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Abstract: The linear statistical model provides a flexible approach to quan-
tifying the relationship between a set of real-valued input variables and a
real-valued response. A scientifically relevant goal is to determine which input
variables have only a minor effect, or no effect, on the response. We show how
this decision can be framed as an estimation problem by defining a bias param-
eter for the linear statistical model. A Bayesian approach to estimating the
model bias leads us to an easily interpreted quantification of the uncertainty
inherent in a statistical decision.
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1. Introduction to the Linear Statistical Model

A common statistical problem involves the modeling of the relationship
between a set of real-valued input variables and a real-valued response variable.
For reasons both mathematical and natural, a linear function is often used
to describe this relationship. A random error term accounts for any non-
deterministic aspects of the association. For k input variables, write

yi = β0 + β1xi1 + . . . + βkxik + εi,

where x′
i = (1, xi1, . . . , xik) denotes the input vector and yi denotes the re-

sponse for the ith observation. We further take the usual assumption that the
stochastic component follows the Gaussian, or normal, distribution. That is,
εi ∼ N(0, σ2), where σ2 denotes the residual variance.

Full data consists of a collection of n independent observations

(x1, y1) , . . . , (xn, yn) .

In multivariate notation, we write the linear statistical model as

y = Xβ + ε, ε ∼ Nn(0, σ2I), (1)

where y = (y1, . . . , yn)
′ is the n× 1 response vector and β = (β0, β1, . . . , βk)

′ is
the p × 1 parameter vector, p = k + 1. Let

X =

⎡⎢⎣x′
1
...

x′
n

⎤⎥⎦
denote the n × p input matrix. We will assume rank(X) = p. Thus, the k
input variables carry no redundant information.

The development of linear statistical model distribution theory proceeds
conditional on the choice of an input matrix. So

y ∼ Nn(Xβ, σ2I),

a multivariate normal distribution with mean vector Xβ and covariance matrix
σ2I. Because convenient transformations can often be made on the original
variables to achieve linearity and normality, the linear statistical model pro-
vides a remarkably flexible approach to quantifying a relationship.

True values for the mean vector Xβ and the variance σ2 are unknown, and
must be estimated from the data. The principle of maximum likelihood yields
the estimators

X̂β = X(X ′X)−1X ′y (2)



and

σ̂2 =
1

n

∣∣∣y − X̂β
∣∣∣2 (3)

(see Christensen [2]). Let H = X(X ′X)−1X ′ denote the projection matrix

onto the column space C(X). The estimated mean response vector X̂β = Hy
is the vector restricted to C(X) that lies at a minimum distance from the
observed response vector y. The estimated variance is based on the squared
distance between the observed response and the restricted mean vector space.

Now consider a reduced model represented by

y = Xoβo + εo, εo ∼ Nn(0, σ2
oI), (4)

where Xo is an n × po design matrix such that C(Xo) ⊆ C(X). Let Ho =
Xo(X

′
oXo)

−1X ′
o denote the projection matrix onto the column space C(Xo).

Further, let

X̂oβo = Xo(X
′
oXo)

−1X ′
oy

= Hoy

and

σ̂2
o =

1

n

∣∣∣y − X̂oβo

∣∣∣2
be the maximum likelihood estimators of the parameters for the reduced model.

The reduced model is based on a subset of the available input variables.
The motivation is to remove those input variables having only a minor effect,
or no effect, on the response. This goal is scientifically relevant in that we
are determining those input variables which have a negligible or nonexistent
relationship with the response variable. The problem of determining whether
or not those input variables removed to form Xo are important can be stated
as a decision between the two models under consideration.

The statistical decision between a full model and a reduced model is typ-
ically stated as a hypothesis testing problem. In this paper, we show how a
decision rule can be framed as an estimation problem. We first show how the
overall quality of a model can reasonably be described through a single parame-
ter, called the bias δ. Next, we review some classical approaches to estimating
δ. Our current contribution is to introduce the notion of Bayesian analysis
within the linear modeling framework for the purpose of estimating the bias
parameter. A Bayesian approach allows for an easily interpreted quantification
of the uncertainty inherent in a statistical decision.

2. Definition of Bias Parameter

The expected squared error for the estimated mean response vector may
be defined as

Δ = E

{∣∣∣X̂oβo − Xβ
∣∣∣2} .



It can be shown (see, for example, Linhart and Zucchini [7]) that

Δ = σ2 (po + δ) , (5)

where

δ =
|Xβ − HoXβ|2

σ2
.

The bias δ represents the approximation error due to model misspecification
from the exclusion of input variables when defining the reduced model. Note
that δ is the squared distance between the true response mean vector Xβ and
the reduced mean space C(Xo), scaled by the residual variance. As the number
of parameters po increases with the number of input variables, the dimension
of the reduced mean space increases, so bias δ will decrease. If C(Xo) = C(X),
then δ = 0, indicating no model specification error.

The term σ2po represents the error due to estimation of the unknown pa-
rameters for a specified model. Inversely to approximation error, the estima-
tion error will increase as the dimension of the reduced mean space increases.
The goal is to select a model which balances estimation error and approxi-
mation error. A full model with many parameters may have negligible bias,
but since each parameter must be estimated, estimation error may be large.
Therefore, interest centers on the bias parameter δ for a reduced model which
includes only a subset of the available input variables.

Let ΔF and ΔR represent the expected squared errors for the full model
(1) and the reduced model (4), respectively. The bias for the full model is zero
because the full model includes all input variables. Then from (5),

ΔF = σ2p.

The only contribution to the expected squared error is the error from estimat-
ing the linear parameters of the full model. On the other hand,

ΔR = σ2 (po + δ) .

The expected squared error for the reduced model consists of both estimation
error and approximation error. It follows that ΔR < ΔF if and only if δ <
p− po. This implies that the reduced model is superior to the full model when
the bias is smaller than the difference in dimensions.

The values of p and po are known, but δ depends on the unknown param-
eters Xβ and σ2. Thus, linear model bias δ is itself an unknown parameter.
A rule for deciding between the full model and the reduced model is based
on δ̂, an estimate of δ. We will decide that the reduced model is preferred if
δ̂ < p − po. Otherwise, we will decide that the full model is preferred.



Mallows [8] was the first to investigate the estimation of δ. Write the
estimator of residual variance for the reduced model as

nσ̂2
o =

∣∣∣y − X̂oβo

∣∣∣2
= (y − Hoy)′ (y − Hoy)

= y′(I − Ho)y,

since Ho is a projection matrix and thus, symmetric and idempotent. One can
use the distribution theory for quadratic forms to show

E
{

nσ̂2
o

}
= σ2 (n − po + δ) .

We therefore have

E

{
nσ̂2

o

σ2
− (n − po)

}
= δ.

Mallows’ estimator of the bias is then obtained by replacing σ2 in the preceding
with an estimator σ̃2 that satisfies E{σ̃2} = σ2:

δ̂m =
nσ̂2

o

σ̃2
− (n − po). (6)

Specifically, σ̃2 = [n/(n − p)]σ̂2, which reduces the divisor of the maximum
likelihood estimator in accordance with the model dimension.

Although E{σ̃2} = σ2, E{δ̂m} �= δ, so the distribution of δ̂m is not cen-
tered at the targeted parameter. Fujikoshi and Satoh [4] introduce a corrected
estimator

δ̂c =
(n − p − 2) σ̂2

o

σ̂2
− (n − po − 2) (7)

so that E{δ̂c} = δ. Furthermore, Davies et al [3] prove that Var{δ̂c} is mini-

mized over the class of all estimators of bias δ with the property of E{δ̂} = δ.
Mallows type estimates, such as (6) and (7), are the standard approach to bias
estimation.

In the next section, we explore Bayesian methods for estimating the bias
δ.

3. Bayesian Approach

We first introduce some basic ideas behind Bayesian estimation. In general,
the purpose of statistical inference is to draw conclusions about an unknown
parameter θ. Bayes rule states that from a prior distribution, p (θ), and a
distribution for the data, p (y|θ), we can calculate a posterior distribution as

p (θ|y) =
p (θ) p (y|θ)

p(y)
,



where p (y) =
∫

p (θ) p (y|θ) dθ. The prior distribution models subjective in-
formation about θ prior to data observation, while the posterior distribution
models all information about θ, both subjective and observed.

Since data y is observable and constant within the posterior distribution,
we can write Bayes rule as a proportionality

p (θ|y) ∝ p (θ) p (y|θ) ,

or
posterior ∝ prior × likelihood.

A criticism of the Bayesian approach is that the use of prior information
destroys the scientific integrity of the analysis. One can answer this criticism
by using what is called a noninformative prior. Essentially, the proportionality
then becomes

posterior ∝ likelihood,

so Bayesian analysis is comparable to likelihood based inference.
We now focus on Bayesian methods for the general linear model. The data

is distributed as
y|Xβ, σ2 ∼ Nn

(
Xβ, σ2I

)
.

It can be shown (Gelman et al [5]) that under a noninformative prior on the
unknown parameters Xβ and σ2, the posterior distribution can be described
as

Xβ|σ2, y ∼ Nn

(
X̂β, σ2H

)
(8)

and

σ2|y ∼ nσ̂2

χ2
n−p

(9)

where X̂β and σ̂2 are defined in (2) and (3). The bias

δ = |Xβ − HoXβ|2 /σ2

is a function of Xβ and σ2, so its posterior distribution can be induced from
the distributions in (8) and (9).

Simulating values from the posterior distribution is a simple and logical ap-
proach to describing what is known about the bias δ. It is straightforward to
generate random variates from the multivariate normal and chi-square distri-
butions (see, for example, Bickel and Doksum [1]). An algorithm for generating{
δ(k) : k = 1, . . . , N

}
is given as follows.

Algorithm A
(1) Generate (Xβ)(k) from (8).

(2) Generate (σ2)(k) from (9).



(3) Set δ(k) =
∣∣∣(Xβ)(k) − Ho (Xβ)(k)

∣∣∣2 / (σ2)(k).

Repeat for k = 1, . . . , N .

A clear advantage of the Bayesian method over the Mallows type estima-
tors described in Section 2 is that Bayes provides a well-defined measure of
uncertainty. Rather than merely a point estimate, the posterior distribution
for δ represents a multitude of possibilities. Such a description is imperative
when accounting for the uncertainty in a statistical decision.

4. An Application

In this section, we illustrate the use of bias estimation for model selection.
Kutner et al [6] present data on survival in patients undergoing a particular
type of liver operation. The pool of input variables include

X1 a blood clotting score,
X2 a prognostic index,
X3 an enzyme function test score,
X4 a liver function test score.

The response variable Y is survival time adjusted for age and gender. Input
variables X1, X2, X3 can be measured without excess discomfort to the patient,
whereas input variable X4 requires a more invasive procedure. Focus is on the
need for inclusion of input X4, the liver function score, for predicting patient
survival time after surgery. The full model is given as

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi.

The reduced model is then

yi = βo0 + βo1xi1 + βo2xi2 + βo3xi3 + εoi.

The sample consists of n = 54 patients. Each of the input variables shows
a pairwise correlation with response. But since the input variables are inter-
correlated as well, our decision is whether or not the liver function score carries
significant information beyond that of the three other input variables.

The dimensions of the models are p = 5 and po = 4. According to the
argument from Section 2, the reduced model is better than the full model if
the bias introduced by the exclusion of input X4 is less than p− po = 1. That
is, the reduced model is better than the full model if δ < 1.

Summary calculations yield∣∣∣y − X̂β
∣∣∣2 = 3.084 ,

∣∣∣y − X̂oβo

∣∣∣2 = 3.109.

From equation (7), we calculate the bias estimate as δ̂c = −0.619. This il-
lustrates an unfortunate consequence of Mallows type estimators of bias. Al-
though δ is necessarily nonnegative, there is a possibility that its estimate will



be negative. It is unclear how one should proceed in this situation. A common
recommendation is to set δ̂ = 0 and conclude that the reduced model exhibits
zero bias.

The Bayesian approach will not suffer from the deficiency of estimates
outside of the parameter space. As described in Section 3, we are able to
simulate a multitude of possibilities for the true bias δ. Figure 1 contains
a histogram for

{
δ(k) : k = 1, . . . , 5000

}
generated according to Algorithm A.

Note that although the greatest likelihood is for δ near zero, there is still a
non-negligible chance that the bias is much larger. We can use the simulated
values to quantify inferential claims using probability. For example, define a
90% credible interval (L, U) for δ as

P
[
L < δ(k) < U

]
= .90.

We calculate L = 0.0045 and U = 4.0113. Instead of a single estimate of
exactly zero bias, a range of plausible outcomes is provided.

Figure 1. Histogram for
{
δ(k) : k = 1, . . . , 5000

}
.



The key to our decision between the reduced model and the full model is
the event

[ΔR < ΔF ] ⇐⇒ [δ < 1] .

From the simulation, we calculate

P
[
δ(k) < 1

]
= .6732.

The reduced model is selected over the full model (the liver function score is
not needed as an additional input variable), but the selection is more tempered

than the Mallows’ point estimate δ̂ = 0 would lead us to believe.
Bayesian inference provides a useful method for quantifying the uncertainty

about the true value of the unknown bias parameter. Hence, we are better able
to quantify our model selection decision.
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