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Abstract

Many naturally occurring phenomena can be effectively modeled using self-similar processes.
In such applications, accurate estimation of the scaling exponent is vital, since it is this index
which characterizes the nature of the self-similarity. Although estimation of the scaling expo-
nent has been extensively studied, previous work has generally assumed that this parameter
is constant. Such an assumption may be unrealistic in settings where it is evident that the
nature of the self-similarity changes as the phenomenon evolves. For such applications, the
scaling exponent must be allowed to vary as a function of time, and a procedure must be
available which provides a statistical characterization of this progression. In what follows,
we propose and describe such a procedure. Our method uses wavelets to construct local
estimates of time-varying scaling exponents for locally self-similar processes. We establish a
consistency result for these estimates. We investigate the effectiveness of our procedure in a
simulation study, and demonstrate its applicability in the analyses of a hydrological and a

geophysical time series, each of which exhibit locally self-similar behavior.
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1. Introduction

A self-similar process is loosely defined as a stochastic process which generates a sample
path that retains the same general appearance regardless of the distance from which it is
observed. Self-similarity is a pervasive characteristic in naturally occurring phenomena. As a
result, self-similar processes have been used to successfully model data arising in a variety of
different scientific fields, including hydrology, geophysics, medicine, genetics, and economics.
Recent applications include Buldyrev et al. (1993), Ossadnik et al. (1994), Percival and
Guttorp (1994), and Peng et al. (1992, 1995a, 1995b).

Self-similar processes were introduced to statisticians through the work of B. B. Man-
delbrot (Mandelbrot and van Ness, 1968; Mandelbrot and Wallis, 1968, 1969). A stochastic
process Y (t) is formally defined as self-similar if £(Y (ct)) = L(c" Y (t)) for ¢ > 0, where
L denotes the finite joint distribution of Y'(#). The constant H, called the self-similarity
parameter or scaling exponent, dictates the nature of the self-similarity.

In most applications, it is assumed that Y (¢) has finite second moments, and that its
associated increment process X () = Y (t) —Y (¢ —1) is stationary. Under these assumptions,
H may be taken to lie over the interval (0, 1), and the value of H may be used in describing
the autocorrelation structure of the increment process (see Beran, 1994, pp. 52-53). For
H € (1/2,1), X (t) is characterized by serial correlations which decay slowly, and therefore
exhibits long-range dependence or long memory. For H € (0,1/2), X (¢) is characterized
by serial correlations which decay rapidly and sum to zero. Such a process often exhibits
sample paths where high and low values tend to consecutively alternate, a property known
as anti-dependence or anti-persistence. For H = 1/2, X (¢) is serially uncorrelated. The
estimation of H as a constant has been extensively studied, predominantly in the context of
long memory where it is assumed that H € (1/2,1). Relevant references include Geweke and
Porter-Hudak (1983), Taylor and Taylor (1991), Constantine and Hall (1994), Chen et al.
(1995), Robinson (1995), Abry and Sellan (1996), Comte (1996), McCoy and Walden (1996),
Hall et al. (1997), Kent and Wood (1997), and Jensen (1998).

In certain modeling applications, treating the self-similarity parameter H as a constant

seems justifiable. Yet for many phenomena which exhibit self-similar behavior, the nature of



the self-similarity changes as the phenomenon evolves. To sufficiently model such data, the
parameter H must be allowed to vary as a function of time. Gongalves and Flandrin (1993)
and Flandrin and Gongalves (1994) propose a class of processes which are locally self-similar
with time-dependent scaling exponents and discuss their applications. For such processes, the
local scaling exponent function H(t) conveys important, even decisive, information regarding
the behavior of the process. It is therefore desirable to develop a procedure for estimating
H(t). In what follows, we propose, describe, and investigate such a procedure.

Techniques for estimating a constant self-similarity parameter H are often founded on
log-linear regression (e.g., Geweke and Porter-Hudak, 1983; Taylor and Taylor, 1991; Con-
stantine and Hall, 1994). Such methods take advantage of an approximate log-linear rela-
tionship between either the spectrum of X (¢) or the variogram of Y (¢) and the time index
t, employing least-squares regression to obtain the estimate of H. With a locally self-similar
process Y (t), H(t) is a function of ¢, and as a result, the associated increment process X (t)
is non-stationary. To estimate H(t) locally, we exploit an approximate local log-linear re-
lationship between the square of the wavelet transformation of Y (¢) and the scale for the
transformation. Local least-squares regression is used to obtain the estimate of H(t). The
basic procedure, inspired by an illustration presented in Daubechies (1992, pp. 301-303) for
estimating the Holderian exponent, can be viewed as an extension of previously proposed
log-linear regression methods for the estimation of constant H. The wavelet transformation
is used in place of the spectrum or variogram to accommodate the time-varying dynamics
in Y(¢) induced by changes in H(t). Our reliance on wavelets is motivated by the computa-
tional efficiency of the discrete wavelet transformation as well as the successful application
of wavelets in problems dealing with both non-stationarity and self-similarity (Farge et al.
1993; Hwang and Mallat, 1994).

Our exposition is organized as follows. Section 2 defines and briefly discusses locally
self-similar processes. Section 3 develops the estimation algorithm for H(t¢), and provides
an accompanying consistency result which is established in the Appendix. Section 4 dis-
cusses technical aspects regarding the implementation of the estimation algorithm, presents
simulations designed to check the effectiveness of the procedure, and features two practical

applications.



2. Locally self-similar processes
Let Y'(¢) represent a mean-zero stochastic process with covariance function
Y (ur,ug) = Cov{Y (¢t + uy), Y (t + usz)}.
The process Y () is said to be locally self-similar if
Si(u, ug) = $4(0,0) — C () |uy — uo|> TP {1 4+ 0(1)}, as |us| + |ug| — 0, (2.1)

where C'(t) is a non-negative function of ¢, and H(t) represents the local scaling exponent
function (or scaling function for short).

Let X (¢t) =Y (t)—Y (t—1) denote the increment process of Y (), with covariance function
Uy (uy, ug) = Cov{X (t + uy), X(t + ua)}.

The Wigner-Ville distribution of X (¢), which functions as a local version of the power spec-

trum, is defined as
1 .
) = o [ Wilr/2, =7 /2) e P dr.
™

It can be shown that
£ = K@) AN 2E0 1 £ 0(1)}, as A — 0, (2.2)

where K (t) is a non-negative function of t. When H(t) € (1/2,1), (2.2) implies that f;()\) is
unbounded at A = 0. This spectral characteristic is indicative of long-range dependence.

If the increment process X () is stationary, f;(\) is independent of ¢ and reduces to the
ordinary power spectrum of X (¢). In this instance, K(t) and H(t) are constant, and (2.2)
becomes

fO) =KX 2 {14+ 0(1)}, asA—0. (2.3)

Estimation of constant H in (2.3) has been considered by many authors, mostly in the
context of long-memory time series where H € (1/2,1).
We now present and discuss examples of processes which exhibit locally self-similar be-

havior. First, consider the process defined for real ¢ > 0 by the stochastic integral

Y(t) = / ' {(t —w)O V2 — (—u)TO12) 4B (u) + /0 = w)TO 2 4B w),  (2.4)

—00
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where B(t) is standard Brownian motion, and H(t) € (0, 1) represents the scaling function.
This process is an extension of fractional Brownian motion, FBM, which allows for the self-
similarity parameter to vary over time. For this reason, the process is called generalized
fractional Brownian motion, GFBM.

A simple, explicit form for the covariance function of Y'(¢) can be derived without placing
any conditions on H(t) (see Wang, 1999). For smooth H (t), the covariance function satisfies
(2.1), which establishes that Y'(¢) is locally self-similar.

The increment process of FBM, called fractional Gaussian noise, is stationary with a
spectrum which satisfies (2.3). The increment process of GFBM is non-stationary (unless
H (t) is constant) with a spectrum which satisfies (2.2). GFBM relaxes many homogeneous
restrictions of FBM, and may therefore be used to model complicated natural phenomena
(e.g., Mandelbrot, 1983; Gongalves and Flandrin, 1993; Flandrin and Gongalves, 1994; Wang,
1997, 1999).

Next, consider the process defined for non-negative integer ¢ as
®(B)(1 - B)"O712X (1) = ©(B)e(1), (2.5)

where B is a backshift operator defined by BX (t) = X (t—1), ®(B) and ©(B) are polynomials
in B having characteristic roots outside the unit circle, €(¢) is Gaussian white noise, and
H(t) € (0,1) represents the scaling function. This process is an extension of a fractional
autoregressive integrated moving-average or ARFIMA process which again allows for the self-
similarity parameter to evolve over time. We refer to this process as a generalized ARFIMA
or GARFIMA process.

An ARFIMA process is stationary with a spectrum which satisfies (2.3). A GARFIMA
process is non-stationary (unless H(t) is constant) with a spectrum which satisfies (2.2). It
can be shown that the normalized partial sums of an ARFIMA process have the same limiting
distribution as a globally self-similar process (see Beran, 1994, pp. 48-50). Analogously, it
can be shown that the normalized partial sums of a GARFIMA process have the same limiting
distribution as a locally self-similar process, i.e., a process having a covariance function which
satisfies (2.1). Thus, an ARFIMA process can be regarded as the increment process for a

globally self-similar process, and a GARFIMA process can be regarded as the increment
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process for a locally self-similar process.

ARFIMA processes have been extensively studied in the context of long-memory time
series (see Beran, 1994). GARFIMA processes have even greater potential for widespread
applicability, since they provide for the modeling of non-stationary time series which exhibit
irregular patterns of roughness or variability.

A special case of (2.5) is defined by
(1 — B)IO-12X (1) = e(1). (2.6)

We refer to such a process as generalized fractionally integrated noise, GFIN, since it repre-

sents an extension of fractionally integrated noise, FIN.
3. Estimation of the self-similarity index via the wavelet transformation

We now develop the procedure used to estimate the scaling function H ().
Let ¢ denote the Daubechies mother wavelet, and let TY (a,t) denote the wavelet trans-
formation of the locally self-similar process Y (¢) corresponding to the scale a and the location

t. We can write

TY (a,t) = a /2 /w (u

_t> Y (u) du = a*/? /w(x)Y(t—i—ax) dx. (3.1)

Using (3.1), (2.1), and the first vanishing moment of v, we obtain

E(TY(@tf) = o (“_t> y (”;t) B{Y (u) Y (0)} du dv

_ //w Y E{Y(t+az)Y(t+ay)}dedy
_ //1/) y) Siax, ay)dedy
~ //¢ {2(0,0) = C(t) [ax — ayP"®} da dy
= O a1+2H(), as a — 0, (3.2)
where
c(t) [ [lo=yP () w(y) dvdy.
Now let

yi(a) =log (ITY (a, 1)) ,
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Cy = E[log {ITY (a,)/ B (ITY (0, 0))}].
and
e(a) = log {|TY(a, t)|2/E (ITY(a, t)|2)} — Cy.
Then clearly,
w(a) = Co +1og {E (ITY (a,)) } +21(a) (33)

Note that (3.2) and (3.3) imply the approximate regression model
yi(a) = c+{2H(t) + 1} log a + £(a), for small scale a, (3.4)

where ¢ = log C'} + (5. This, in turn, suggests that we use the method of least squares
to estimate H(t). The general procedure is outlined as follows. More specific details are
provided in Subsection 4.1.

First, we select a sequence of small scales a; > -+ > ay, say a; = 277 where j = 1,..., k.
Next, we set z; = log a; and y; = y(a;) for each j. Finally, treating (z;,y;), 7 = 1,---,k,
as a set of bivariate data, we evaluate the least-squares estimate of H(¢) in (3.4) via

pon 2z —2) (yi—y)
H(t) = { L 1} /2, (3.5)

where 7 =Y x;/k, §y = > y;/k.

In the Appendix, we establish the following consistency result for the estimator H (t).

Theorem. Suppose that Y(t) is Gaussian with a covariance function which satisfies (2.1).

Then as k — oo, H(t) converges in probability to H(t).

As mentioned in the introduction, if a globally self-similar process Y (¢) has stationary
increments and finite second moments, H may be taken to lie over the interval (0, 1), since
values of H outside of this range lead to processes which are not of practical interest. How-
ever, in applying our estimation procedure for H(t) to real data, estimates of H(t) which
are either negative or exceed 1 will occasionally occur. Such estimates may arise for a va-
riety of reasons. For instance, if the procedure is applied to the first difference of a locally
self-similar process, estimates of H(t) between —1 and 0 generally result; if the procedure

is applied to the partial sums of a locally self-similar process, estimates of H(t) between +1
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and +2 generally result. Thus, estimates of H(t) outside the interval (0,1) may imply that
the underlying series (or subseries) must be suitably differenced or accumulated in order
to obtain a series which can be regarded as locally self-similar with locally stationary incre-
ments and finite second moments. Of course, such estimates may also occur if the underlying
series (or subseries) reflects the dynamics of a process which lies outside the realm of locally
self-similar processes. This issue, however, is beyond the scope of the present paper.

In the next section, we discuss the implementation of our estimation procedure and
investigate its effectiveness in a simulation study. We also use our procedure to characterize

H(t) for two real time series which exhibit locally self-similar behavior.

4. Simulations and applications

4.1. Algorithm description

In practice, we generally observe a process Y (¢) at discrete, equally-spaced time points. For
convenience, we will assume that the time points are scaled to lie over the interval [0,1),
and that the sample size is a power of 2: say, t; = (i — 1)/n, where i = 1,...,n = 27. The
resulting data are analyzed via the discrete wavelet transformation, a discretized version
of the continuous wavelet transformation used in the development of the methodology of
Section 3.

Let the vector Y = [Y(¢1),...,Y(t,)]" represent a sample of n measurements on Y'(¢).
The discrete wavelet transformation of Y can be written in the form WY, where W is an
n x n orthogonal matrix which depends on both the wavelet and the boundary adjustment
(Cohen et al. 1993; Daubechies, 1994). Fast algorithms with complexity of order n are
available for performing both the transformation and the inversion of the transformation
which results in the reconstruction of the original data.

To label the n = 27 coefficients of the transformation, we index n — 1 of the coefficients
dyadically:

yir, k=0,...,27 -1, j=0,...,J—1.

We then label the remaining coefficient y_; . The coefficient y; . is referred to as the discrete

wavelet transformation of Y at level j and location k277. For k = 0,...,2/ — 1 and j =



0,...,J — 1, the quantity y;; can be viewed as an approximation to TV (277,k277), the
continuous wavelet transformation 7Y (a, t) evaluated at scale a = 277 and location t = k27
(Donoho and Johnstone, 1994).

In what follows, we discuss technical aspects of the algorithm used in our simulations
and applications to estimate H(t).

We partition the sampling interval [0,1) into 2! nonoverlapping subintervals of equal
length, where [ is an integer chosen such that 0 <[ < (J —1). The 2! subintervals are of the
form

Ly =[(m—-1)27"\m27"); m=1,...,2"

For each I,,, m = 1,...,2', an estimate H(t) is constructed. One may envision each H(t) as
estimating the average value of the scaling function H(t) over the corresponding subinterval
I,,,. The appropriate time index for the I:I(t) associated with I,,, might be regarded as the
midpoint of I,,, namely 27"1(2m — 1).

For a given I,,, we compute H (t) by pooling together values of y;, where the level j is
“large,” say no less than some positive integer J' (J' < (J — 1)), and where the location
k277 is within the subinterval I,,,. For each m =1, ..., 2", we define the bivariate collections

of data
(Xom, V) = [{log (277) Jog (yju®)} | k27 €Ly 0< k<2 =1, J <j<(J-1)].

We then fit a least-squares line to (X,,, Y;,), treating the X, as the regressor measurements
and the Y,, as the response measurements. The estimate I:I(t) is found by adjusting the
estimate of the slope in the least-squares fit by first subtracting 1 and then dividing by 2, as
indicated in (3.5).

As a final, optional stage in our procedure, we construct a curve from the collection
of estimates I:I(t) by employing local polynomial smoothing. This curve then serves to
approximate the shape of the scaling function H (t).

For applications where the sample size is not a power of two, we augment the data in
order to achieve such a sample size, and we adjust the results accordingly. (See Subsection

4.3 for an example.) In the discrete wavelet transformation, we use the least asymmetric



wavelet with the symmetric boundary condition and 8 vanishing moments (see Daubechies,

1992).
4.2. Simulations

We test the performance of our algorithm in six simulation sets based on the GFBM
process (2.4) and the partial sums of the GFIN process (2.6). We employ three different
specifications of the scaling function H(t). We simulate the processes so that the time index
t is confined to the interval [0,1).

To simulate realizations of the GFBM process (2.4), consider setting

Bn(ti)ziie(tk); t; = (i_l); i=1,...,m (4.1)

ny2

where the €(t;) are variates of a Gaussian white noise process. For large n, the values of
B, (t;) can be treated as realizations of Brownian motion, since the normalized partial sum
in (4.1) approximates the stochastic integral which defines such a process. The second of the
two stochastic integrals which comprise (2.4) can then be approximated by its discretized

analogue
Yoults) = SO(t — )" S"V2 (B, (1) — Bu(teer)} {B(ty) = 0}
k=1
= = (- )" e(t); i = =D
k=1

Similarly, the first of the two stochastic integrals in (2.4) can be approximated by a sum of

the form

JR— N
Vin(t) = 7N, Z {t ) =12 () 1/2}6(uk);

k (i—1) .
uk:<N>K;k:0,...,—N; t;, = cr=1,...,m;

where the €(uy) are variates of a Gaussian white noise process, and the integer N > 0 and
constant K > 0 are chosen such that (u_n,u_ni1], (U_ni1, 0 n12]y ..., (u_1,up] provides a

sufficiently fine partition of a suitably large interval (—K,0]. The sequence

L
Valt) = Viw(ts) + Van(t): ti= U=V iy

NN 1 4.2
n ) ) 15 ( )



can then be treated as realizations of the process (2.4). We remark that the contribution of
Y1 n(t;) to Y, (¢;) is negligible for the purpose at hand.
To simulate realizations of the GFIN process defined by (2.6), we use the fact that (2.6)

can be represented as an infinite moving average of the form

o0

X(tl) = Za(ti,k)e(ti,k), (43)

k=0
where the €(t;_j) are variates of a Gaussian white noise process, and the a(t;, k) are defined

by
P(k+ {H(t:) —1/2})
L(k+1)D(H(t) —1/2)
(see Beran, 1994, p. 65). (Here, I'(+) denotes the gamma function.) The infinite sum in (4.3)

a(ti, k) =

can be approximated by the finite sum

X”(tl) = ﬁf: a(tiv k)e(tifk); t; = (Z _ 1)

k=0

ci=1,...,n; (4.4)

provided that N is chosen to be a suitably large integer. The sequence (4.4) can then be
treated as realizations of the process (4.3), or equivalently, (2.6). Accordingly, for large n,

the normalized partial sums

1 7
Ya(ti) = NG > Xa(te); ti= ;i=1,...,m (4.5)
k=1

can be regarded as realizations of a self-similar process with a covariance function of the
form (2.1). These sums are therefore amenable to our algorithm.
We generate three samples of the GFBM process (2.4) and three of the GFIN process

(2.6) using the following scaling functions:

() — 0.3 t€10,0.5), (16)
0.7 t€[0.51),

Hy(t) = 0.2+0.7t, (4.7)

Hs(t) = 3(t—0.5)*40.1. (4.8)

In each instance, we consider a sample of size n = 2'2 = 4096 (J = 12).
In the estimation algorithm, we partition the sampling interval [0, 1) into 32 = 2° (I = 5)

subintervals, which results in 32 estimates of H(t) corresponding to the time indices ¢ =
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1/64,3/64,...,63/64. In pooling values of y; for each estimate, we restrict the level j to
be no less than 4 (J' = 4).

For the simulation sets based on the GFBM processes, the sample paths and the estimated
curves for H(t) are displayed in Figures 1.1(a) through 1.3(b); for the sets based on the
GFIN processes, the sample paths for the partial sums and the estimated curves for H(t)
are displayed in Figures 2.1(a) through 2.3(b). In constructing the estimated curves for the
sets involving the step function H;(t), we do not smooth over the point of discontinuity.

We note that each estimated curve effectively approximates the general shape of the
corresponding scaling function H (t). Although the curves reflect a minor amount of negative
bias in the H (t), they also reflect a relatively low degree of variability. These encouraging
results suggest that our estimation procedure should result in an effective characterization

of H(t) in large-sample settings.
4.8. Application: vertical shear measurements

Percival and Guttorp (1994) analyze a set of vertical ocean shear measurements. The
data for the measurements are collected by dropping a probe into the ocean which records
the water velocity every 0.1 meter as it descends. The “time” index is depth (in meters).
The shear measurements (in 1/seconds) are obtained by taking a first difference of the
velocity readings over 10 meter intervals, and then applying a low-pass filter to the differenced
readings.

Vertical shear measurements display characteristics typical of self-similar processes; in
particular, the increments of such a series often exhibit long-memory behavior. The data
considered by Percival and Guttorp consist of 6875 values collected from a depth of 350.0
meters down to 1037.4 meters. The authors analyze 4096 of the values (chosen from the
middle of the series) using wavelets and the Allan variance. Their justification for selecting
the central part of the sample for their analysis is that “this subseries can be regarded as a
portion of one realization of a process whose first backward difference is a stationary process”
(p. 334). In other words, this part of the sample can be regarded as a sample path of a

globally self-similar process with stationary increments.

11



We analyze the entire sample under the premise that the series can be treated as a
realization of a locally self-similar process with an autocovariance function of the form (2.1).
Our goal is to estimate the scaling function H ().

Rather than redefining the time index so that the sampling interval is [0, 1), we retain
the values of the original index (in meters). Since the size of the series is not a power of
two, we extend its length to 2'> = 8192 (J = 13) by repeating the last value in the series
1317 times. We then apply our estimation algorithm by partitioning the sampling interval
into 32 = 2° (I = 5) subintervals, which results in 32 estimates of H(¢). Only the first 27
estimates are relevant, since the remaining estimates pertain to the augmented portion of
the series. In pooling values of y;; for each estimate, we again restrict the level j to be no
less than 4 (J' = 4).

The series is plotted in Figure 3(a), and the smoothed estimated curve for H(t) in Figure
3(b). We note that the curve provides strong evidence that the self-similarity parameter H (t)
is not constant. The curve tends to vary over the range from 0.6 to 1.0, which reinforces the
notion that the increments of the series exhibit long-memory behavior. However, the shape
of the curve indicates that the nature of the long-range dependence changes considerably as
a function of depth. To model H(t) as a constant over the entire sampling interval would be
to ignore the local aspect of self-similarity which appears to characterize the series.

We note that the estimated curve for H(t) does appear fairly constant over the range of
t corresponding to the portion of the sample analyzed by Percival and Guttorp (1994). This
supports the notion that the central section of the series can be regarded as globally self-
similar with stationary increments. The remaining sections, however, exhibit depth-varying
self-similarity patterns which can only be characterized by modeling the scaling exponent as

a function of ¢ and by estimating H (t) accordingly.
4.4. Application: regional earthquake seismogram measurements

Figure 4(a) features a portion of a seismogram produced by a regional earthquake,
recorded at the Norwegian seismic array NORESS on April 13, 1992. The local magni-
tude of the earthquake was measured to be 4.4 on the Richter scale. A total of 23 = 8192

readings are displayed in the figure. The time interval between observations is .025 seconds.
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The seismogram for a regional earthquake is often divided into the P (primary) phase and
the S (secondary) phase. In Figure 4(a), the P phase roughly corresponds to the first half
of the seismogram, where the amplitude is relatively small and fairly constant. The S phase
roughly corresponds to the second half of the seismogram, where the amplitude is relatively
large and somewhat variable. For many regional earthquake seismograms (including the one
considered here), higher frequencies are more prevalent in the P phase than in the S phase.

We analyze the portion of the seismogram featured in Figure 4(a) assuming that the
series can be regarded as a realization of a locally self-similar process with an autocovariance
function of the form (2.1). Again, our goal is to estimate the scaling function H ().

Rather than redefining the time index so that the sampling interval is [0, 1), we retain the
values of the original index. We apply our estimation algorithm by partitioning the sampling
interval into 32 = 2° (I = 5) subintervals, which results in 32 estimates of H(¢). In pooling
values of y;, for each estimate, we again restrict the level j to be no less than 4 (J' = 4).

The smoothed estimated curve for H(t) is featured in Figure 4(b). The curve leads to
several interesting conclusions regarding the behavior of the seismogram. First, as the time
index increases, H(t) tends to increase from 0.2 to 1.0. As H(t) decreases from 1 to 0,
a typical sample path for a locally self-similar process will become increasingly rough and
erratic. The fact that I:I(t) is smaller for the P phase than for the S phase is consistent with
the notion that the P phase exhibits higher frequency behavior than the S phase. Second,
the [—A[(t) curve displays a local minimum which seems to correspond to the time at which the
amplitude of the seismogram dramatically increases. Finally, the H (t) curve rises rapidly
after the onset of the S phase. This indicates that the increments of the latter section of
the series exhibit long-memory behavior. Moreover, as the S phase progresses, the serial
correlation of the increments tends to increase.

Distinguishing between seismograms resulting from regional earthquakes and regional un-
derground explosions is an important problem in geophysics (see Shumway, 1982). In future
work, we hope to explore the potential application of self-similarity patterns, as summarized

by the behavior of H(t), in developing discriminants for this purpose.
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5. Conclusion

We have proposed, discussed, and investigated an algorithm for estimating the time-
varying self-similarity parameter H(t) of a locally self-similar process. Our procedure leads
to a consistent estimator of H(t) at a given time point . Our simulation results indicate
that our method provides an accurate reflection of the progression of H(t). Moreover, our
applications illustrate that our method can be used to quantify time-dependent self-similarity
patterns which arise in actual spatial and temporal series.

In implementing our method with a sample of size n, the number of resolution levels in
the discrete wavelet transformation is given by & = logn. The proof of the theorem in the

Appendix indicates that H(t) converges to H(t) at a rate of (logn)~".

The literature on
estimating a constant self-similarity parameter in the context of long-memory shows that a
constant H can be estimated with a convergence rate which is a fraction of n='/2. The frac-
tion is dictated by how rapidly the spectrum f(\) approaches KA 2 in relation (2.3). The
convergence rate for our method is therefore slower than the rate for estimating a constant
H. We are presently investigating whether this slower rate is inherent to our procedure, or
a natural consequence of estimating a self-similarity parameter which is time varying. The
latter is plausible, since the convergence rate for estimating a constant parameter is usually
much faster than that for estimating a function.

We are also investigating the asymptotic distribution of our estimator with the objective
of developing formulae for standard errors and confidence bounds. A comprehensive proce-

dure for the statistical characterization of H(t) would expand the potential applications of

locally self-similar processes in modeling complicated natural phenomena.
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Appendix

Proof of theorem in Section 3

The theorem can be easily established by proving
E{H(t)} —»H(t) and  Var{H(t)} —0. (A.1)

The result then follows by Chebyshev’s inequality.
Recall from Section 3 that the bivariate data values which lead to H (t) are denoted by
= log(277) and y; = y(277) for j = 1,...,k, where y(a) = log (|TY (a,t)|?). Thus,
[—A[(t) is based on a bivariate sample of size k. We will prove (A.1) by demonstrating that as
k — oo,

E{H®)} = H{t) + o(k™),  Var{H(t)} = O(k™). (A.2)

To ease notation, we suppress the time index ¢ in the specifications of y,(a), H(t), and H(t),
and write these objects simply as y(a), H, and ]f[, respectively.

Direct computations show that

Ekj —1)? = (log 2)* {Z] — +1)2/4}:(1og2)2k(k+1)(k—1)/12~k3, (A.3)
and

> loj =2l = (log 2) 3_1j = (k+1)/2| ~ ¥ (A.4)

7=1
By (3.2), we have as a — 0,

E(ITY (a,1)]%) = Cra>* {1 4 0(1)},
and thus
log {E (|TY(a, t)|2)} =logCy+ (2H +1) log a+o(1).
The preceding relation and (3.3) together imply

E(y;))=c+ (2H+1)z; +o(1), (A.5)
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where ¢ = log C; + C5. From (3.5) along with (A.3), (A.4), and (A.5), we obtain

Y(z;—7) E(y;—y) 1

B} = 25 (z; —1)2 2
> |z — 7|
H“(Z(acj—f)?)
= H+o(k™).

This establishes the first result of (A.2). We now derive the second result.

In what follows, we use K to denote constants which may depend on ¢ but not on the
scales a, and which may vary in definition from one usage to the next. Utilizing (3.1), the
covariance property (2.1), and the first vanishing moment of the Daubechies wavelet ¢, we

have

Cov{TY (ai,t),TY (as,t)}

:ﬁ//”’(u;t%”(vaj

) E{Y (1) Y(v)} du dv

— (a1 as)"/? //zp W) E{Y(t+a12) Y (t +asy)} de dy

(a1 ay 1/2//1? y) Xi(a x, a0 y) de dy

(a1 az)*/? //1/) Et 0,0) — C(t) lay x — ay y|2H] dx dy
= —C(t) (a1 az) 1/2 //w Yy) a1 — agy|* " dx dy

= —C(t) 2 1/2//1/)u+ya2/a1) () [ul?™ dudy, as ar,as — 0. (A.6)

For the Daubechies wavelet ¢ with M vanishing moments, we take an M"-order expansion

of ¥(u+ yas/ay) about u to establish that as (az/a;) — 0,
V(u+yaz/a) = (u) + y¢'(u)(az/ar) + ...+ (1/ M)y (u) (az/a1) " {1 + 0(1)}.
This expansion allows us to show
[ [ v+ yarfa) i) [l dudy ~ K(azfar),  as (a2far) 0.
Using the preceding in (A.6), we see that as ay,as — 0 with (ag/a;) — 0,
Cov{TY (a1, t), TY (as,t)} ~ K a>" 2 4}/ (ay/ar)™
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This result implies that for small a1, as chosen such that as < a4,
|Corr{TY (ay,t),TY (as,t)}| < K (ag/al)M*H. (A.7)

Now for a bivariate normal pair of random variables (W, Z) with E(W) = E(Z) =0, it
can be shown that

|Corr{log(W?),log(Z?)}| < [Corr(W, Z)]”.
It therefore follows from (A.7) that for small ay < ay,
|Corr{y(a1), y(az)}| < [Corr{TY (ay,t),TY (as,t)}]* < K (az/ay)?>M21. (A.8)

Furthermore, if W is normal with variance o2, the variance of log(TW?) does not depend on
o2, as can be seen by writing log(W?) = log{(W/o)?} + log 0. Utilizing this fact along with

(A.8), we have that for small ay < ay,
[Cov{y(ar),ylaz)}| < K (ag/ar)*M 21,
From the preceding, we have
|Cov(yi, y;)| < K 20791 GH=2M), (A.9)
With (A.9), we can write

| sz z; Cov(yi,y5)] < K Z” oli—jl (2 H—2 M)

ij ij
S KZZ]2(]—1)(2H—2M)
i<j
k [ ) k ' ‘|
— KZ ;9—i(2H-2M) Zj2](2H—2M)
% |
k
< KN [i2mi@H=2M) [ 9i(2 H=2M)
> | fizen-sin)
k
= KY i
i=1
~ k. (A.10)
Similarly, we can show
B> 2 Covlysyy)| ~ K (@) 3 Covlyi )| ~ k. (A.11)
i ij
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By (A.10) and (A.11), we have
Y (wi =) (w5 — ) Cov(ys,y;) = Y wiw; Cov(ys,ys) — Y (i + x5) Cov(yi, ys)

+(2)* Y Cov(yi,yy)

ij

ij
~ K
Finally, using the preceding along with (3.5) and (A.3), we have

- Eij(xi — ) (z; — &) Cov(y;, y;) -3
Var(H) = T =7 ~kC.

Kl
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Figure Captions

Figure 1.1(a). Sample path of GEFBM process with scaling function H;(t) (n = 4096).

Figure 1.1(b). Smoothed estimates for H,(t) for GFBM sample path in Figure 1.1(a).

(
(
Figure 1.2(a).
(
(
(

)

)

). Sample path of GFBM process with scaling function Hy(t) (n = 4096).
Figure 1.2(b). Smoothed estimates for Hy(t) for GFBM sample path in Figure 1.2(a).

)

)

)

Figure 1.3(a). Sample path of GFBM process with scaling function Hj(t) (n = 4096).

Figure 1.3(b). Smoothed estimates for Hs(t) for GFBM sample path in Figure 1.3(b).

Figure 2.1(a
(n = 4096).

. Partial sums for sample path of GFIN process with scaling function H,(¢)

Figure 2.1(b). Smoothed estimates for H;(t) for GFIN sample path in Figure 2.1(a).

Figure 2.2(a). Partial sums for sample path of GFIN process with scaling function Hy(t)
(n = 4096).

Figure 2.2(b). Smoothed estimates for Hy(t) for GFIN sample path in Figure 2.2(a).

Figure 2.3(a). Partial sums for sample path of GFIN process with scaling function Hj(t)
(n = 4096).

Figure 2.3(b). Smoothed estimates for H;(t) for GFIN sample path in Figure 2.3(b).

Vertical shear series (n = 6875).

(a).
Figure 3(b). Smoothed estimates of H(t) for vertical shear series in Figure 3(a).
(a). Earthquake series (n = 8192).

(b)-

b). Smoothed estimates of H(t) for earthquake series in Figure 4(a).
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