidate model. The “corrected” AIC, AICc, is an adjusted version of AIC originally
proposed for linear regression with normal errors (Sugiura, 1978; Hurvich and Tsai, 1989).
For fitted models in the candidate class which are correctly specified or overfit, AIC is
asymptotically unbiased and AICc is exactly unbiased as an estimator of its target measure.

In small-sample applications, AICc often dramatically outperforms AIC as a selection
criterion. Since the basic form of AICc is similar to that of AIC, the improvement in selection
performance comes without an increase in computational cost. However, AICc is less broadly
applicable than AIC since its justification relies upon the structure of the candidate model.

Another adjusted variant of AIC is AIC;, an “improved” version of AIC proposed by Hur-
vich, Shumway, and Tsai (1990) for Gaussian autoregressive model selection. The derivation
of AIC; proceeds by decomposing the expected directed divergence into two terms. The first
term suggests that the empirical log likelihood can be used to form a biased estimator of the
directed divergence; the second term provides the bias adjustment. Exact computation of
the bias adjustment requires the values of the true model parameters, which are inaccessible

in practical applications. Yet for fitted models in the candidate class which are correctly



specified or overfit, the adjustment is asymptotically independent of the true parameters.
Thus, for large-sample applications, the adjustment may be approximated via Monte Carlo
simulation using arbitrary values for the parameters.

The directed divergence, also known as the Kullback-Leibler (1951) information or the
I-divergence, accesses the dissimilarity between two statistical models. It is an asymmetric
measure, meaning that an alternative directed divergence may be obtained by reversing
the roles of the two models in the definition of the measure. The sum of the two directed
divergences is Kullback’s (1968, p. 6) symmetric divergence, also known as the J-divergence.
When used to evaluate fitted candidate models, the directed divergence which serves as the
basis for AIC is arguably less sensitive than the symmetric divergence towards detecting
improperly specified models. This premise has been used to justify the development of
a new family of selection criteria (Cavanaugh, 1999, 2004). KIC, KICc, and KIC; are
criteria constructed to target the symmetric divergence in the same manner that AIC, AICc,
and AIC; target the directed divergence. KIC has been justified under the same general
conditions as AIC (Cavanaugh, 1999); however, KICc has only been justified for linear
regression with normal errors (Cavanaugh, 2004). As with AIC;, KIC; must be formulated
based upon the structure of the candidate modeling framework.

Hurvich and Tsai (1989) established that AICc serves as an approximately unbiased
estimator of Kullback’s directed divergence for nonlinear regression candidate models with
normal errors. In this paper, we justify KICc in the same framework. We also propose
versions of AIC; and KIC; suitable for nonlinear regression applications. We evaluate the
selection performance of AIC, AICc, AIC;, KIC, KICc, and KIC; in a simulation study. Our
results generally indicate that the “improved” criteria outperform the “corrected” criteria,
which in turn outperform the non-adjusted criteria. Moreover, the KIC family performs
favorably against the AIC family.

In Section 2, we propose and discuss the criteria. Our simulation study is presented and
summarized in Section 3. The formal justification of KICc for nonlinear regression appears

in the Appendix.



2. Selection Criteria Based on Kullback Information Measures

The nonlinear regression model is frequently used in many areas of the physical, chemical,
engineering, and biological sciences. The traditional regression model assumes that the mean
structure is linear in the model coefficients: i.e., E[y] = X', where y is the response variable,
X is a vector of regressor variables, and ¢ is an unknown parameter vector. However, one
often expects a nonlinear relationship between E[y] and X, perhaps because of the theory
which supports the underlying phenomenon. Many nonlinear models fall into categories
that are designed for certain situations: thus, there are various families of nonlinear models
corresponding to specific functional forms of the mean response.

Assume a collection of data Y has been generated according to an unknown parametric

density f(Y]#,), one which corresponds to the normal regression model
Y = ho(,, Xo) + €, e~ N(0,021). (2.1)

Suppose that the candidate model postulated for the data is of the form
Y =h(6,X)+e e~ N(0,0%). (2.2)

Here, Y is an n x 1 response vector, d, and ¢ are p, X 1 and p x 1 parameter vectors, and
X, and X are n x s, and n X s design matrices with rows X,; and X;. The mean vectors are

assumed to have the layouts
DQA%S Vﬂev = AQeA%S Lvm‘ewv“ e ﬂmom%s ;vmosvv\ and ?A%“ Vﬂv = AQA%“ LNMV“ T QA%“ Lvmsvv\

To establish asymptotic inferential results, the mean response function g is generally required
to be twice continuously differentiable in §. For the sake of brevity, we will subsequently
write h(d,X) as h(d) and hy(d,, X,) as he(d,).

Define the parameter vectors 6, and 6y, as 6, = (8, 02)" and ), = (&', 02)". The subscript
k on 6, will refer to the dimension of the vector; i.e., k = p + 1.

Let f(Y'|6;) denote the likelihood under the model (2.2). We will use 6 and 62 to represent
the maximum likelihood estimators (MLEs) of 6 and o2, which are generally obtained using

the Gauss-Newton method or some other iterative procedure. We will let 0, denote the



MLE for 6; i.e., 0} = A%n 62)". Accordingly, f(Y| mi will represent the empirical likelihood
corresponding to f(Y|6y).

Let F(k) = {f(Y]0) | O € ©(k)} denote the k-dimensional parametric family of den-
sities corresponding to candidate models (2.2) of a particular size. Suppose our goal is to
search among a collection of families { F (ki ), F(ks), ..., F(kg)} for the fitted model (Y| 6y),
k € {ki,ko,...,kr}, which serves as the “best” approximation to f(Y]6,). We note that
in many applications, some of the families in the candidate collection may have the same
dimension and yet be different; e.g., for some families of linear regression models, the design
matrices may have the same rank and yet different column spaces. For ease of notation, we
do not include an index to delineate between such families.

If f(Y|6,) € F(k), and F(k) is such that no smaller family will contain f(Y]6,), we refer
to f(Y]6y) as correctly specified. It f(Y'|6,) € F(k), yet F(k) is such that families smaller
than F(k) also contain f(Y|6,), we refer to f(Y| ;) as overfit. It f(Y|6,) ¢ F(k), we refer
to f(Y|6) as underfit.

To determine which of the fitted models { f(Y|8y,), f(Y|0k,), ., f(Y|6,)} best resem-
bles f(Y]#,), we require a measure which provides a suitable reflection of the disparity
between the true model f(Y]6,) and a candidate model f(Y|6;). Kullback’s directed and
symmetric divergence both fulfill this objective.

For two arbitrary parametric densities f(Y|6) and f(Y|6.), Kullback’s directed diver-
gence between f(Y]#) and f(Y]6,) with respect to f(Y'| ) is defined as

f(Y10)
100,0,) =E, |In{ L2041 2.3
00 =Fo [\ e 2
and Kullback’s symmetric divergence between f(Y|6) and f(Y]0,) is defined as
fY10) f(¥16.)
J(0,0,) =By |In{ LU gy i LT L 2.4
e R VTR | R R Wit >0

Here, Ey denotes the expectation under f(Y|6). Note that J(6,6,) is symmetric in its
arguments whereas (6, 6,) is not. Thus, an alternate directed divergence, I(,,8), may be
obtained by switching the roles of f(Y]#) and f(Y]6.) in (2.3). The sum of the two directed
divergences yields the symmetric divergence: J(0,6,) = 1(0,6.) + I(6.,0).



For the purpose of assessing the proximity between a certain fitted candidate model

F(Y'|8;) and the true model f(Y]6,), we consider the measures
I(05,01) = 1(0,01)ly, 5, and  J(0,01) = J (0o, 01)|y s,

Of these two, Cavanaugh (1999, 2004) conjectures that .J(6,, mi may be preferred, since it
combines I(6,, 0;) with its counterpart I(6y, 0,), a measure which serves a related yet distinct
function. To gauge the disparity between f(Y|6y) and f(Y|6,), I(8,,0)) assesses how well
samples generated under the true model f(Y|6,) conform to the fitted candidate model
f(Y|0;), whereas I(6y,0,) assesses how well samples generated under the fitted candidate
model f(V]6;) conform to the true model f(Y]6,). As a result of these contrasting roles,
I1(6,,0;) tends to be more sensitive towards reflecting overfit models, whereas I(6y, ,) tends
to be more sensitive towards reflecting underfit models. Accordingly, J(6,, %\L may be more
adept at detecting misspecification than either of its components.

In what follows, we will show how the AIC family of model selection criteria arises
through estimating a variant of I(0,, mi We will then show how an alternate family of
selection criteria, the KIC family, arises through estimating a variant of .J(6,, @3

For two arbitrary parametric densities f(Y|#) and f(Y]6.), let
d(0,0,) = Eg[—21n f(Y'| 0,)]. (2.5)
From (2.3) and (2.5), note that we can write
21(0,, 0k) = d(0,,01) — d(6,, 6,). (2.6)

Since d(6,, 8,) does not depend on 6y, any ranking of a set of candidate models corresponding
to values of I(6,,60;) would be identical to a ranking corresponding to values of d(6,,0).
Hence, for the purpose at hand, d(6,,0x) serves as a valid substitute for 1(6,, 0).

Now for a given set of MLEs O,

d(00, 0) = d(Bo, k) g, s,

would provide a meaningful measure of separation between the true model and a fitted

candidate model. Evaluating d(6,, mi is not possible since doing so requires knowledge of



f,. However, the work of Akaike (1973, 1974) suggests that —21In (Y| 6;) serves as a biased
estimator of d(6,, mi“ and that in many applications (including those beyond the scope of

nonlinear regression models), the bias adjustment
B1(k, 00) = g, [d(00, 0k)] — Eg,[—21n f (Y] 6;)] (2.7)

can be asymptotically estimated by twice the dimension of 0. Specifically, if we assume
that 6 satisfies the conventional large-sample properties of MLEs, and that f(Y'|f;) is
either correctly specified or overfit (f(Y']6,) € F(k)), it can be shown that

B (k,0,) ~ 2k. (2.8)
(See, for instance, Cavanaugh, 1997, p. 204.) With this motivation, we define the criterion
AIC = —21In f (Y] 0;) + 2k.

As the sample size increases, the difference between the expected value of AIC and the

expected value of d(6,, mi should tend to zero. Accordingly, if we define

Dm\av%ov = MQL&A%S@AV_
= Eg,[-2ln f(Y[00)] + By (k,0,), (2.9)

we may regard AIC as an asymptotically unbiased estimator of A(k,6,).

When n is large and £ is comparatively small, the degree of bias incurred in estimating
A(k,0,) with AIC is negligible. However, when n is small and & is relatively large (e.g., k ~
n/2), 2k is often much smaller than By (k,6,), making AIC substantially negatively biased
as an estimator of A(k,0,). If AIC severely underestimates A(k,6,) for high dimensional
fitted models in the candidate class, the criterion may favor these models even though they
may correspond to large values of d(6,,6;) (Hurvich and Tsai, 1989).

AICc and AIC; were proposed to serve as estimators of A(k,#,) which are less biased in
small-sample applications than traditional AIC (Hurvich and Tsai, 1989; Hurvich, Shumway,
and Tsai, 1990). However, since the justification of AICc and the computation of AIC; are
contingent upon the structure of the candidate modeling framework, these criteria are less

generally applicable than AIC.



AICc was originally proposed by Sugiura (1978) in the setting of linear regression models
with normal errors. In this framework, the bias adjustment (2.7) can be evaluated exactly
for correctly specified and overfit models. Where p represents the rank of the design matrix
for the candidate model, it can be shown that when f(Y]6,) € F(k),

2n(p+1)
(n—p—2)

(See Cavanaugh, 1997, pp. 204-205.) Thus, an exactly unbiased estimator of A(k,6,) is

Bi(k,0,) = (2.10)

given by
2n(p + 1)

(n—p—2)

Although relation (2.10) does not hold precisely in the normal nonlinear regression frame-

AlCe = —2In f(Y]6;) +

work, the arguments and results of Hurvich and Tsai (1989) suggest that B;(k,6,) is well
approximated by {2n(p+1)}/(n — p — 2) even for relatively small n.

AIC; was originally proposed for Gaussian autoregressive models by Hurvich, Shumway,
and Tsai (1990). In this framework, the relation (2.10) only holds approximately. However,
when f(Y'|6,) € F(k), the bias adjustment B;(k,6,) is asymptotically independent of the
true model parameters 6,. Thus, for large n, Bi(k, §,) may be approximated via Monte Carlo
simulation after setting 6, equal to a conveniently chosen vector.

To propose an AIC; for the normal nonlinear regression framework, we utilize the fol-
lowing results:

o 410) = gt NN 6
—2Inf(Y]6;) = n(né+1), (2.11)
o {ho(85) = h(6)} {ho(8,) — h(3)}

o N
nlné? + — + —
o o

Eg,[d(0,,0:)] = Ey (2.12)

o

(In the preceding relations and throughout our development, we have neglected the additive
constant n1n27.) Note that by using (2.11) and (2.12) in conjunction with (2.7) and (2.9),

we may write



A(k,0,) = By, [d(0y, 01)]

= Eg,[-2In f(Y| mwv_ R )
noy  {ho(B0) = O} {ho(0) = h(O)} T (2.13)

~ — -n
62 62

+Ey

o

The form of AIC; is suggested by (2.13). To evaluate AIC;, we set the parameters o2

and 0, at conveniently chosen values, generate R samples according to model (2.1), solve for

~

the R sets of corresponding MLEs {(62(1),6(1)), ..., (6%(R),(R))} under model (2.2), and

compute the criterion via

~

>HO~ — |w_b\.3\_ %wv + W .mH %NMWV + Abom%ev | \sm CVWW\AWW&QA%@V | ?A%vaw —-n

In frameworks where it is not possible to evaluate B;(k,0,) exactly, AIC; may estimate
A(k, 0,) with less bias than AICc, and may outperform AICc as a selection criterion (Hurvich,
Shumway, and Tsai, 1990).

Next, we propose selection criteria devised to target J(6,, mi in the same manner that
AIC, AICc, and AIC; target I(6,, mi

Similar to (2.6), using (2.4) and (2.5), we can write

2 (00, 0) = {d(00, 1) — d(00,0,)} + {d(0x, 0,) — (61, 0)}.
Discarding the constant d(f,,6,) from the preceding yields
K(0,,0;) = d(0,,0r) + {d(0,0,) — d(b, 0k)}.

For the purpose of discriminating among various candidate models, K(6,,0) is equivalent
to J(0,,0r). Measures such as K(0,,0;), J(0,,0;), d(6,,0r), and I(0,,0;) are often called
discrepancies. (See Linhart and Zucchini, 1986, pp. 11-12.)

Now consider estimating

NAQQg %\Av = NAQQﬂ Q\Av_memw



If —21n f(Y]0) is regarded as a platform for an estimator of this measure, the challenge is

then to correct for the bias. The bias adjustment may be expressed as

Eg,[K(0,,01)] — Eo,[-2In f(Y|0)] = Eg,[d(0,,01)] — Eg,[-2In f(Y|6,)] (2.14)
+Eq,[d(0k, 0,)] — Eq,[d(0, 0)]. (2.15)

Note that the difference on the right-hand side of (2.14) is the same as By (k, 0,), the bias
adjustment for d(6,,0;) expressed in (2.7). For the difference (2.15), define

By (k, 0,) = Eq, [d(0, 0,)] — Eg, [d(0, Or)]. (2.16)

The penalty terms of AIC, AICc, and AIC; provide us with estimators of By (k,6,); our
goal is to seek similar estimators of By(k,6,). This will lead us to a set of criteria which are
analogous to AIC, AICc, and AICy, targeting K (6,, mi in the same way that the AIC-type
criteria target d(6,,0)).

First, we propose an analogue of AIC based on estimating Bs(k, 6,) in the same manner
that the penalty term of AIC estimates By(k,6,). If we assume that f(Y]6) is either
correctly specified or overfit (f(Y]6,) € F(k)), it can be shown that for large n,

B (k, 6,) ~ k. (2.17)

(See Cavanaugh, 1999, pp. 337-338.) As with (2.8), the preceding applies to any modeling
framework in which 6 satisfies the conventional properties of MLEs. Motivated by the

large-sample approximations (2.8) and (2.17), we define the criterion
KIC = —21In f(Y| ;) + 3k.

As the sample size increases, the difference between the expected value of KIC and the

expected value of K (6,,0;) should tend to zero. Accordingly, if we define

@Qﬁ Qev = mme ?WAQS %wi
- HQL|M _SNG\_ %wi + w;\av %ov + WMQAJ %ovv AMHMWV

we may regard KIC as an asymptotically unbiased estimator of (%, 6,).
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Cavanaugh (2004) proposed an analogue of AICc¢ for normal linear regression models
based on estimating Bsy(k, 6,) in the same manner that the penalty term of AICc estimates
Bi(k,6,). In the normal linear regression framework, the bias adjustment (2.16) can be
evaluated exactly for correctly specified and overfit models. When f(Y]6,) € F(k), it can
be shown that

ww?@ni: Amv l% A:mﬁv“ @.Sv

where 1(-) denotes the psi or digamma function. Although v (-) does not have a closed form
representation, an accurate substitute for (2.19) is suggested by the large-sample approxi-

mation

ﬁ:_c A@v —na Aﬁ@l%vw ~nln | —— ) + ——. (2.20)

2 2 n—op n—mp
(See Kotz and Johnson, 1982, p. 373.) Based on (2.18), (2.10), (2.19), and (2.20), we define

the criterion

ol F(VI6) 4l [ n{n—p)2p+3) -2}
KICc = —21In f(Y|6x) + nl p— + n—p—2n—p)

For the normal nonlinear regression framework, the justification of KICc as an approximately
unbiased estimator of K (0,,0;) is provided in the Appendix.
Finally, we introduce KIC; as an analogue of AIC; based on augmenting AIC; with a

simulated approximation to By(k,6,). We utilize the following results:

En,[d(0c,00)] = Eo,In(ine”+ 1)), (2.21)
v - m\em%ovw\ﬁ?m%v - Domﬁmovw

Ino? . 2.22
nlno, + s + o2 ( )

S
Q»
o
=
=
S

Eq,[d(0),0,)] = Eg

o

Note that by using (2.11), (2.12), (2.21), and (2.22) in conjunction with (2.7), (2.16),
and (2.18), we may write
Q(k,0,) = Eqg,[K(0,,04)]
= Eg[-2In f(Y]|6;)]

o2 no?  no?
ITon nln % + 52 +Q.|w
1 1 2 2
+ (=5 + =5 ) ho60) = RO ho(6) = h(B)} =20 (2:23)



The form of KIC; is suggested by (2.23). To evaluate KIC;, we set the parameters o2

and 0, at conveniently chosen values, generate R samples according to model (2.1), solve for

~

the R sets of corresponding MLEs {(6%(1),0(1)),..., (62(R),d(R))} under model (2.2), and

compute the criterion via

KIC; = —2Inf(Y]6)
LE[ (o), ok o)
REMEGS TR0 T
o 2 (06— WY (1a(5) WG}~ 20

Having now presented AIC, AICc, AIC;, KIC, KICc, and KIC; as selection criteria for
nonlinear regression applications, we evaluate the selection performance of these criteria in

a simulation study.

3. Simulations

Simulation Sets Based on Nested Candidate Models
Consider a setting where a sample of size n is generated from an exponential regression

model of the form (2.1) with

?QA%S uﬂev = AQQ GNUANNHQQY e, O GNUAN‘NSQQVV\W Aw:

i.e., go(00, Xoi) = apexp(X}.5,) and 6, = (a,, f,)'. Here, X, is an n X s, covariate matrix
of rank s, with rows X,;, a, is a scale parameter, and f3, is an s, x 1 regression parameter
vector. Suppose our objective is to search among a candidate collection of nested families
for the fitted model which serves as the best approximation to (2.1).

Assume our candidate models are of the form (2.2) with an exponential response function:
h(8,X) = (aexp(Xif), -, aexp(X,5))'; (3:2)

ie., g(d,X;) = aexp(X/5) and 6 = («a, 5'). Here, X is an n X s covariate matrix of rank s

with rows X;, « is a scale parameter, and [ is an s X 1 regression parameter vector. Let &

~ ~ ~

and 3 denote the MLEs of o and 3, and let 6 = (&, )" denote the MLE of 4.

11



In fitting candidate models to the data, we will consider nested design matrices X of
ranks s = 1,2,...,S. We will assume that the design matrix of rank s, (1 < s, < 5) is
correctly specified. Hence, fitted models for which 1 < s < s, are underfit, and those for
which s, < s < S are overfit. We will refer to s as the order of the model and to s, as the
true order. The dimension of the model is given by k£ = s + 2, and the size of the parameter
vector d is p = s + 1.

We examine the behavior of AIC, AICc, AIC;, KIC, KICc, and KIC; as order selection
criteria. For the simulated bias adjustments of AIC; and KICy, recall that the true model
parameters may be set to convenient values. The values chosen for the parameters are
a, =1, B, = (0,0,...,0), and 62 = 1. With these specifications, (2.1) and (3.1) imply
that the response vector Y consists of independent, identically distributed standard normal

variates. Additionally, AIC; and KIC; may be defined as follows:

AIC; = n(lné?

KIC; = n(lné?

+ 10 {h(6(j))'h(())} - 2n

(Two R routines are available from the authors which will provide the simulated bias ad-
justments for AIC; and KIC; for nonlinear regression applications.)

In the initial six simulation sets, 1000 samples are generated from a true model where
a, =1 and 3, = (1,1,...,1)". In the first three of these sets, s, = 3 and 02 = 1. Thus, in

scalar form, the true model can be written as
Y; = mNUA,&.S + x9; + ,&.ws.v + €5, e; ~~ 1d »\/NAP Hv Awwv

In the next three sets, s, = 5 and 62 = 4, meaning that the scalar representation of the true
model is

Y; = mNUA.&.: + Xoj + X3; + Ty + .&.ms.v + ¢, €; 1id ZAO“ NC Awmc

12



The regressors for all models are produced using a Uniform(—1, 1) distribution. For each
of the true models, three different sample sizes n are employed: 50, 75, and 100. For the
sets with n = 50 and n = 75, candidate models of orders 1 through 7 are considered; for
the sets with n = 100, orders 1 through 10 are entertained. The simulated bias adjustments
for AIC; and KIC; are based on R = 200 replications. For every sample in a set, the fitted
model favored by each criterion is recorded. Over the 1000 samples, the order selections are
tabulated and summarized.

The order selection results for the three sets corresponding to model (3.3) are featured in
Table 1; those corresponding to model (3.4) appear in Table 2. Note that each J-divergence
criterion obtains more correct selections than its /-divergence counterpart. Also, within each
family of criteria, the “improved” criterion outperforms the “corrected” criterion, which in
turn outperforms the non-adjusted criterion. In each of the sets, KIC; obtains the most
correct selections, followed by KICc. KIC ranks third in every set except the fourth.

Figures 1 and 2 help to explain the order selection behaviors of the criteria. These figures
are based on the results of simulation set 1 in Table 1. In Figure 1, the criterion averages
for the AIC family and the simulated expected discrepancy A(k,6,) are plotted versus the
model order; in Figure 2, the criterion averages for the KIC family and simulated expected
discrepancy Q(k,6,) are plotted versus the model order. The following conclusions can be

drawn.

e Past the true model order, the curves for Q(k, 6,) and the KIC family (Figure 2) exhibit
more extreme slopes than the corresponding curves for A(k,0,) and the AIC family
(Figure 1). As a result, the J-divergence criteria are less likely than their I-divergence

counterparts to choose overfit models.

e AIC and KIC tend to underestimate A(k,6,) and Q(k,8,) for overfit models. As a

result, these criteria often select models of an inappropriately high order.

e AICc and KICc also tend to underestimate A(k,0,) and Q(k,0,) for overfit models,
although the degree of underestimation is much less than that exhibited by AIC and
KIC.
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e The AIC; and KIC; curves track the A(k,6,) and Q(k,0,) curves very closely. Thus,
the “improved” criteria tend to estimate the expected discrepancies with the least

amount of bias.

In addition to evaluating the criteria on the basis of order selections, it is also of interest
to investigate whether the criteria choose the fitted model which most accurately predicts

the response. We define the mean squared error of prediction (MSEP) as

n
MSEP = " @.Mw@& — Ey, [u:])°

(cf. Myers, 1990, p. 180). For every sample in a set, MSEP is computed for each of the fitted

candidate models. Over the 1000 samples, the number of times that each criterion chooses

the fitted model corresponding to the smallest MSEP is recorded. The average MSEP for

the models selected by each criterion is also recorded.

The MSEP results for the six sets are featured in Tables 1 and 2. Within each family
of criteria, the “improved” criterion produces the most minimum MSEP selections, fol-
lowed respectively by the “corrected” criterion and the non-adjusted criterion. Also, each
J-divergence criterion obtains more minimum MSEP selections than its /-divergence coun-
terpart.

The results for the average MSEP of the selected models are less straightforward to char-
acterize. Sets 1, 2, 3, and 6 exhibit the previous pattern. Within each family of criteria, the
“improved” criterion yields the smallest average MSEP, followed respectively by the “cor-
rected” criterion and the non-adjusted criterion. Also, each J-divergence criterion produces
a smaller average MSEP than its /-divergence counterpart. This pattern does not hold in
sets 4 and 5, however. In these sets, the KIC family does not perform as favorably relative
to the AIC family.

For the sets based on model (3.4), the configuration is more conducive to underfitting
than for the sets based on model (3.3). Although the propensity of the criteria to choose an
underfit model is attenuated as the sample size is increased, the sample sizes in sets 4 and
5 are small enough to result in under-specified selections. These selections often correspond

to large values of MSEP, which tend to inflate the average MSEP.
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Simulation Sets Where the True Model is Vague

Consider the same simulation setting as that described in the previous subsection. In the
four sets to follow, however, we define each true model so there is no unambiguous optimal
order for the class of fitted candidate models.

In each set, 1000 samples of size 50 are generated from a true model where a, = 1 and
02 = 1. The f3, vectors considered are 3, = (1,1, 1,0.05,0.01), 3, = (1,0.9,0.7,0.1,0.05)’,

B, = (1,0.5,0.2,0.1,0.05)', and 3, = (1,0.7,0.45,0.25,0.1,0.05,0.01)". Thus, in scalar form,

the true models can be written as follows:

y; = exp(x1; + Toi + x3; + 0.05 24; + 0.01 z5;) + €, (3.5)

yi = exp(z1; + 0.9 w9; + 0.723 + 0.1 24 + 0.05 z5;) + €, (3.6)

y; = exp(z1; + 0.5 x9; + 0.2 23 + 0.1 24 + 0.05 x5;) + €, (3.7)

y; = exp(x1; + 0.7x9; + 0.45 x3; + 0.25 x4; + 0.1 x5 + 0.05 z6; + 0.01 ;) + €;, (3.8)

with e; ~ iid N(0,1).

Candidate models of orders 1 to 7 are fit to the data. However, a clearly-defined optimal
order does not exist for the fitted models in the candidate class. Consider, for instance, the
generating model (3.5). Although the order of this model is 5, it is questionable whether
the inclusion of the fourth or fifth regressor justifies the cost of estimating the corresponding
parameter. Thus, whether the optimal model order is 3, 4, or 5 is uncertain.

We refer to models (3.5) through (3.8) as wague. The parameter values are configured
so that each consecutive model is more vague than its predecessor. For these models, it is
pointless to investigate how often the criteria choose the fitted model with the same order
as the true model. However, it is still meaningful to explore whether the criteria tend to
choose a fitted model which accurate predicts the response.

As with the simulation results compiled for the previous subsection, for every sample in a
set, MSEP is computed for each of the fitted candidate models. Over the 1000 samples, the
number of times that each criterion chooses the fitted model corresponding to the smallest
MSEP is recorded. The average MSEP for the models selected by each criterion is also

recorded. The results for the four sets are featured in Table 3.
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For the first two sets (based on models (3.5) and (3.6)), the results for the minimum
MSEP selections are consistent with those reported in Tables 1 and 2. Moreover, the results
for the average MSEP are congruous with those reported in Table 1 and in set 6 of Table 2.
However, as the generating model becomes increasingly vague, the AIC family of criteria
begins to marginally outperform the KIC family. In the last two sets (based on models (3.7)
and (3.8)), all of the criteria exhibit difficulty in identifying the fitted model corresponding
to the minimum MSEP. However, the average MSEPs, which are similar across all criteria,

are comparable to the average MSEPs reported in the first two sets, as well as in set 1 of

2

2 are employed). Thus, although no criterion

Table 1 (where the same values of n and o
consistently chooses the fitted model corresponding to the minimum MSEP, no criterion

persistently selects a fitted model with a large MSEP.

Conclusions

An extensive collection of simulation sets not featured here reflect selection patterns
similar to those in the sets reported. In most settings, the “improved” criteria outperform
the “corrected” criteria, which in turn outperform the non-adjusted criteria. Moreover, the
KIC family performs favorably against the AIC family.

Our results support two conclusions regarding model selection criteria based on Kullback
information measures. First, the performance of a criterion appears to be largely dictated by
how well its penalty term approximates the corresponding bias adjustment. Second, for the
purpose of delineating between correctly specified and misspecified models, the symmetric

divergence may serve as a more sensitive discrepancy measure than the directed divergence.
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Table 1: Order Selections, Minimum MSEP Selections, and Average MSEP for Selections
Generating Model (3.3)

S Criterion
Set | s, Selections AIC AlCc AICy KIC KICc KIC;
n
7 Underfit 1 1 2 2 2 3
1 3 | Correctly Specified | 676 811 814 848 908 911
50 Overfit 323 188 184 150 90 86

Minimum MSEP 616 741 744 778 838 840
Average MSEP | 0.0605 | 0.0526 | 0.0517 | 0.0508 | 0.0476 | 0.0469

7 Underfit 0 0 0 0 0 0

2 3 | Correctly Specified | 724 788 838 860 904 938
75 Overfit 276 212 162 140 96 62
Minimum MSEP 676 739 789 810 853 887
Average MSEP | 0.0385 | 0.0362 | 0.0345 | 0.0338 | 0.0319 | 0.0306

10 Underfit 0 0 0 0 0 0

3 3 | Correctly Specified | 694 768 792 857 889 912
100 Overfit 306 232 208 143 111 88
Minimum MSEP 650 724 747 811 843 866
Average MSEP | 0.0308 | 0.0278 | 0.0271 | 0.0249 | 0.0237 | 0.0232
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Table 2: Order Selections, Minimum MSEP Selections, and Average MSEP for Selections
Generating Model (3.4)

S Criterion

Set | s, Selections AIC AlCc AICy KIC KICc KIC;
n
7 Underfit 13 24 26 27 51 62

4 5 | Correctly Specified | 696 808 824 818 868 873
50 Overfit 291 168 150 155 81 65
Minimum MSEP 577 683 699 693 745 752

Average MSEP | 0.3558 | 0.3420 | 0.3393 | 0.3515 | 0.3788 | 0.3809

7 Underfit 1 2 2 2 3 7

) 5 | Correctly Specified | 736 806 824 857 910 917
75 Overfit 263 192 174 141 87 76
Minimum MSEP 650 717 733 763 815 822
Average MSEP | 0.1977 | 0.1919 | 0.1896 | 0.1873 | 0.1817 | 0.1878

10 Underfit 0 0 0 0 0 0

6 5 | Correctly Specified | 695 786 796 855 893 897
100 Overfit 305 214 204 145 107 103
Minimum MSEP 623 711 721 779 815 819
Average MSEP | 0.1643 | 0.1518 | 0.1487 | 0.1419 | 0.1357 | 0.1348
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Table 3: Minimum MSEP Selections and Average MSEP for Selections

Criterion

Generating Model Selections AIC AlCc AIC; KIC KICc KIC;

(3.5) Minimum MSEP | 381 484 487 523 586 587
Average MSEP | 0.0616 | 0.0545 | 0.0537 | 0.0526 | 0.0481 | 0.0476

(3.6) Minimum MSEP | 232 278 278 311 353 353
Average MSEP | 0.0647 | 0.0596 | 0.0588 | 0.0573 | 0.0542 | 0.0540

(3.7) Minimum MSEP | 147 183 168 168 166 169
Average MSEP | 0.0664 | 0.0606 | 0.0586 | 0.0605 | 0.0604 | 0.0578

(3.8) Minimum MSEP | 181 200 208 182 166 176
Average MSEP | 0.0746 | 0.0726 | 0.0732 | 0.0752 | 0.0775 | 0.0798
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Figure 1: Criterion Averages and Simulated A(k,#,) (Table 1, Set 1)
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Figure 2: Criterion Averages and Simulated (&, 6,) (Table 1, Set 1)
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Appendix: Justification of KICc for Nonlinear Regression.

In what follows, we will require that f(Y|6,) € F(k); i.e., that the fitted model is correctly
specified or overfit. Under this assumption, the true model and the candidate model can be
written using the same response function, the same design matrix, and parameter vectors of

a common dimension:

Y = h(d,, X) + ¢, e ~ N(0,021), (A1)
Y = h(6,X) +e, e ~ N(0,0%1). (A.2)

Here, the common design matrix X is n x p. The parameter vector for the true model (A.1),
do, and for the candidate model (A.2), 0, are both of dimension p x 1.
The " row of the design matrix will be denoted by X;. The mean vectors are assumed

to have the layouts
\&A%va = AQA%Q“NHV“...“QA%SNSVV\ and Dm%ﬂvm.v = Amm%ﬂk;ﬂ...f@m%ﬂksvv\

where the common mean response function ¢ is twice continuously differentiable in §. As
before, for brevity, we will write h(d, X) as h(d) and h(d,, X) as h(d,).
We will assume that the final (p — p,) components of , are zero (p, < p). This is per-
missible since we are requiring that the candidate model is either correctly or over specified.
As before, we will let 6, = (0!, 02)" and 0, = (§',0?%), and use f(Y|6,) and f(Y|6) to

denote the densities corresponding to models (A.1) and (A.2).
Now recall (2.18) from Section 2:

DQA& %ov = mumL|w In .\.G\_ %wv_ + WHQA& %ov + WMQA& %ov. A>wv

The first of the three terms on the right-hand side of (A.3) suggests that —21In (Y| ;) serves
as a biased estimator for (k,6,). As shown in Hurvich and Tsai (1989, pp. 299-300), for
large n, By (k,0,) is approximately equal to the penalty term of AICc; i.e.,

2n(p + 1)

wHQAngv >~ A3|@| Mv

(A.4)
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By (2.16), (2.21), and (2.22), the bias adjustment By(k,6,) can be written as

not  {h() —hG)Y{RO) ~hG) T

2 2
% %

SEWN)

Bo(k,8,) = Eg, |nln [ 22 +

o

N

To simplify (A.5), we will use the following large-sample results for MLEs in the normal
nonlinear regression framework (Gallant, 1987, p. 17). The linear expansion of iwv at 0 =
8, is given by h(6) ~ h(d,) + V(6 —6,), where V = 0h(5)/05 evaluated at § = 6,. Under the
true model, the difference (§ — d,) is approximately multivariate normal, N(0, o2(V'V) 1),
the ratio (n6?/c?) is approximately distributed as a x? random variable with (n — p) degrees

of freedom, and 6 and 62 are approximately independent.

Using the preceding, we have
Eo, | —| =n—p, (A.6)

and

h(6) — h(3,)}'{h(d) — h(5, 0 —8,)'V'V (6 — 4,

£, [(HO) ZHEV(RG) — O] [E=0VVE8)) L (o
Q.Q QQ

Using (A.6) and (A.7) in conjunction with (A.5), we may argue

o2
Bo(k,0,) ~ Ep, |nln | 2] |. (A.8)
o

Now recall that the expectation of the log of a random variable with a central x? distri-
bution having df degrees of freedom is In 2+ (df /2), where t(-) denotes the psi or digamma
function. (See, for instance, McQuarrie and Tsai, 1998, p. 67.) The term Ey, [In(no?/c?)]
has the form of the expectation of the log of central x* random variable with (n — p) degrees

of freedom. This fact along with (A.3), (A.4), and (A.8) yields

Q(k, 0,) ~ Eo, [/ (V] 6,)] + % +nln @v — A: - J . (A.9)

An accurate substitute for {nln(n/2) — ny((n — p)/2)} is provided by the large-sample
approximation (2.20). Employing this approximation in (A.9) justifies

— —91n ) nln " n{(n —p)(2p+3) — 2}
KiCe = =2 f(¥]6,) +nln | S )+ == =)

as an approximately unbiased estimator of (%, 6,).
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