A Regression Model Selection Criterion
Based on Bootstrap Bumping
for Use With Resistant Fitting

by Andrew A. Neath' and Joseph E. Cavanaugh?

T Department of Mathematics and Statistics ! Department of Statistics
P.O. Box 1653 222 Math Sciences Building
Southern Illinois University University of Missouri
Edwardsville, IL 62026 Columbia, MO 65211
E-mail: aneath@siue.edu E-mail: cavanaugh@stat.missouri.edu
Phone: (618) 692-3590 Phone: (573) 882-4491
Fax: (618) 692-3147 Fax: (573) 884-5524
Abstract

We propose a model selection criterion for regression applications where resistant fitting
is appropriate. Our criterion gauges the adequacy of a fitted model based on the median
squared error of prediction. The criterion is easily computed using the bootstrap “bumping”
algorithm of Tibshirani and Knight (1999), which provides a convenient method for obtaining
least median of squares model parameter estimates. We present an example to illustrate the
merit of the criterion in instances where the underlying data set contains influential values.
Additionally, we present and discuss the results of a simulation study which illustrates the

effectiveness of the criterion under a wide range of error distributions.
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1. Introduction

It is well known that the least squares estimators of regression coefficients are not robust
to the influence of individual data points. The study of influential observations has led to
variations of the classical normal-error linear model and to the development of alternative
“resistant” estimation techniques. Staudte and Sheather (1990) provide an overview.

A companion to the problem of parameter estimation is the problem of model selection,
which consists of choosing an appropriate model from a class of candidate models to char-
acterize the data at hand. Such a determination is often facilitated by the use of a model
selection criterion. A selection criterion is frequently designed to estimate an expected overall
discrepancy, a quantity which reflects the degree of similarity between a fitted approximating
model and the operating or “true” model. Various selection criteria have been proposed to
target various types of discrepancies. In a modeling problem, a discrepancy should ideally
be chosen to evaluate a fitted model based on a principle which is relevant to the application
of interest (cf. Linhart and Zucchini, 1986, p. 16). For settings in which resistant fitting is
appropriate, we consider a discrepancy which assesses the propriety of a fitted model utilizing
the median squared error of prediction. We then propose a model selection criterion which
targets this discrepancy. The computation of our criterion employs the bootstrap “bumping”
algorithm of Tibshirani and Knight (1999), which provides a convenient procedure for fitting
a model based on the least median of squares principle.

Section 2 is devoted to a development of the criterion. In Section 3, we provide an example
to illustrate how an improper model may be chosen when the selection procedure does not
account for influential observations. We close in Section 4 by presenting and discussing the
results of a simulation study which illustrates the effectiveness of the new criterion under a

wide range of error distributions.

2. Criterion Development

Assume we observe data {(x;,%1),. .., (X,,Yn)}, where the (x;,y;) are independent and
identically distributed according to some unknown distribution F'. Suppose that each x; is

a vector of explanatory variables, and each y; is a scalar response.



Assume that the relationship between y; and x, is hypothesized to be of the form
yi=h(x;0) +e; i=1,.,m (2.1)

where § € © is a parameter vector, h(x; ) is a prediction/response function based on x and
6, and the ¢; are zero mean, independent, identically distributed, and independent of the x;.

The number of parameters in # which must be estimated determines the dimension of
the model. In the classical linear regression model where h(x;#) is linear in g, explanatory
variables in x are included in the model by estimating the corresponding components of §, and
excluded from the model by fixing the corresponding components of # at zero. The dimension
of the model, therefore, corresponds to the number of explanatory variables retained (plus
one if an intercept is used). Loosely speaking, our goal is to determine which parameters
in @ must be estimated in order for h(x;é) to serve as a “good” predictor of y. We wish
to make this determination using a method which will not be unduly affected by influential
values in the underlying data set. To accomplish our objective, we propose a model selection
criterion which gauges the adequacy of the fitted model utilizing the median squared error
of prediction.

Before we introduce our selection criterion, we present a brief discussion of model selection
criteria based on discrepancies. Our terminology and much of our notation follows that of
Linhart and Zucchini (1986).

Let F' denote the distribution function which presumably generated the data at hand,
and let G denote a distribution function which serves as an approximation to F. Assume
that F' and G both belong to a class of distribution functions M. We will refer to F' as
the operating or “true” model and to G as an approxrimating model. We assume that F' is
unknown.

A discrepancy function is a mapping from M x M to R which has the property A(G, F') >
A(F,F). The purpose of a discrepancy function is to quantify the similarity between two
models: thus, A(G, F') should increase as the disparity between G and F' increases. It is
generally assumed that the approximating model G is parametric, in which case we may

write G as Gy, 0 € ©, and use A(f) = A(Gy, F) to denote the discrepancy.



Although A(#) depends on F' and is therefore unknown, a natural estimator of A() is
provided by the empirical discrepancy A(Q) = A(Gy, ﬁ), where F' is the empirical distri-
bution function. A minimum discrepancy estimator of € is defined by 0 = argming A(Q)

~

The overall discrepancy, A(0) = A(Gy, IF) assesses how well the fitted approximating

lo_a
model G§ conforms to the true model F. A model selection criterion is often formulated
by Constriucting a statistic which agrees with A(é) in expectation (at least approximately).
Such a criterion can therefore be regarded as an estimator of the expected overall discrep-
ancy Ep[A(0)] (cf. Linhart and Zucchini, 1986, p. 13). As the subsequent discussion will

indicate, the natural estimator of Ex[A(6)], namely A(f) = A(Gg,ﬁ’) is negatively

(0)] lo_g°
biased. This bias must be corrected if A(f) is to serve as the basis for a model selection
criterion targeting Ep[A(8)].

The choice of a discrepancy function for model selection involves a consideration of those
properties of a fitted model which are important to the application of interest. Our objective
is to develop a criterion for choosing the appropriate form of the prediction/response function
h, and to have this determination be resistant to influential values. Thus, the criterion
should perform well in settings where the error distribution has thicker tails than the normal
distribution. Moreover, to permit the criterion to be broadly applicable, its development
should not depend upon a specific error distribution.

For normally distributed errors, a useful discrepancy function is the Gauss discrepancy,

based on the mean squared error of prediction:
AC(Q) = Erl(y — h(x:0))°]! (2.2)

A robust alternative to this discrepancy function might be based on the median squared

error of prediction:

AMP () = medianp[(y — h(x; 0))?). (2.3)

The empirical discrepancy corresponding to (2.3) is given by

AMP(9) = median{(y; — h(x;;0))%i=1,...,n}. (2.4)

!The approximating model G is defined through the prediction/response function h. A more complete

notation for h would therefore be hg. For simplicity, we omit the subscript G on h.



Thus, the minimum discrepancy estimator of # associated with AP is the least median of
squares estimator (Rousseeuw, 1984).

Estimators of an expected overall discrepancy, F F[A(é)], may be developed using, among
other methods, asymptotics, cross-validation, and bootstrapping. Linhart and Zucchini
(1986) give a general outline. For the estimation of Ex[AMP(0)], we propose a statistic
which is based on AMD@) This statistic can be conveniently evaluated utilizing the boot-
strap “bumping” algorithm of Tibshirani and Knight (1999), and involves a bootstrap-based
bias adjustment recommended by Efron (1983, 1986). We will discuss the implementation
of the bootstrap-based bias adjustment for estimating an arbitrary expected discrepancy
Ep[A(f)]. We will then explain how the adjustment can be used along with bootstrap
bumping to obtain an estimate of Epx[AMP(8)].

Consider writing Ex[A(8)] as follows:

Er[A@©Q)] = Er[A@)] + {Er[A@) - A@)]}- (2.5)
Efron (1983, 1986) refers to the bracketed quantity in (2.5) as the expected optimism in
judging the fit of a model using the same data as that which was used to construct the fit.
It can easily be argued that this quantity is positive, which implies that A(é) serves as a
negatively biased estimator of the expected discrepancy Ex[A(6)]. In order to correct for
this bias, we must estimate the bracketed term. An effective and simple approach involves
bootstrapping.

Let A*(Q) be the empirical discrepancy corresponding to a bootstrap sample, and let 0"
be the corresponding bootstrap estimator: 0 = argming A*(Q) Assume that a sequence
of B bootstrap samples are obtained, resulting in a sequence of empirical discrepancies
A%(8),...,A%(0) and corresponding estimates 6, ,...,0,. The bootstrap analogue of the
bracketed term in (2.5) is

B [A@7) - A",
which can be estimated by
—_ 1 B ~ o~ ~ ok
bias = = 3 [A@©,) - A;(0,)].- (2.6)
b=1



Since A(0) serves as an unbiased estimator of Ex[A(6)] in (2.5), an approximately unbiased

A~

estimator of the expected discrepancy Er[A(f)] is given by

Er[A(0)) = A(B) + bias. (2.7)

The estimator (2.7) can be constructed in any modeling framework conducive to boot-
strapping, provided that the empirical discrepancy A(Q) and the corresponding minimum
discrepancy estimator 0 can be conveniently evaluated. In the regression setting where the
discrepancy function is AP, the minimum discrepancy estimator is the least median of
squares estimator (LMSE). The computation of é, therefore, is not a trivial task. A discus-
sion of some proposed algorithms for computing either the exact LMSE or an approximation
can be found in Ryan (1997). A recently proposed method involves treating the minimization
as an integer programming problem and applying techniques familiar in operations research
(Neath and Sewell, 2000). The approach we use here is based on the bootstrap bumping
algorithm (Tibshirani and Knight, 1999). The basic procedure involves taking repeated boot-
strap samples, calculating the least squares estimate each time. The least squares estimate
from this collection which minimizes the least median of squares condition with respect to
the original data is taken as the LMSE. Intuitively, outliers in the original sample will by
chance be excluded from some of the bootstrap samples; the least squares estimate for one
of these samples should be close to the actual LMSE. Theoretical details are provided in
Tibshirani and Knight (1999).

We now outline the computation of our criterion via (2.7) and bootstrap bumping. Let
{(x15. 9t p)s---» (54 y5 )} be the b bootstrap sample selected from F,whereb=1,...,B.
Let éb* be the corresponding least squares estimator. Among Q~1*, e é;, find

0 = argminéb* [median{(yi — h(x;0,)%i=1,... ,n}] .
This é will function as the effective LMSE of 8. Use é in evaluating the empirical discrepancy
AMP(G) via (2.4).
To compute the bias adjustment (2.6), for each b=1,..., B, find

—— MD ~k

bias, = median{(y; — h(x;;0,))%i=1,...,n} — median{(y;, — h(x};;6,))%i=1,...,n}.
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Here, éz represents the effective LMSE of # based on the b"® bootstrap sample, which is
computed from the bootstrap sample in the same manner that 0 is computed from the
original sample. Next, evaluate bias = = (1/B) T2, b/igsl,:m. The criterion resulting from

(2.7), which we denote as LMS, is given by

LMS = A(§) + bias .
In practice, we consider a set of candidate models My, My, ..., M}, of the form (2.1),
where each Mj, is uniquely determined by the parameter vector zf € O(K) C O. The fitted
model M, for which LMS is minimized will ideally correspond to the fitted model for which

~

Er[AMP(¢8)] is minimized. Among the fitted candidates, this model is preferred, since it is

based on a predictor h(x;f) which tends to minimize the median squared error of prediction

for data (x,y) generated under F.

3. An Example

We present an example to illustrate the application of the LMS criterion. We compare the
performance of the criterion to an analogous bootstrap-based criterion which is developed
assuming normally distributed errors.

We consider candidate models of the form (2.1) where h(x; ) is linear in 6. For the
explanatory variables in our models, we consider a continuous regressor x, and a binary
categorical variable which we will treat with the indicator I. (I = 1 if an observation is from

group 1; I = 0 if an observation is from group 2.) The candidate models are as follows:

My - Yy = ap+e€

M - y = apt+al+e

M : y = ag+al+pnx+e

Ms - y = ap+arl + Bz + Pur’ +e

M, : y = ag+od+ fux+ Poxl +¢

M : y = g+ oql 4 x4 Pzl + funa’ + Paz’l 4 ¢



The values for the explanatory variables are taken from the second and fourth columns
of Table 9.2, Linhart and Zucchini (1986, p. 167). The values for x have been centered by
subtracting off the overall mean. The values for the response variable are generated from
the operating model

y =977 — 2z + 12l +0.012% + ¢,

where € is distributed as a mixture of normals, 0.7 N(0,5%) + 0.3 N(0,50%); i.e.,
§ N(0,5%) + (1 — ) N(0,50%) with P(§ = 1) = 0.7 and P(6 = 0) = 0.3.

A listing of the data is provided in Table 1, and a plot of the true prediction curves is featured
in Figure 1.

The operating model is a special case of the candidate model Mj5, the latter which allows
groups 1 and 2 to have entirely separate quadratic response functions. We therefore regard
Ms; as the most appropriate model, even though it includes an interaction term between z?
and the indicator I which is absent in the operating model.

We compare the performance of the LMS criterion to a bootstrap-based criterion which

targets the Kullback-Leibler discrepancy and assumes normally distributed errors. Define
A"(0) = Ep[-21ngy(x,y)]

where

99(x,9) = \/% exp {—M} gx(x).

The minimum discrepancy estimator of @ associated with A®" is the maximum likelihood
estimator, or equivalently, the least squares estimator. Following the procedure in Section 2
for obtaining (2.7), we can develop a bootstrap-based estimator of Ep[AX“(9)], resulting
in a selection criterion appropriate under the normal-error assumption. We will refer to
this criterion as KL. (For further consideration of this criterion, see Ishiguro, Morita, and
Ishiguro, 1991; Cavanaugh and Shumway, 1997; and Shibata, 1997.)

In computing the criterion scores for each of the fitted candidate models, and in obtaining

the least median of squares estimates via bootstrap bumping, 200 bootstrap samples are used.

The scores obtained are as follows:



Model M() M1 M2 M3 M4 M5
KL  9.595 9.648 8.444 8.354 8.610 8.805
LMS 1649 1880 76 104 135 25

The KL criterion is unable to detect the most adequate model amidst the presence of
influential values which result from using the mixture distribution to generate the errors.
The criterion picks the underfitted model Mj, while the LMS criterion appropriately chooses
the full model Ms.

Scatterplots with the estimated prediction curves are displayed in Figures 2 and 3. The
model selected by the KL criterion, fit using least squares, is overly influenced by certain
data points and represents a very poor fit. The parallel response curves featured in Figure 2
do not resemble the true curves in Figure 1; predictions for y based on these curves would
be highly inaccurate. On the other hand, the model selected by the LMS criterion, fit using
least median of squares, is resistant to the influential values and represents a very good fit.
The response curves featured in Figure 3 are quite similar to the true curves in Figure 1.

Clearly, one cannot make generalizations regarding the behavior of the LMS criterion
based upon a single example. However, our outcome suggests that in outlier-prone settings,
the LMS criterion may be more likely than a non-robust competitor to select an adequate

candidate model. This notion is further explored in the next section.

4. Simulation Results

We examine the performance of the LMS criterion against other selection criteria in a
simulation study. Some of these criteria are bootstrap-based, while some are more compu-
tationally simplistic. Some are designed to be resistant, while some are developed assuming
normally distributed errors.

Included as a competitor to the LMS criterion will be the KL criterion considered in the
previous section. We shall also include a bootstrap-based criterion which targets the Gauss
discrepancy (2.2). The minimum discrepancy estimator of § associated with A€ is the least

squares estimator. Again, we develop the bootstrap-based estimator of Er[A%(#)] following

the procedure for obtaining (2.7). We denote this criterion by G.
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Asymptotic estimators of expected discrepancies have the advantage of being compu-

tationally very simple. We include in our study an asymptotic estimator of the expected

~

Kullback-Leibler discrepancy Er[AX"(#)], which is the well-known Akaike (1973, 1974) in-
formation criterion (AIC). (A small-sample variant of AIC for use in regression applications

is investigated by Hurvich and Tsai, 1989.) We also include an estimator of the expected

~

Gauss discrepancy Er[A%(0)], which is often called the Sp criterion (see Linhart and Zuc-
chini, 1986, pp. 112-115). For a candidate model of the form (2.1), let p denote the model

~

dimension, and let 6% = (1/n) X", (y;—h(x;;6))?. AIC and Sp can then be defined as follows:

AIC = () + 22, (4.1)
n
~2

Sp = no (4.2)

(n=p)(n—p-1)

The criteria KL, G, AIC, and Sp are derived in the setting of normally distributed
errors, and are therefore not resistant. We consider an additional bootstrap-based criterion
which targets a version of the Kullback-Leibler discrepancy which assumes that the errors
are distributed as double exponential. Such a criterion should be reasonably robust to the

presence of influential values. Let
AMEH() = Ep[=21ngy(x, y)]

where

9(5,9) = 55exb { =1y — h(x: )]} ox().

Y 202
The minimum discrepancy estimator of § associated with A™*" is the least absolute devia-
tions estimator, i.e., the estimator which minimizes >" | |y; — h(x;; €)]. Our bootstrap-based
estimator of Ep[A™5:(9)] is again developed following the procedure which leads to (2.7).
We denote this criterion by L; KL. (Hurvich and Tsai, 1990, propose a similar criterion which

also requires Monte Carlo methods.)

An adjusted version of the Gauss discrepancy which is analogous to A™X" is given by
AM9(0) = Epl |y — h(x;0)] ].

The minimum discrepancy estimator of § associated with A is the least absolute deviations

9
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estimator. Again, we can develop a bootstrap estimator of Er[A™%(f)] following the method
for obtaining (2.7). We call the resulting criterion L;G.

Finally, we may define robust versions of AIC and Sp, say L;AIC and L;Sp, by using
52 = (1/n) S, ly; — h(x;;0)| in (4.1) and (4.2). The fitted models which are logically
associated with these criteria are based on least absolute deviations estimation.

The behavior of the proposed criteria will be compared by simulating a setting where
one must decide among seven candidate models My, My, ..., Mg. For ease of exposition, we
assume our candidate models are nested, with M) defined by the linear prediction function
h(x; k0) = 6o + 6121 + ... + Opxg. This corresponds to a practical linear regression setting
where the predictor variables can be listed in an order of importance.

In each of our simulation sets, 100 samples of data {(xy,v1),-.-,(X,,¥n)},n = 20, are
generated from the operating model, y = 1 + x; + 22 + 23 + (0x4 + Ox5 + Oxg) + €, where
xy,...,2s are distributed as Uniform(0,6). Thus, the true model is M3. For every sample,
the seven models in the candidate class are fit to the data, the aforementioned criteria are
evaluated, and the model selections for each criterion are recorded. Over the 100 samples,
the selections are tabulated and summarized. For the computation of the bootstrap-based
criteria and the least median of squares estimates, the number of bootstrap samples used is
B =200, as in the Section 3 example.

In addition to selecting the correct model, we would like our criteria to favor accurate
prediction functions. The values of the estimated prediction function corresponding to the
selected models under each criterion are calculated at the points x, = (0,...,0),x; =
(3,...,3), and x4 = (6,...,6)". The values of the true prediction function at these points
are 1, 10, 19, respectively. The mean and the standard deviation of the estimates over the
100 data sets are tabulated and summarized.

We present four simulation sets, each of which employs a different type of error distribu-
tion. Set 1 considers a normal distribution, Set 2 a double exponential distribution, Set 3
a mixture distribution involving normals, and Set 4 a Cauchy distribution. The relevant
densities are pictured in Figure 4. The simulation results are summarized in Tables 2, 3, 4,

and 5, respectively.
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Set 1 assumes that the errors are normally distributed with variance equal to 1/4. The
KL criterion performs very well here, as it should since the assumptions for its development
are met. The LMS criterion is very competitive, choosing the correct model for 96 of the
samples. The standard error of prediction is higher for the LMS criterion than for the KL
criterion. In this setting, least squares estimates are optimal.

The subsequent sets illustrate how the criteria perform under error distributions with
increased variance and heavier tails.

Set 2 considers errors which have the double exponential distribution, with the scale
parameter 02 = 1 and a variance of 262 = 2 : DE(0,1). The LMS criterion again performs
well, selecting the correct model for 91 of the samples. In this set, LMS outperforms the
KL criterion. However, the L; KL criterion outperforms all other criteria. Again, this is not
surprising since L;KL is developed under the assumption of double exponential errors.

Set 3 considers a mixture of normals for the error distribution: 0.8 N(0,1/4)+0.2 N (0, 16).
Here, the LMS criterion obtains correct selections on 95 of the trials. The L; KL criterion
also performs well. The increase in the error variance greatly affects KL, and underfitting
becomes problematic. This phenomenon is also illustrated in the example in Section 3.

To see how the criteria hold up as the variability of the errors becomes extreme, we
simulate errors in Set 4 from a Cauchy distribution. The LMS criterion follows only LG
in terms of the number of correct selections. With the noise obscuring the true regression
relationship, underfitting becomes an issue with all the other criteria. This may explain the
L, G criterion’s surprisingly strong performance. In cases where the error variance is not
particularly large, such as in Set 1, L;G has a strong tendency to overfit. As the variance
grows larger, this tendency is attenuated.

It should be noted that LMS estimators have an asymptotic efficiency of zero relative
to least squares estimators. One should take this into consideration in applying both LMS

estimation and the LMS criterion to large-sample modeling problems.

5. Conclusion

The least median of squares estimator has been studied quite extensively. Hawkins (1993)

11



calls the estimator “the standard method of analysis of data when the possibility of severe
badly-placed outliers makes an estimate with [resistant properties] desirable.”

Our goal was to create a regression model selection criterion which would perform effec-
tively across a wide range of error distributions, including thicker tailed distributions which
tend to introduce influential, outlying values. Targeting a discrepancy based on the median
squared error of prediction is natural if least median of squares estimation is favored as a
resistant method of model fitting.

The results of our simulation study in Section 4 indicate that the LMS criterion achieves
its purpose. While the other criteria perform poorly in at least one of the simulation sets,
the LMS criterion consistently ranks near the top in terms of the number of correct model
selections and the accuracy of prediction resulting from the chosen models.

The LMS criterion has a characteristic shared by many nonparametric procedures. Al-
though a nonparametric procedure may be outperformed by a parametric competitor in
settings consistent with the conditions under which the latter is developed, the nonpara-
metric procedure often performs more effectively over a broader spectrum of settings. Our
results indicate that it is possible to find competitors which are preferable to the LMS crite-
rion in specific instances, yet the LMS criterion seems to perform more effectively than these

competitors over a diverse collection of applications.
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Table 1. Data for Example.

Group 1 (I =1) Group 2 (I =0)

x Y x Yy
—59.675 125.96 —68.675 277.74
—51.675 167.04 —54.675 271.72
—50.675 164.90 —31.675 150.64
—49.675 210.92 —23.675 144.39
—49.675 163.24 —18.675 137.78
—43.675 149.02 —15.675 133.06
—32.675 140.68 —10.675 125.80
—28.675 130.19 —9.675 117.74
—28.675 130.46 —7.675 114.85
—21.675 101.43 —7.675 101.22
—20.675 115.91 16.325 146.18
—10.675 101.28 27.325 53.17
0.325 87.82 35.325 41.93
0.325 18.04 37.325 37.61
2.325 91.57 45.325 33.33
10.325 148.59 46.325 34.80
16.325 74.44 61.325 13.04
19.325 73.56 80.325 —25.64
29.325 —43.79 97.325 —0.72
48.325 68.72 123.325 5.37
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Table 2. Results for Simulation Set 1:

¢ ~ N(0,1/4)

Selections

AIC SP KL G TI4AIC I4SP I4KL ©[,G LMS

My, O 0 0 0 0 0 0 0 0

M; O 0 0 0 0 0 0 0 0

My, O 0 0 0 0 0 0 0 0

Mg 59 76 98 67 80 91 94 71 96

My 15 13 2 18 10 5 4 16 4

M; 14 4 0 10 3 3 2 4 0

Mg 12 7 0 5 7 1 0 9 0

Predictions

AIC SP KL G L,AIC  L;SP LLKL LG LMS
xo 0.998 1.007 1.015 1.026 0.923 0.957  0.969  0.927 1.016
(0.513) (0.480) (0.399) (0.489) (0.591) (0.564) (0.567) (0.622) (0.660)
xs  9.999 10.001 10.000 10.000  9.992 9.987 9993  9.994  9.998
(0.136) (0.136) (0.129) (0.136) (0.153) (0.152) (0.155) (0.158) (0.206)
Xe 18.999 18995 18985 18.975 19.060 19.017 19.016 19.062 18.980
(0.499) (0.473) (0.403) (0.490) (0.585) (0.533) (0.526) (0.610) (0.647)
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Table 3. Results for Simulation Set 2:

Selections

e ~ DE(0,1)

AIC SP KL G TI4AIC I4SP I4KL ©[,G LMS

My, O 0 0 0 0 0 0 0 0

M; O 0 4 0 0 0 0 0 1

My, O 0 7 0 0 0 2 0 4

Mg 66 8 8 71 87 92 97 83 91

My, 13 9 2 16 6 6 1 9 4

M; 10 6 0 6 5 1 0 6 0

Mg 11 D 2 7 2 1 0 2 0

Predictions

AIC SP KL G L,AIC  L;SP LLKL LG LMS
X, 1.183 1.108 1.439 1.190 0.858 0.896 1.035 0.824 1.430
(1.173) (1.075) (1.570) (1.147) (1.319) (1.230) (1.207) (1.344) (1.756)
X3 9.986 9.993 9.995 9.992 10.047 10.051 10.060 10.046 10.027
(0.357) (0.324) (0.357) (0.318) (0.435) (0.406) (0.391) (0.438) (0.466)
X, 18.789 18878 18551 18.795 19.237 19.205 19.085 19.269 18.625
(1.405) (1.211) (1.623) (1.268) (1.483) (1.411) (1.357) (1.526) (1.674)
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Table 4. Results for Simulation Set 3:

¢ ~ 0.8 N(0,1/4) + 0.2 N(0,16)

Selections
AIC SP KL G TI4AIC I4SP I4KL ©[,G LMS
My, O 0 13 0 0 0 0 0 1
M; O 0 15 0 0 0 1 0 1
M, 1 1 38 1 0 1 2 0 1
Mg 62 77 33 75 91 94 96 89 95
M, 18 14 0 15 5 4 1 8 2
M; 6 4 0 6 4 1 0 3 0
Mg 13 4 1 3 0 0 0 0 0
Predictions
AIC SP KL G L,AIC  L;SP LLKL LG LMS
X, 0.968  0.951 3.938  0.906 1.078 1.124 1.202 1.078 1.042
(1.892) (1.845) (3.327) (1.835) (0.191) (0.187) (0.491) (0.175) (1.181)
Xs  9.989 9995 10.056 9.998 10.109 10.101 10.072 10.109  9.996
(0.429) (0.392) (0.521) (0.388) (0.033) (0.140) (0.266) (0.032) (0.250)
X¢ 19.011 19.038 16.174 19.090 19.141 19.077 18.942 19.139 18.950
(1.876) (1.903) (3.171) (1.881) (0.127) (0.435) (1.004) (0.113) (1.361)
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Table 5. Results for Simulation Set 4:

Selections

e ~ Cauchy

AIC SP KL G TI4AIC I4SP I4KL ©[,G LMS

My 24 27 67 28 31 35 42 7 17

M, 10 12 12 9 9 10 11 11 10

M, 12 11 14 11 9 9 13 8 12

Mg 30 31 7 35 48 45 34 69 61

My 9 9 0 9 2 1 0 3 0

M; 4 3 0 2 1 0 0 2 0

Mg 11 7 0 6 0 0 0 0 0

Predictions

AIC SP KL G L,AIC  L;SP LKL LG LMS
X, —1.996 7.616 3.669 —1.659  4.123 4.645 5.463 2.211 3.454
(27.179)  (58.430) (35.340) (35.110) (4.196) (4.276) (4.171) (2.957) (4.015)
X3  6.308 5.983 6.134 6.287 9.820 9.861 9.891 9.855  10.088
(34.643)  (37.900) (35.330) (35.360) (0.763) (0.785) (0.872) (0.688) (0.910)
Xe 14.212 4.351 8.600 14.232  15.518 15.077 14.320 17.498 16.721
(45.490) (133.380) (35.850) (36.940) (4.475) (4.383) (4.403) (3.329) (3.831)
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