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Abstract

Model selection criteria often arise by constructing estimators of measures

known as expected overall discrepancies. Such measures provide an evaluation

of a candidate model by quantifying the disparity between the true model which

generated the observed data and the candidate model. However, attention is

seldom paid to the problem of accounting for discrepancy estimator variability,

or to the companion problem of establishing discrepancy estimators with cer-

tain optimality properties. The expected overall Gauss (error sum of squares)

discrepancy for a linear model can be decomposed into a term representing the

estimation error, due to unknown model coefficients, and a term representing the

approximation error, or bias, due to model misspecification. Since the first error

term is seen to depend only on model dimension, a known quantity, the problem

of estimating the expected overall Gauss discrepancy reduces to the problem of

estimating a bias parameter. In this paper, we derive estimators of model bias

with frequentist optimality properties and consider how confidence interval esti-

mation can be used to quantify the uncertainty inherent to the problem of bias

parameter estimation. We also show how the problem of estimating model bias

can be approached from a Bayesian perspective. To illustrate our methodology,

we present a modeling application based on data from a cardiac rehabilitation

program at The University of Iowa Hospitals and Clinics.
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1. Introduction

An important topic in statistical modeling is the problem of determining which input

variables are needed for estimating a response function. Such a decision is facilitated by

the use of a model selection criterion. A model selection criterion is often formulated by

constructing an estimator of a measure known as an expected overall discrepancy. Such a

measure provides an evaluation of a candidate model by quantifying the disparity between

the true model (i.e., the model which generated the observed data) and the candidate model.

In selecting a discrepancy, one must consider which aspect of the candidate model is

required to conform with the true model. A reasonable goal is to evaluate a model with the

idea that the fitted values should be near to the response means on the input space. The

Gauss discrepancy, defined through the error sum of squares, is an appropriate discrepancy

for model selection in this context. In linear model problems, it can be shown that the

expected overall Gauss discrepancy is the sum of a term which represents the “estimation

error,” due to unknown regression coefficients, and a term which represents the “approxi-

mation error,” due to candidate model misspecification. Furthermore, the estimation error

depends only on the dimension of the approximating model, a known quantity. We will de-

fine the approximation error through a parameter we call the model bias. Thus, the problem

of estimating the expected overall Gauss discrepancy reduces to the problem of estimating

the bias parameter.

Much of the model evaluation literature is dedicated to the construction of estimators of

expected overall discrepancies. (See, for instance, Linhart and Zucchini, 1986, and McQuar-

rie and Tsai, 1998.) However, attention is seldom paid to the problem of how to account for

the variability inherent to an estimator of an expected overall discrepancy. A first step in ad-

dressing this problem is to derive discrepancy function estimators with optimality properties.

In this paper, we develop estimators of the expected overall Gauss discrepancy by developing

estimators of the linear model bias parameter. Furthermore, we investigate the optimality

properties of these estimators. We consider both frequentist and Bayesian approaches to

quantifying the variability of estimators for model bias.

The next section provides an outline of model evaluation based on the Gauss discrepancy

in the linear model setting. In addition, we provide some comments comparing the philoso-

phies of model evaluation within the Gauss discrepancy framework to hypothesis testing

using the general linear test statistic. In Section 3, we discuss estimation of model bias.

The well known conceptual predictive statistic Cp (Mallows, 1973) is an estimator for the

expected overall Gauss discrepancy. The Cp estimator for model bias is derived, as well as

estimators for model bias having the frequentist optimality properties of minimum variance
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unbiasedness (MVUE) and maximum likelihood (MLE). In Section 4, a confidence interval

with frequentist properties is developed for the model bias parameter. In Section 5, we take

a Bayesian approach to the problem of quantifying the variability inherent to estimation

of model bias. Sections 6 and 7 close the paper with an application and some concluding

remarks.

2. Gauss Discrepancy for Linear Regression

Consider a collection of data y, generated according to the linear model

y = Xoβo + εo, εo ∼ Nn

(
0, σ2

oI
)
. (2.1)

We assume that the response vector y is (n × 1), the design matrix Xo is (n × po) of full

column rank, and the coefficient vector βo is (po × 1). Let C (Xo) denote the column space

of Xo, with projection matrix given by Ho = Xo (X ′

oXo)
−1 X ′

o. Let θo = (β ′

o, σ
2

o)
′

represent

the (po + 1)−dimensional parameter vector. We refer to (2.1) as the true model.

The goal of model selection is to evaluate the models from a candidate class to determine

which provides the “best” approximation to (2.1). Consider a candidate model of the form

y = Xβ + ε, ε ∼ Nn

(
0, σ2I

)
. (2.2)

Here, we assume X is (n × p) of full column rank, and β is (p × 1). Denote the corresponding

column space as C (X), with projection matrix H = X (X ′X)−1 X ′. Let β̂ = (X ′X)−1 X ′y

denote the least squares estimator for β computed under a candidate model, so that the

fitted response vector Xβ̂ = Hy serves as an estimator for the true mean response vector

Xoβo.

The collection of all candidate models of interest is known as the candidate family. We

assume that the full model (i.e., the largest candidate model) is of the same form as the true

model. Under this assumption, for any specific candidate model (2.2), C (X) ⊆ C (Xo).

To evaluate a model in the candidate family, we require a measure which provides a

suitable reflection of the disparity between the true model and the candidate model. The

overall Gauss discrepancy reflects the squared distance between the fitted response vector

under the candidate model and the true mean response vector. In the linear model context,

the measure is given by
∣∣∣Xβ̂ − Xoβo

∣∣∣
2

=
(
Xβ̂ − Xoβo

)
′
(
Xβ̂ − Xoβo

)
.

(See Linhart and Zucchini, 1986, pp. 11, 18–19, 118.) For our purposes, we scale the preceding

measure by the true error variance σ2

o , thereby obtaining

dG

(
θ̂, θo

)
=

1

σ2
o

∣∣∣Xβ̂ − Xoβo

∣∣∣
2

.
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Let Eo denote the expectation under the true model. The expected overall Gauss discrepancy

is therefore defined as

∆G (θo, p) = Eo

{
dG

(
θ̂, θo

)}

= Eo

{
1

σ2
o

∣∣∣Xβ̂ − Xoβo

∣∣∣
2
}

. (2.3)

Under the true model, Eo

{
Xβ̂

}
= HXoβo. Then

∣∣∣Xβ̂ − Xoβo

∣∣∣
2

= |Hy − HXoβo|
2 + |Xoβo − HXoβo|

2 . (2.4)

The first term on the right hand side of (2.4) can be written as a quadratic form

(y − Xoβo)
′ H (y − Xoβo) ,

distributed as σ2

o χ2 with degrees of freedom given as rank(H) = dim (C (X)) = p. Thus

Eo

{
|Hy − HXoβo|

2
}

= p σ2

o . (2.5)

Using (2.4) and (2.5) with (2.3), we obtain

∆G (θo, p) = p + δ (2.6)

where

δ =
|Xoβo − HXoβo|

2

σ2
o

is defined as the model bias.

The bias parameter δ represents the approximation error due to model misspecification

from the exclusion of input variables when defining the candidate model. Note that δ is the

squared distance between the true mean response vector Xoβo and the mean space C (X),

scaled by the true error variance. As the number of parameters p in a candidate model

increases, the dimension of C (X) increases. So as parameters are added to a candidate

model, the approximation error as measured by the model bias δ will decrease.

Expression (2.5) represents the error due to estimation of the unknown parameters in the

candidate model. Estimation error appears in (2.6) only through the number of parameters p.

Inversely to approximation error, estimation error increases as parameters are added to a

candidate model. Model selection based on the Gauss discrepancy seeks a model which

balances estimation error and approximation error. Since p is known, the evaluation of a

candidate model centers on the model bias δ.
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In the next section, we consider approaches to estimating model bias. But first we

will compare the Gauss discrepancy approach to model evaluation with the general linear

hypothesis test. Suppose that one is testing a full model described as (2.1) versus a candidate

model described as (2.2), with C (X) ⊂ C (Xo). As in our framework, one is assuming here

that the full model is true. A candidate model is created by placing a set of linear restrictions

on the coefficient vector. The null hypothesis of the test is that the reduced model is correct,

or equivalently, that the linear restrictions are precisely true.

From the theory of linear statistical models, the statistic

F ∗ =
y′ (Ho − H) y / (po − p)

y′ (I − Ho) y / (n − po)
(2.7)

follows an F distribution with po − p and n − po degrees of freedom, and noncentrality

parameter

ncp =
(Xoβo)

′ (Ho − H) (Xoβo)

σ2
o

.

Since HoXoβo = Xoβo, then the noncentrality parameter is simply the model bias δ. When

the null hypothesis is true, then HXoβo = Xoβo as well, and δ = 0. Thus, the general linear

hypothesis test is for whether the reduced model bias parameter is zero or not.

A Bayesian approach to the problem proceeds from the same viewpoint. (See George,

2000, and Clyde and George, 2004, for a review of the Bayesian variable selection literature.)

The posterior probability on the candidate model represents the probability that its model

bias is zero.

The evaluation of a candidate model based on the Gauss discrepancy takes on a different

philosophy. From the assumption that the full model has the same form as the true model,

the full model has no bias. Thus, we will prefer the candidate model to the full model if

δ + p < 0 + po, or δ < (po − p). Hence, one is interested in determining whether or not the

model bias is smaller than the increase in estimation error for the added parameters in the

full model. An explanation for the different philosophy lies in the view that under the Gauss

discrepancy, one is looking to evaluate a model based on mean squared error (i.e., mean

squared distance between the fitted response vector and the true mean response vector).

Consider a case where the linear restrictions on the parameter vector defining the candidate

model are nearly satisfied, but not satisfied exactly. The fitted response vector under the

candidate model may be closer (on average) to the true mean response vector by taking

the linear restrictions as true than by selecting the full model and adding an extra source

of estimation error. It is thus possible for the candidate model to be better than the full

model under the Gauss discrepancy even though the full model is correctly specified and the

candidate model is not.
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3. Frequentist Point Estimation of the Bias Parameter

The numerator and denominator quadratic forms in the general linear test statistic F ∗

given in (2.7) are distributed as

y′ (Ho − H) y ∼ σ2

o χ2,

with po − p degrees of freedom and noncentrality parameter δ, independent of

y′ (I − Ho) y ∼ σ2

o χ2,

with n − po degrees of freedom. Thus,

Eo

{
y′ (Ho − H) y

po − p

}
=

σ2

o (po − p + δ)

po − p
(3.1)

and

Eo

{
y′ (I − Ho) y

n − po

}
= σ2

o . (3.2)

Using (3.1) and (3.2) with (2.7), let n tend to infinity so that

Eo {F
∗} = Eo

{
y′ (Ho − H) y / (po − p)

y′ (I − Ho) y / (n − po)

}

approaches
Eo {y

′ (Ho − H) y / (po − p)}

Eo {y′ (I − Ho) y / (n − po)}
= 1 +

δ

po − p
. (3.3)

Then for large n,

Eo {(po − p) (F ∗ − 1)} ≈ δ.

Define

δ̂c = (po − p) (F ∗ − 1) . (3.4)

The well known Cp statistic (Mallows, 1973) is an estimator of ∆G (θo, p) = p + δ. It is easy

to derive that Cp = p + δ̂c. Thus, we name the Cp bias estimator δ̂c after its companion

statistic.

The expected value for F ∗ in (3.3) is only an approximation. To obtain an exact result,

note
n − po

y′ (I − Ho) y
∼

n − po

σ2
o χ2

,
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so that

Eo {F
∗} = Eo

{
y′ (Ho − H) y

po − p

}
Eo

{
n − po

y′ (I − Ho) y

}

=

(
po − p + δ

po − p

) (
n − po

n − po − 2

)
. (3.5)

Then from (3.5), one can derive the modified estimator of model bias as

δ̂m = (po − p)

[(
n − po − 2

n − po

)
F ∗ − 1

]
(3.6)

by requiring Eo

{
δ̂m

}
= δ. The modified conceptual predictive statistic (Fujikoshi and Satoh,

1997) is derived to be an unbiased estimator of ∆G (θo, p). Then MCp = p + δ̂m.

Since the support set for the statistic F ∗ is the interval of positive real numbers, δ̂c

and δ̂m both have nonzero probability of taking on negative values. This is an unfortunate

consequence since the parameter space for δ precludes the possibility of a negative value.

One may wish to define an adjusted estimator as

δ̃ =

{
δ̂ , if δ̂ > 0

0 , if δ̂ < 0
.

At this point, we take up the problem of establishing bias parameter estimators having

the optimality properties of minimum variance unbiasedness and maximum likelihood. The

likelihood function for data y is written based on the full model as

L (θo|y) =
(
2πσ2

o

)
−n/2

exp

{
−

1

2σ2
o

(y − Xoβo)
′ (y − Xoβo)

}

= c (θo) exp

{
−

1

2σ2
o

(y′y) +

(
1

σ2
o

β ′

o

)
(X ′

oy)

}
,

where

c (θo) =
(
2πσ2

o

)
−n/2

exp

{
−

1

2σ2
o

β ′

o (X ′

oXo) βo

}
.

(Recall that the full model is of the same form as the true model.) Following the work

of Davies, Neath, and Cavanaugh (2006), we will show that δ̂m is the minimum variance

unbiased estimator of δ by making use of the Lehmann-Scheffe
′

Theorem. By Theorem 2.5.3

of Christensen (2002, pp. 31–32), T (y) = (y′y, X ′

oy) is a complete sufficient statistic. We

have seen that Eo

{
δ̂m

}
= δ. It remains to be seen that δ̂m is a function of the complete

sufficient statistic T (y).
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The unbiased estimator δ̂m is a function of the data y only through the statistic F ∗, which

in turn is a function of the data through the quadratic forms y′ (Ho − H) y and y′ (I − Ho) y.

Write

y′ (I − Ho) y = y′y − (Hoy)′ (Hoy) .

Noting C (X) ⊆ C (Xo) so that H Ho = H , we can write

y′ (Ho − H) y = y′Hoy − y′Hy

= (Hoy)′ (Hoy) − (Hy)′ (Hy)

= (Hoy)′ (Hoy) − (HHoy)′ (HHoy) .

Since y′y and Hoy = Xo (X ′

oXo)
−1 (X ′

oy) are functions of T (y), then δ̂m is a function of T (y).

Hence, we can conclude δ̂m is the minimum variance unbiased estimator for δ.

The maximum likelihood estimator for δ is derived from the maximum likelihood esti-

mators β̂o = (X ′

oXo)
−1 X ′

oy and σ̂2

o =
∣∣∣y − Xoβ̂o

∣∣∣
2

/ n. By applying the invariance principle,

we obtain

δ̂MLE =

∣∣∣Xoβ̂o − HXoβ̂o

∣∣∣
2

σ̂2
o

.

Since Xoβ̂o = Hoy and HXoβ̂o = HHoy = Hy, the numerator in δ̂MLE is the quadratic form

y′ (Ho − H) y. The denominator in δ̂MLE depends on the quadratic form y′ (I − Ho) y. To

see how the maximum likelihood estimator for δ can also be written as a function of F ∗, we

have

δ̂MLE =
y′ (Ho − H) y

y′ (I − Ho) y / n

=
n

n − po
(po − p) F ∗. (3.7)

The optimal point estimators for δ derived in this section can be written as functions of

F ∗. Therefore, we can account for estimator variability by developing a common distribution

theory using the distribution for F ∗ in (2.7). We do so in the next section in the development

of an interval estimator for model bias δ.

4. Frequentist Interval Estimation of the Bias Parameter

The accuracy of an estimator of model bias may be quantified by an interval estimator. A

common approach to developing an interval estimator is to include all parameter values which

are accepted by a corresponding two-sided hypothesis test. In particular, a (1 − 2α) 100%
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confidence interval for δ includes all values δ0 such that a level 2α test for H0 : δ = δ0 accepts

the null hypothesis. Under H0 : δ = δ0, the general linear test statistic is distributed as

F ∗ ∼ F (po − p, n − po, δ0) .

The upper-tailed p-value is given as a function of δ0 by

pvalue1 (δ0) = P [F (po − p, n − po, δ0) > F ∗] .

The lower-tailed p-value is given as a function of δ0 by

pvalue2 (δ0) = P [F (po − p, n − po, δ0) < F ∗] .

Define the function v as

v (δ0) = pvalue1 (δ0)

so that

1 − v (δ0) = pvalue2 (δ0) .

A level 2α test of H0 : δ = δ0 against HA : δ 6= δ0 accepts the null hypothesis if and only if

min {pvalue1 (δ0) , pvalue2 (δ0)} ≥ α. (4.1)

Now, pvalue1 (δ0) ≥ α is equivalent to v (δ0) ≥ α and pvalue2 (δ0) ≥ α is equivalent to

v (δ0) ≤ 1 − α. So condition (4.1) is equivalent to the condition

α ≤ v (δ0) ≤ 1 − α. (4.2)

Since v (δ0) is an upper-tail probability for an F distribution with noncentrality parameter

δ0, v (δ0) is an increasing function of δ0. This result, combined with (4.2), gives a clear

description of those values of model bias for which H0 : δ = δ0 is accepted. Therefore, we

have that a (1 − 2α) 100% confidence interval for δ is given by [δL, δU ] where

v (δL) = α and v (δU) = 1 − α. (4.3)

Solutions to the equations in (4.3) are not available in closed form, but solutions are read-

ily available using a numerical computation of the cumulative distribution function for a

noncentral F statistic.

We discussed in Section 2 how a test of a candidate model in the general linear hypothesis

is equivalent to a test of H0 : δ = 0 against HA : δ > 0. The null hypothesis is accepted here

at level α when the upper-tailed p-value for H0 : δ = 0 exceeds α. Then v (0) > α and there
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is no solution to the first equation in (4.3). In this case, we will take δL = 0 as the lower

bound for plausible values of the model bias. If v (0) > 1 − α, then there is no solution to

either equation in (4.3). The hypothesis H0 : δ = δ0 is rejected in favor of δ < δ0 for all

δ0 > 0. We define the resulting confidence interval in the limit as consisting of only the single

point {0}. Fortunately, this situation is unlikely to occur. A degenerate confidence interval

of a single point {0} for δ occurs when the F ∗ statistic is less than the 100αth percentile for

an F distribution with noncentrality parameter equal to zero. So even in the most extreme

case, the probability of observing an F ∗ which is not compatible to any bias parameter value

δ0 > 0 is less than α.

5. Bayesian Interval Estimation of the Bias Parameter

A Bayesian approach to inference on model bias is straightforward to implement. Our

goal, in general terms, is to quantify our information on model bias δ. The data, conditional

on the parameter vector θo, follows model (2.1). We can write this as

y | βo, σ
2

o ∼ Nn

(
Xoβo, σ

2

oI
)
.

In an effort to stay objective, we will take a noninformative prior on the parameters θo =

(β ′

o, σ
2

o)
′

, although it is not necessary to follow this convention if good prior information is

available. The posterior distribution updates easily (see Gelman et al., 2003, for example)

to become

βo | σ
2

o , y ∼ Npo

(
β̂o, σ

2

o (X ′

oXo)
−1

)
(5.1)

σ2

o | y ∼
n σ̂2

o

χ2 (n − po)
, (5.2)

where β̂o and σ̂2
o are the maximum likelihood estimators of βo and σ2

o , respectively.

For any candidate model, the bias parameter

δ =
|Xoβo − HXoβo|

2

σ2
o

is a function of the parameters βo and σ2

o , so the posterior distribution on δ is induced

from the distributions in (5.1) and (5.2). Since it is easy to generate outcomes from the

multivariate normal and chi-square distributions, the posterior distribution on model bias δ

can be described via simulation.

A (1 − 2α) 100% Bayesian confidence interval for model bias can be defined by taking

the lower and upper 100αth percentiles from the posterior distribution on δ as the lower and
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upper limits of the interval. Recall that the candidate model is preferred within the Gauss

discrepancy framework when the model bias is such that δ < (po − p). One can use the

posterior distribution on δ in deciding between a candidate model and the full model by

calculating P [δ < (po − p) | y].

6. An Application

In this section, we illustrate the use of bias estimation for model evaluation. We consider a

modeling application based on data from a cardiac rehabilitation program at The University

of Iowa Hospitals and Clinics. The data consist of measurements on n = 35 patients who have

had a myocardial infarction and have completed the rehabilitation program. The response

variable is the final score on a test that reflects the capability of the patient to physically

exert himself / herself. The score is in units of metabolic equivalents (METs). One MET

corresponds to the rate of oxygen consumption for an average person at rest. The input

variables include the patient’s initial score on this test. Additional input variables are the

patient’s age, the patient’s gender, an interaction for age and gender, and the patient’s

baseline body mass index (BMI), dichotomized based on whether BMI is greater than or less

than 30. (A BMI of 30 is the standard cutoff for obesity.) The research question is should

BMI be included as a predictor of a patient’s rehabilitation. The research question translates

into the statistical question of whether the input variable BMI carries enough information

on the response variable to warrant nonzero estimation of its regression coefficient.

The dimension of the full model is po = 6. A candidate model is formed by excluding

body mass index as an input variable. Then p = 5. According to the argument from

Section 2, the candidate model is preferred according to the overall Gauss discrepancy if

the bias introduced by the exclusion of input variable BMI is less than p0 − p = 1. That

is, the candidate model is preferred over the full model if δ < 1, where δ is the model bias.

The general linear statistic for testing the full model with input variable BMI against the

candidate model without input variable BMI is computed to be F ∗ = 2.319. We compute

the Cp estimator, the modified estimator, and the maximum likelihood estimator of the

bias parameter using (3.4), (3.6), and (3.7), respectively, as δ̂c = 1.319, δ̂m = 1.159, and

δ̂MLE = 2.799. Point estimates of δ suggest that the model bias is nonnegligible. A decision

between the full model and the candidate model based on the decision rule δ̂ > 1 leads one

to accept the model which includes input variable BMI. However, such a decision rule makes

no attempt to account for the variability inherent to an estimate of the bias parameter.

We investigate the uncertainty involved with this decision using the techniques developed in

Sections 4 and 5.
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The function v in expression (4.2) is defined for this problem as

v (δ0) = P {F (1, 29, δ0) > 2.319} .

Since v (0) = .139 exceeds α = .05, we set δL = 0. The frequentist confidence interval

includes zero bias as a plausible setting. Solving v (δU ) = .95 results in δU = 10.16. Thus,

the 90% frequentist confidence interval for δ is given by [0, 10.16]. The decision between the

candidate model (δ < 1) and the full model (δ > 1) within the Gauss discrepancy framework

is not decisive at the 90% confidence level as values for δ both smaller than 1 and larger

than 1 are plausible.

A Bayesian analysis of the problem leads to a similar conclusion. A 90% Bayesian confi-

dence interval computed using the simulated posterior is given as [0.04, 9.97]. The posterior

probability that the candidate model is preferred to the full model within the Gauss discrep-

ancy framework is computed using the simulated posterior to be

P [δ < 1 | y] = .2994.

The width of the confidence intervals is an indication of the variability present in this

model evaluation problem and illustrates how model selection based on a point estimator,

even one with optimality properties, can potentially be misleading. Mallows (1973) provides

a similar sentiment in a warning against the strict use of Cp as a model selection criterion.

Quoting from Mallows (1973):

“The device (Cp) cannot be expected to provide a single best equation when the data are

intrinsically inadequate to support such a strong inference. The greatest value of the device

is that it helps the statistician recognize the ambiguities that confront him (her).”

As we have seen in the application, a confidence interval which quantifies the uncertainty

involved in the estimation of model bias allows for a quantification of those ambiguities

which confront a statistician in this model evaluation problem. Although we still tend to

favor the full model in our application, the decision must be tempered in light of the present

uncertainty. Such a conclusion is not stated as a simple decision between the candidate

model and the full model, but is more appropriate in light of the information from the data.

7. Concluding Remarks

Alternate techniques have been proposed for quantifying the uncertainty involved with

the use of the Cp statistic for the purpose of model selection. Mallows (1973) considered

an approach based on simultaneous inference for all regression coefficients. The region for

accepting that a candidate model has zero bias, i.e., E (Cp) = p, is based on whether or
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not there exists a coefficient vector β contained within the Scheffé confidence ellipsoid that

satisfies the linear restriction for that candidate model. The decision rule can be expressed in

terms of a cut-off point on the magnitude of Cp−p. Gilmour (1996) presents an approach for

testing the bias of a candidate model simultaneously against all models with one additional

parameter. The test is based on a null distribution on the Cp statistic defined through the

maximum of independent F random variables. This null distribution is appropriate when

all inputs with nonzero coefficients have been included in the candidate model. In other

words, the null distribution is based on the candidate model having zero bias. Although

these approaches use the Cp statistic directly, the hypothesis being tested is the same as

that of the general linear hypothesis test discussed earlier. Namely, the tests of Mallows and

Gilmour are for whether a candidate model bias parameter is zero or not. These tests do

not address the issue raised in this paper, where we are interested in determining whether

a candidate model is better than a larger model based on its evaluation under the Gauss

discrepancy.

Model selection based on the Gauss discrepancy seeks to evaluate models from among

a candidate class according to ∆G (θo, p) = p + δ. Inference on ∆G (θo, p) for a candidate

model reduces to inference on its bias parameter δ. In the current paper, we have derived

point estimators of δ having the optimality properties of minimum variance unbiasedness and

maximum likelihood. We have also developed interval estimators for δ using both frequentist

and Bayesian approaches, allowing one to provide a measure of uncertainty in an estimate

of model bias. By reducing the model selection problem to the problem of estimating an

unknown bias parameter, we have developed approaches which are optimal in some sense,

and which allow for quantifying the uncertainty inherent to model selection.
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