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Abstract

The Akaike information criterion, AIC, is a widely known and extensively used tool for
statistical model selection. AIC serves as an asymptotically unbiased estimator of a variant
of Kullback’s directed divergence between the true model and a fitted approximating model.
The directed divergence is an asymmetric measure of separation between two statistical
models, meaning that an alternate directed divergence may be obtained by reversing the
roles of the two models in the definition of the measure. The sum of the two directed
divergences is Kullback’s symmetric divergence. Since the symmetric divergence combines
the information in two related though distinct measures, it functions as a gauge of model
disparity which is arguably more sensitive than either of its individual components. With
this motivation, we propose a model selection criterion which serves as an asymptotically
unbiased estimator of a variant of the symmetric divergence between the true model and a
fitted approximating model. We examine the performance of the criterion relative to other

well-known criteria in a simulation study.
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1. Introduction

One of the most important problems confronting an investigator in statistical modeling is
the choice of an appropriate model to characterize the underlying data. This determination
can often be facilitated by the use of a model selection criterion, which judges the propriety
of a fitted model by assessing whether it offers an optimal balance between “goodness of fit”
and parsimony.

The first model selection criterion to gain widespread acceptance was the Akaike (1973,
1974) information criterion, AIC. Many other criteria have been subsequently introduced and
studied, including well-known measures by Mallows (1973), Parzen (1974), Schwarz (1978),
Rissanen (1978), Akaike (1978), Hannan and Quinn (1979), and Hurvich and Tsai (1989).

AIC serves as an asymptotically unbiased estimator of a variant of Kullback’s (1968, p. 5)
directed divergence between the true model and a fitted approximating model. The directed
divergence, also known as the Kullback-Leibler (1951) information, the I-divergence, or the
relative entropy, assesses the dissimilarity between two statistical models. It is an asymmetric
measure, meaning that an alternate directed divergence may be obtained by reversing the
roles of the two models in the definition of the measure. The sum of the two directed
divergences is Kullback’s (1968, p. 6) symmetric divergence, also known as the .J-divergence.
Since the symmetric divergence combines the information in two related though distinct
measures, it functions as a gauge of model disparity which is arguably more sensitive than
either of its individual components. With this motivation, we propose a model selection
criterion which serves as an asymptotically unbiased estimator of a variant of the symmetric
divergence between the true model and a fitted approximating model. We examine the
performance of this criterion relative to other well-known criteria in a simulation study
where the objective is to determine the order of an autoregressive process.

In Section 2, we present a short discussion of relevant background material, including
an overview of Kullback’s directed divergence and AIC. In Section 3, we discuss Kullback’s
symmetric divergence and introduce a large-sample model selection criterion based on this

measure. In Section 4, we present the results of our simulation study.



2. Kullback’s Directed Divergence and AIC

We begin with a brief description of the model selection problem our methodology at-
tempts to address. Suppose a collection of data Y has been generated according to an
unknown parametric model or density f(Y]6,). We endeavor to find a fitted parametric
model which provides a suitable approximation to f(Y]6,).

Let F(k) = {f(Y|0) | 0x € O(k)} denote a k-dimensional parametric family, i.e., a fam-
ily in which the parameter space ©(k) consists of k-dimensional vectors whose components
are functionally independent. Let 0, denote a vector of estimates obtained by maximizing
the likelihood function f(Y'|6y) over ©(k), and let f(V|6;) denote the corresponding fitted
model.

Suppose our goal is to search among a collection of families {F(k1), F(kz),..., F(kr)}
for the fitted model f (Y| ék), k € {k1, ks, ..., kr}, which serves as the “best” approximation
to f(Y]6,). For simplicity, we will assume k; = i for i = 1,2,..., L, so that the collection
consists of families of dimensions 1 through L (cf. Akaike, 1973, p. 272). Since our objec-
tive amounts to choosing an appropriate dimension k£ € {1,2,..., L} for the fitted model
F(Y']6y), our model selection problem can therefore be viewed as a problem of dimension
determination.

We refer to f(Y]0,) as the true or generating model. We refer to any f(Y|6;) other than
f(Y]0,) as an approzimating or candidate model. To determine which of the fitted mod-
els {f(Y]0), f(Y|0s),...,f(Y|0.)} best resembles f(Y|6,), we require a measure which
provides a suitable reflection of the disparity between the true model f(Y]6,) and an ap-
proximating model f(Y']|6;). Kullback’s directed divergence is one such measure.

For two arbitrary parametric densities f(Y|€) and f(Y|8*), Kullback’s directed diver-
gence between f(Y]|0) and f(Y|6*) with respect to f(Y|6) is defined as

Y0
1(0,0) = Ey {ln%} , (2.1)
where Ey denotes the expectation under f(Y|0). Thus, I(0,,0;) defines the directed diver-
gence between f(Y]6,) and f(Y|6) with respect to f(Y]8,).

Intuitively, I(6,,0;) can be interpreted in the following manner. For a particular sample
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Y generated under the true model f(Y|6,), the measure In{f(Y|6,)/f (Y| 0x)} assesses how
well the approximating model f(Y|6;) “fits” or conforms to Y in comparison to the true
model f(Y]0,). Thus, I(6,,0:) evaluates the average measure of fit In{f(Y|6,)/f(Y|0k)}
taken over many realizations Y generated under the true model f(Y]6,). It is well known
that I(6,,0;) > 0 with equality if and only if 8, = 6, (Kullback, 1968, pp. 14-15).

Now for f(Y|6) and f(Y]0*), define

d(6,0") = Eg{—2In f(Y]60%)}. (2.2)
From (2.1) and (2.2), note that we can write
21(0,,0r) = d(6,,0r) — d(0,,6,).

Since d(6,, 8,) does not depend on 6y, any ranking of a set of candidate models corresponding
to values of I(6,,6;) would be identical to a ranking corresponding to values of d(f,,6).
Hence, for the purpose of discriminating among various candidate models, d(0,, 0)) serves as
a valid substitute for 1(6,, 0).

The preceding discussion suggests that

d(8,,0x) = Eg, {—21n f(Y|6) o, s, (2.3)

would provide a suitable measure of the separation between the generating model f(Y|6,)
and a fitted candidate model f(V]6;). Yet evaluating d(6,,0;) is not possible, since doing so
requires knowledge of f,. The work of Akaike (1973), however, suggests that —21n f (Y] 0;)

serves as a biased estimator of d(6,,0y), and that the bias adjustment

Eo, {d(0,,04)} — Eg, {—21n f(Y|0})} (2.4)

can often be asymptotically estimated by twice the dimension of ;. (Here, f(Y'|6;) repre-
sents the empirical likelihood.)
Thus, since k denotes the dimension of ék, under appropriate conditions, the expected

value of

AIC = —21n f(V] ;) + 2k



should asymptotically approach the expected value of d(6,, ék), say
A(0,, k) = Eq,{d(6,,61)}.
Specifically, one can establish that
Eq, {AIC} 4+ o(1) = A(6,, k). (2.5)

The demonstration of (2.5) utilizes the assumption that f(Y'|6,) € F(k) (see Linhart
and Zucchini, 1986, pp. 243-245). This assumption is satisfied if the true parameter vector
6, is an element of a subset of ©(k) comprised of vectors in which k, components are free
to vary and the remaining (k — k,) components are constrained to equal zero, 0 < k, < k.
Thus, the assumption is satisfied if the family F(k) consists of models which are either
overparameterized (when k > k,) or correctly specified (when k = k).

The requirement that f(Y]6,) € F(k) is frequently employed in the development of
model selection criteria since it facilitates tractable derivations. Although the requirement
may seem strong, a criterion developed under this assumption often achieves its intended
objective even when the assumption is violated, e.g., when F(k) consists of models which
are underparameterized (see Linhart and Zucchini, pp. 20-22).

Note that property (2.5) allows us to view AIC as an asymptotically unbiased estimator
of d(0,, ék), in the sense that the expectations of the stochastic quantities AIC and d(0,, ék)
are within o(1) of one another (cf. Findley, 1985; Shibata, 1997). It also allows us to view
AIC as an asymptotically unbiased estimator of A(6,, k), in the sense that the expectation
of the stochastic quantity AIC is within o(1) of the nonstochastic quantity A(f,, k) (cf.
Hurvich and Tsai, 1989; Hurvich, Shumway, and Tsai, 1990). In what follows, we utilize

both interpretations.

3. A Large-Sample Model Selection Criterion

Based on Kullback’s Symmetric Divergence

In the previous section, the directed divergence between f(Y'|6,) and f(Y|6;) with re-
spect to f(Y|6,) was defined via (2.1) as I(6,,0;). Similarly, one can define the directed



divergence between f(Y'|6,) and f(Y|6) with respect to f(Y|6y) as I(6y,6,). Kullback’s

symmetric divergence is then defined as
J(0,,01) = 1(6,,0r) + I(6k,0,). (3.1)

Note that J(6,,0x) = J(0k,0,), whereas I(0,,0;) # I(0,0,) unless 0, = 0,; thus J(6,,6y) is
symmetric in its arguments whereas I(6,,6) is not.

It should be noted that the symmetric divergence was first introduced by Jeffreys (1946;
1983, p. 179), who was primarily interested in its use in providing a prior probability density
for parameters. Kullback (1968), however, appears to have been principally responsible for
introducing, investigating, and popularizing the widespread statistical applications of both
the symmetric and the directed divergence.

Each of 1(6,,60r), 1(0k,0,), and J(0,,0;) reflects the separation between the true and
the approximating model. Intuitively, J(f,,6;) can be interpreted in the following man-
ner. For a particular sample Y generated under the true model f(Y]6,), the measure
In{f(Y|0,)/f(Y|6)} assesses how well the approximating model f(Y]6) “fits” YV in com-
parison to the true model f(Y]6,). Likewise, for a particular sample Z generated under the
approximating model f(Z|6y), the measure In{f(Z|60;)/f(Z|0,)} assesses how well the true
model f(Z]0,) “fits” Z in comparison to the approximating model f(Z|6y). Thus, J(6,,0)

evaluates the average combined measure of fit

In{f(Y[6,)/f(Y]0k)}] + [In{f(Z]6k)/f(2]6,)}],

where the average is taken over many realizations of Y and Z generated, respectively, under
f(Y]80,) and f(Z|6). It is easily seen that J(6,,0) > 0 with equality if and only if 6, = 6,.
Using (2.1), (2.2), and (3.1), we can write

2J (0, 0) = {d(0o, Ok) — d(0o,0,)} + {d(Ok, 05) — d(Ok, Or) }-

Since d(6,,0,) does not depend on 6, for the purpose of discriminating among various

candidate models, one could propose

K (0o, 0k) = d(0o, ) + {d(6, 0) — d(O, )} (3.2)
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as a substitute for the measure J(6,,0;). Note that the relationship between K (6,,6;) and
J(0,,0) is analogous to the relationship between d(6,,0y) and I(6,,60;). Measures such as
K(0,,0), J(0,,0r), d(0,,0k), and I(0,,0;) are often called discrepancies (see Linhart and
Zucchini, 1986, pp. 11-12).

Now evaluating (3.2) at 6, = 0), would lead to an appealing measure of separation between

the generating model and the fitted candidate model, namely
K(0,,0k) = d(0,, 0%) + {d(01, 0,) — (0,01} (3.3)
(For clarity, we emphasize that
d(05,0,) = Bo, (~210 [ (Y|0,)},,_, and  d(Br, ) = Eo, {~21n f(Y|06)}y, s,

d(6,,0;) is exhibited in (2.3).) Although K (6,,0)) is inaccessible, one might speculate that it
is possible to construct an asymptotically unbiased estimator of K (6,, ék) i.e., an estimator

with an expected value that asymptotically approaches the expected value of K(6,, ék), say
Q(0,, k) = Eg, {K (05, 0,)}. (3.4)

The impetus for this notion comes from recognizing that K (6,,0),) and Q(6,, k) serve as the
respective analogues of d(f,,0;) and A(6,, k), and from recalling that (2.5) justifies AIC as
an asymptotically unbiased estimator of d(6,, 0).

The following proposition derives a statistic with an expectation which is within o(1)
of Q(0,,k). To establish the result, we assume the usual regularity conditions required to
ensure the consistency and asymptotic normality of the maximum likelihood vector 0),. We
also utilize the assumption that f(Y'|6,) € F(k), i.e., that 6, € O(k). Thus, we can take 6,

to be a k-dimensional vector with k, non-zero components (0 < k, < k).

Proposition. Let

KIC = —21In f(Y| ;) + 3k.
Then under the aforementioned conditions,
Eo, {KIC} + o(1) = Q(0,, k). (3.5)
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Proof. Referring to (3.3) and (3.4), note that we can write (6,, k) as

Q0,,k) = Eg{—2Inf(Y|6;)}

+[d(60,00) — B, {—21n f(V]6)}] (3.6)
+ [EGO{d(eo; ék)} - d(eoa 90)} (37)
+ By, {d(0k, 0,) — d(0r,04)}. (3.8)

Clearly, the result will be established if we can verify that each of (3.6), (3.7), (3.8) is within
o(1) of k.
Define

0%In f (Y| 6y) 0%In f (Y| 6r)
1(6,) = By { - 10 d Z(0,y) = LS PR
(Bx) = Eo, { 00,00, and Z(0,Y) 0,00,
Thus, 1(6,), I(ék), and I(ék, Y') respectively denote the true, the expected, and the observed
Fisher information matrix (cf. Efron and Hinkley, 1978).
First, consider taking a second-order expansion of —21n f(Y'|#,) about . Since the

log-likelihood In (Y] 0),) is maximized at 0 = 0, one can establish
2 f(V]0,) = —2In F(V]0) + (B — 0) T(00, V) Bs — 00) + 71 (00 00), (39)

where 1(0,,0;) is 0,(1) and By, {r1(,, 0;)} is o(1). Taking the expectation of both sides of
(3.9) with respect to 6, yields

d(6,,00) — Eo, {=21n f (Y| 6x)} = Eg, { (O — 05) T(0k, Y) (0 — 65)} + o(1). (3.10)

Next, consider taking a second-order expansion in the second argument of d(6,, ék) about
f,, and a second-order expansion in the second argument of d(ék,Ho) about ). Since the
discrepancies d(6,, 0)) and d(ék, 0x) are respectively minimized at 0, = 6, and 0 = 0y, one

can establish

d(0,,0r) = d(0,0,) + (0, — 0,) T(0,) (0, — 0,) + 72(6,, 0, (3.11)

~

d(0r,0,) = d(By, 0) + (O — 0,) 1(0,) (O — 0,) + r3(0,,0%), (3.12)



where 75(6,, ;) and 75(6,, 8;,) are both 0,(1) and Eqg, {r2(6,, 6x)} and Eq, {r3(6,, 6x)} are both
o(1). Taking the expectation of both sides of (3.11) and (3.12) with respect to 6, yields

Eeo{d(eo; ék)} o d(eoa 90) = EGO{(ék - 90),1(90)(ék - 90)} + 0(1)7 (313)
Eg, {d(Ok,0,) — d(0x,0x)} = Eg,{(Ok — 0,) 1(01) (0 — 65)} + 0(1). (3.14)

Now the quadratic forms
(ék — 90)’1(91,3, Y)(ék —4,), (ék — 90)'1(90)(9;C —40,), (ék — Go)ll(ék)(ék —46,)

all converge to centrally distributed chi-square random variables with k degrees of freedom.
Thus, the expectations (under 6,) of each of these quadratic forms is within o(1) of k. This
fact along with (3.10), (3.13), and (3.14) verifies that (3.6), (3.7), and (3.8) are each within
o(1) of k, thereby establishing (3.5). O

In the model selection problem outlined in Section 2, we search for a preferred model
among a collection of fitted candidate models {f(Y]6), f(Y]6),..., f(Y|6;)}. For the
purpose of assessing the proximity between a certain fitted candidate model f(Y|6;) and
the true model f(Y'|6,), either of the measures J(0,,0;) or I(6,,0)) could be entertained.
Ideally, the fitted model corresponding to the minimum value of KIC will have a small
symmetric divergence J(6,,0;), whereas the fitted model corresponding to the minimum
value of AIC will have a small directed divergence I(6,, ék) Naturally, the question arises
as to which of J(0,,0) or I(6,,0) is a better disparity measure for the application at hand.

A substantive comparison of .J(6,, 6;) and I(6,, 6;) may be made by considering the man-
ner in which J(6,,6;) and I(f,,6;) each gauge the separation between the true model and a
particular fitted candidate model. The measure I(f,,0;) evaluates how well the fitted can-

”»

didate model conforms on average to “new” samples generated under the true model. Thus,
I1(0,,0y) assesses the extent of the divergence between f(Y|60,) and f(Y]6;), using f(Y]6,) as
the benchmark for comparison. On the other hand, the measure I(ék, 0,) evaluates how well
the true model conforms on average to “new” samples generated under the fitted candidate
model. Thus, I(,6,) assesses the extent of the divergence between f(Y|6,) and f(Y|8y),

using (Y| 6y) as the benchmark for comparison. Although I(6,,60;) and I(6,0,) are clearly



associated, the two measures are not redundant, since each judges the dissimilarity between
F(Y]6,) and f(Y|6) in a different manner. In many instances where there is a meaningful
discrepancy between f(Y]6,) and f(Y|6;), one of the measures will be more pronounced
than the other. As a result, the value of J(6,, ék) may better reflect an important disparity
between f(Y'|6,) and f(Y]6) than the value of 1(6,,0;).

For the collection of fitted candidate models {f(Y]6), f(Y]60),..., f(Y]05)}, the esti-
mates {él, Oy ... , éL} lie in the union of the parameter spaces for the corresponding candidate
families, namely ©(L). Assuming 6, € ©(L), the measures J(6,,0), 1(0,,0), and I(6,0,)
each tend to grow as 6y, moves from 6, across O(L). Proceeding along certain directions from
6,, the growth in I(6,,0;) tends to exceed that of I(6y,6,); along certain other directions,
the opposite is true. Yet since J(0,,0;) = I(0,, 0x) + 1(0k, 0,), J(0,,0)) exhibits the increas-
ing tendencies in both I(6,,60y) and I(6y,¥6,). Thus, J(6,,0;) functions as a more sensitive
measure of model disparity than either of its individual components. It follows that J(6,, 0,
may serve to better discriminate between a particular fitted candidate model and the true
model than I(6,,60;). As a consequence, an estimator of J(f,,0;) (or K(6,,6;)) may be
preferable to an estimator of I(6,, ;) (or d(6,,0;)) as a model selection criterion, provided
that the former estimator is accurate enough to sufficiently reflect the sensitivity of .J(6,, ék)
(or K (6,,05)).

Although the preceding arguments are informal and warrant further investigation, they
advance a perspective which promotes the use of J(6,,0y) over I1(6,,0;) as a basis for the
construction of model selection criteria. This perspective is further explored in the next
section, where we examine the behavior of KIC, AIC, and other well-known criteria in a
simulation study where the objective is to determine the order of an autoregressive process.

We close this section by discussing important considerations regarding the asymptotic
justifications of KIC and AIC provided by (3.5) and (2.5). As previously outlined, in practice,
one often considers a collection of fitted models representing various candidate families.
The fitted model corresponding to the minimum value of the selection criterion is favored.
When f(Y|60,) € F(k), (3.5) and (2.5) imply that KIC and AIC will respectively serve as
approximately unbiased estimators of K (6,, ék) and d(6,, ék), provided that the sample size



is large. However, when f(Y'|6,) ¢ F(k) or when the sample size is small, the penalty
terms of 3k (for KIC) and 2k (for AIC) may be far less than the bias adjustments they are
designed to approximate. As a result, KIC and AIC may tend to grossly underestimate their
respective target measures.

Imprecise bias correction appears to be particularly problematic in settings where the can-
didate collection consists of families which are excessively overparameterized (i.e., f(Y]0,) €
F(k) and k >> k,) and the sample size is small (i.e., n is small or k£ is large relative to n).
(For example, see Hurvich and Tsai, 1989; Hurvich, Shumway, and Tsai, 1990; Cavanaugh,
1997; Cavanaugh and Shumway, 1997.) In such settings, the larger fitted models are often
characterized by relatively large discrepancies K (f,,0;) and d(6,,0;), yet relatively small
values of KIC and AIC. Thus, the minimum criterion values often correspond to grossly
overparameterized fitted models, models with values of K (6,,0)) and d(6,, ;) which are far
from optimal. In Section 5, we discuss approaches which have been used to refine the penalty
term of AIC for small-sample applications, and suggest utilizing these approaches to make

analogous refinements to the penalty term of KIC.
4. Simulations
A univariate autoregressive (AR) process of order p can be represented as

Ye=O1Ys 1+ D2l 2+ ...+ O p + &, €& ~ did N(0, 02)-

Given a set of observations Y = {y1, 92, ..., ¥, } from such a process, suppose our objective is
to determine an appropriate order p for the autoregression, where 1 < p < P. Thus, to model
the data Y, we consider a collection of P candidate families, where each family consists of
AR models of a particular order p. Note that 8, = (62, ¢1, @, ..., ¢,) and k = p+ 1.

We examine the behavior of KIC, AIC, and certain other selection criteria by simulating
a setting where the criteria are used to select p. In each of six simulation sets, 1000 samples
are generated from a specified AR model of order p, (1 < p, < P). For every sample, AR
candidate models of orders 1 through P are fit to the data, the criteria are evaluated, and
the fitted AR model favored by each criterion is recorded. Over the 1000 samples, the order

selections are tabulated, summarized, and reported.
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The other criteria considered in our simulation sets are AICc (Hurvich and Tsai, 1989),

FPE (Akaike, 1969), HQ (Hannan and Quinn, 1979), BIC (Akaike, 1978), and SIC (Schwarz,
1978). These criteria are defined as follows:

2n(p + 1)

AlCe = (nln62+n) + —1

FPE — n<"+p>&%
n—p

HQ = nlné*>+2plnlnn,

2 noo2\ _ a2
BIC = (n—p) ln<na >+pln{(2t:1yt) no },
n—p p

SIC = —2Inf(Y]6) + klnn.

Here, 62 denotes the maximum likelihood estimator of o2.

We remark that for autoregressive modeling, SIC, HQ, and BIC are consistent whereas
AIC, AICc, and FPE are asymptotically efficient in the sense of Shibata (1980). Suppose
that the generating model is of a finite order and that this order is represented in the col-
lection of candidate families under consideration. A consistent criterion will asymptotically
select the fitted candidate model having the correct order with probability one. On the other
hand, suppose that the generating model is of an infinite order and therefore lies outside
of the collection of candidate families under consideration. An asymptotically efficient cri-
terion will asymptotically select the fitted candidate model which minimizes the one-step
mean squared error of prediction. For autoregressive model selection, we note that KIC is
asymptotically efficient within a broad class of generating models; however, AIC, AICc, and
FPE are asymptotically efficient within an even larger class. (For details, see Bhansali, 1993,
p. 55.)

The generating models featured in our simulation sets are as follows:

(1) Yy = 0.99y; 1 — 0.80y; 2 + €,
(2) Yy = 0.10y;—1 + 0.60y;_2 + €,

(3) Yy = 0-70yt—1 - 0-50yt—2 + 0.60yt_3 + €.

Here, €, represents a Gaussian white noise process with mean 0 and variance 1. For each

generating model, two simulation sets are considered: one in which the sample size is n = 40

11



and the other in which n = 60. For all six sets, the maximum model order used for the
candidate collection is P = 8.

The results of the six sets are summarized in Table 1. Note that in all six sets, KIC obtains
substantially more correct order selections than any of the asymptotically efficient criteria.
KIC also consistently outperforms HQ in terms of correct order selections, and outperforms
BIC in sets 3 through 6. KIC is generally outperformed by SIC; however, KIC does not
exhibit as strong a tendency as SIC to choose underparameterized models. Moreover, it
should be noted that this type of simulation study tends to favor consistent criteria such as
SIC, since in each set, the generating model is of a finite order, and this order is represented
in the collection of candidate families under consideration.

Figure 1 provides some insight as to why KIC tends to outperform AIC as a selection
criterion. Consider the second set of simulations, based on generating model (2) with a
sample size of n = 60. In Figure 1, simulated values of Q(6,,p) and A(6,,p) are plotted
versus the order p for p =1,2,...,8. These values are obtained by averaging K (f,, ék) and
d(6,, ék), respectively, over the 1000 replications. The average values for each of KIC and
AIC are also plotted versus p.

Note that the shapes of the Q(6,,p) and A(f,, p) curves suggest that K (6,,0,) tends to
be more effective than d(6,, ék) in delineating between fitted models of the correct order and
fitted models which are either too small or too large. This illustrates the perspective advanced
in Section 3: i.e., as the dissimilarity between a fitted model and the true model becomes
more pronounced, J(6,,0;) tends to grow to a greater extent than I(f,,6;), exhibiting the
increasing tendencies in both I(6,,6;) and I(6y,0,). Thus, a model selection criterion which
estimates J(0,,60;) (or K(6,,0;)) may be preferable to one which estimates I(6,,6;) (or
d(0,, ék)), provided that the former criterion is accurate enough to adequately reflect the
sensitivity of J(0,,0)) (or K (6,,0))). To this end, note that for p > p,, the average KIC and
AIC curves each track their respective target curves comparably. This indicates that the
criteria each achieve the property of asymptotic unbiasedness to roughly the same degree.
However, since KIC targets a more sensitive discrepancy measure than AIC, KIC has a

higher success rate in identifying the correct model order.
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The results reported in Table 2 provide further support to recommend J(6,,0;) over
1(6,,0;) as a basis for the construction of model selection criteria. Here, we consider the use
of J(8,,0;) and I(8,,0;) (or equivalently, K (6,,0;) and d(6,,0;)) as selection criteria in our
six simulation sets. The table features the number of correct order selections obtained by
each divergence measure in each set.

As previously mentioned, J(6,, ék) and 1(6,, ék) depend on 6,, and are therefore not ac-
cessible in practical applications. Nonetheless, inspecting the performance of these measures
as selection rules is instructive, since it may help to indicate whether there is an advantage in
targeting one of the measures over the other. Note that in each of the sets, J(6,, ék) obtains

considerably more correct order selections than I(6,, ;).
5. Further Directions

The results in Section 4 suggest that KIC should function as an effective model selection
criterion in large-sample applications. The results also suggest that J(6,,0;) may provide
a foundation for the development of model selection criteria which is preferable to that
provided by I(6,,60;). This motivates the need to further explore the properties of J(6,, 0))
as a measure of model disparity, as well as the need to develop small-sample estimators of
K (0,,05).

As emphasized at the end of Section 3, in settings where the sample size is small and the
candidate collection consists of families which are excessively overparameterized, AIC may
exhibit a tendency to choose models which are “overfit.” In such instances, the penalty term
of AIC provides an insufficient degree of bias correction for the larger fitted models; as a
result, AIC tends to grossly underestimate d(6,, 0y).

Recent work has led to successful small-sample refinements of the penalty term of AIC.
One type of refinement is based on assuming a particular modeling framework for the candi-
date family F(k), and using the characteristics of that framework to derive either an exact
expression or a more precise approximation for the bias adjustment (2.4). This approach

was first suggested for linear regression by Sugiura (1978), and later extended and advanced

by Hurvich and Tsai (1989, 1993), Hurvich, Shumway, and Tsai (1990), and Bedrick and
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Tsai (1994) for nonlinear regression, multivariate regression, autoregressive and autoregres-
sive moving-average modeling, and vector autoregressive modeling. An alternative type of
refinement is based on using the bootstrap to approximate the adjustment (2.4): see, for
instance, Efron (1983, 1986), Cavanaugh and Shumway (1997), and Shibata (1997).

In small-sample applications where excessively overparameterized families are enter-
tained, KIC tends to underestimate K (6,,0;) in the same manner that AIC tends to un-
derestimate d(6,, ék) In future work, we hope to use the aforementioned approaches which
have led to small-sample refinements of the penalty term of AIC to develop such refinements

for the penalty term of KIC.
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Table 1. Criterion Selections.

Set | Model | n | Order Criterion

KIC | AIC | AICc | FPE | HQ | BIC | SIC
< Do 1 1 1 0 1 1 3

1 (1) 40| =p, | 874 | 707 | 770 637 | 762 | 922 | 918
>p, | 125 | 292 | 229 363 237 7 79
< Po 0 0 0 0 0 0 0

2 (1) 60| =p, | 881 | 706 | 740 667 | 825 | 951 | 953
>p, | 119 | 294 | 260 333 175 49 47

< Do 80 55 59 48 64 43 114

3 (2) 40| =p, | 808 | 679 | 717 603 709 | 684 | 817
>p, | 112 | 266 | 224 349 227 | 273 69

< Do 16 7 9 6 11 8 26

4 (2) 60| =p, | 864 | 698 | 735 649 816 | 790 | 914
>p, | 120 | 295 | 256 345 173 | 202 60

<po | 122 57 76 48 80 79 176

5 (3) 40| =p, | 737 | 630 | 676 543 647 | 664 | 740
>p, | 141 | 313 | 248 409 273 | 257 84

< Do 20 5 6 4 16 21 51

6 (3) 60| =p, | 831 | 686 | 718 620 775 | 795 | 881
>p, | 149 | 309 | 276 376 209 | 184 68

Table 2. Correct Order Selections for J(6,,0;) and I(6,,0y).

Set | Model | n Divergence
J(00,0k) | T(6,,0)

1 (1) 40 906 865
2 (1) 60 918 882
3 (2) 40 846 806
4 (2) 60 888 835
5 (3) 40 805 762
6 (3) 60 834 785
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