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Abstract

Following the work of Hurvich, Shumway, and Tsai (1990), we propose an “improved” variant of the
Akaike information criterion, AICi, for state-space model selection. The variant is based on Akaike’s
(1973) objective of estimating the Kullback-Leibler information (Kullback 1968) between the densities
corresponding to the fitted model and the generating or true model.

The development of AICi proceeds by decomposing the expected information into two terms. The first
term suggests that the empirical log likelihood can be used to form a biased estimator of the information;
the second term provides the bias adjustment. Exact computation of the bias adjustment requires the
values of the true model parameters, which are inaccessible in practical applications. Yet for fitted models
in the candidate class that are correctly specified or overfit, the adjustment is asymptotically independent
of the true parameters. Thus, in certain settings, the adjustment may be estimated via Monte Carlo
simulations by using conveniently chosen simulation parameters as proxies for the true parameters.

We present simulation results to evaluate the performance of AICi both as an estimator of the
Kullback-Leibler information and as a model selection criterion. Our results indicate that AICi estimates
the information with less bias than traditional AIC. Furthermore, AICi serves as an effective tool for
selecting a model of appropriate dimension.

Keywords: AIC, Kullback-Leibler information, Kullback’s directed divergence, state-space model, time
series analysis.



1 Introduction

In many time series applications, an investigator must choose an appropriate model to characterize the
sample data. This determination should ideally be guided by scientific theory, but the researcher may also
be well served by a data-driven selection method. To this end, Akaike (1973, 1974) introduced the Akaike
information criterion, AIC, which discerns how “close” a fitted model is to the generating or true model.
Akaike’s work stimulated many other approaches to model selection, leading to the development of criteria
such as SIC (Schwarz 1978), BIC (Akaike 1978), and HQ (Hannan and Quinn 1979).

Extending Akaike’s original work, Sugiura (1978) proposed AICc, a corrected version of AIC justified
in the context of linear regression with normal errors. The development of AICc was motivated by the
need to adjust for AIC’s propensity to favor high-dimensional models when the sample size is small relative
to the maximum order of the models in the candidate class. Hurvich and Tsai (1989) show that AICc
dramatically outperforms AIC in small-sample regression settings, and further extend AICc to include uni-
variate Gaussian autoregressive models. Hurvich, Shumway, and Tsai (1990) generalize AICc to encompass
univariate Gaussian autoregressive moving-average models, and Hurvich and Tsai (1993) handle the vector
Gaussian autoregressive case. The demonstrated effectiveness of AICc in these settings motivates the need
for a corrected or improved variant of AIC for state-space models.

Apart from Cavanaugh and Shumway (1997), who justify and investigate a bootstrap-based version of
AIC, the development of model selection criteria expressly designed for state-space applications has received
little attention in the literature. With respect to proposing a corrected variant of AIC in the state-space
setting, one particular challenge is posed by the very generality of the model, which includes as special cases
autoregressive, ARMA, and structural models. That is, the strategy commonly employed in the derivation
of corrected versions of AIC — to consider a more limited modeling framework — clearly opposes the inclusive
nature of the state-space class. Hence, it may prove difficult to conceive of a general state-space model
formulation that is also sufficiently restrictive (in terms of the structure of the model and the distribution
of the underlying data) to facilitate the justification of a corrected AIC. Nevertheless, the development of
a corrected AIC for general state-space model selection would permit the comparison of different types of
models, such as autoregressive integrated moving average (ARIMA) models and additive models involving
stochastic trend and seasonality (cf. Harvey and Todd 1983, Kitagawa and Gersch 1984). Such a criterion
would therefore be very appealing.

Motivated by the preceding notion, we propose a variant of AIC that achieves the same degree of ef-
fectiveness as AICc, but which can be used within the broad framework of the linear state-space model.
This variant, called the “improved” Akaike information criterion or AICi, is based on an idea advanced by
Hurvich, Shumway, and Tsai (1990) in the context of univariate Gaussian autoregressive models. The crite-
rion involves the same goodness-of-fit term as AIC, yet features a penalty term that arises via a simulated

bias correction. This developed bias adjustment can be justified and applied in a very general context. The



resulting AIC variant fulfills our objective of obtaining an effective model selection tool for the state-space
setting.
In what follows, we outline the development of AICi for state-space applications, and investigate the

performance of the criterion in a simulation study.

2 The State-Space Model: Background and Notation

A linear state-space process y, can be represented by two sets of equations:

Vi = Axy + V¢, and

x; =Px; 1 +wy, fort =1,2,...,7T. (1)

In (1), the design matrix A; relates the unobserved ¢ x 1 state vector x; to the p x 1 observed vector y;,
while the transition structure ® relates x; to its previous value x;_; via an autoregression. The vectors v;
and w; represent mutually and serially uncorrelated zero-mean error processes with covariance structures R
and Q, respectively. The model assumes a prior distribution for xo with E(xq) = p and cov(x¢) = X. The
state xo is taken to be uncorrelated with v; and w; for all . We assume normality of both error processes
as well as for xg.

Let ® = {u, X, ®,Q, R} denote the set of parameters for (1), and let Y! = (y},y5,...,y})" and X! =
(x4, %, ..,x}) represent vectors of observed data and unobserved states. The preceding notation and setup
for the state-space model is identical to that of Shumway and Stoffer (2000, p306), and makes implementation
of the EM algorithm for estimation of ® straightforward.

Of primary concern in state-space modeling is the recovery of the unobserved states in X”. Prediction
of x; using Y*~! is referred to as one-step prediction, and prediction of x; using Y?! is referred to as
filtering. One-step prediction of x; is accomplished by calculating the conditional mean E(x;|Y!™!), here
denoted %;(®,Y!"1). Similarly, filter prediction of x; is accomplished by calculating E(x;|Y?), denoted
%:(®,Y?). Under the previously mentioned assumptions on xg, v¢, and w;, the conditional means are the
best predictors of x;; in the case of non-normal error processes, the conditional means are the best linear
predictors of x;. For a given data and parameter structure, the one-step predictors x;(®,Y? 1) and the
filters x;(®, Y?) are generally obtained through the forward Kalman filter recursions (Kalman 1960). These
recursions also generate the innovations e; (0, Y?) = y; — A, E(x;|Y!~!) along with their covariance matrices
31(0) = E{e;(©,Y!)e (0, Y}

The Kalman recursions assume that © is known; realistically, however, estimates of the unknown pa-
rameters in @ will be needed. Estimates are usually obtained using maximum likelihood (ML), where the
likelihood is formulated based on the innovations (see Schweppe 1965). In the simulations presented in
section 5, we use the EM algorithm method of ML estimation, adapted to the state-space framework by

Shumway and Stoffer (1982).



3 Kullback’s Directed Divergence, AIC, AICc, and AICi

A well-known measure of separation between two densities is the Kullback-Leibler information, also known
as the directed divergence (Kullback 1968). Here we use the directed divergence as a tool for choosing a
fitted model that matches as closely as possible the one that presumably generated the data. Specifically, our
approach follows Akaike’s (1973) strategy of minimizing the separation between the densities corresponding
to a fitted model and the true model. We now formalize the notion of selecting a fitted model from a
candidate class. (In what follows, for notational simplicity, we write Y to mean Y7.)

Suppose the data Y is sampled according to an unknown parametric density f(Y|®yp), where ®¢ repre-
sents the generating (or true) parameter structure. Let (k) denote a k-dimensional parameter space, and
let F(k) = {f(Y|O)|O®r € Q(k)} denote a corresponding parametric family of densities. Further, let o
denote the parameter estimate obtained by maximizing the likelihood function f(Y|®y) over Q(k), and let
f(Y|®) represent the resulting empirical likelihood.

Our goal is to search among a class of families F = {F(k1),F(k2),...,F(kr)} for the fitted model
f(Y|@k), k € {ky,ko,...,kL}, that best approximates f(Y|®y). We note that in many applications, some
of the families in the class F may have the same dimension and yet be different. For ease of notation, we do
not include an index to delineate between such families.

We refer to f(Y|®p) as the true or generating model, and to f(Y|®y) as an approximating or candidate
model (provided that @ # Oy). If f(Y|®) € F(k), and F(k) is such that no smaller family will contain
f(Y|®y), we refer to f(Y|(:)k) as correctly specified. If f(Y|®g) € F(k), yet F(k) is such that families
smaller than F(k) also contain f(Y|®g), we say that f(Y|C:)k) is overfit. If f(Y|®q) & F(k), we say that
f(Y|@k) is underfit.

To determine which of the fitted models f(Y|(:)k1),f(Y|@k2), . .,f(Y|(:)kL) best resembles f(Y|®o),
we need a measure that gauges the disparity between the true model f(Y|®g) and an approximating model
f(Y|®). To this end, we consider the Kullback-Leibler information between f(Y|®,) and f(Y|®), given
by d(®y,0®) = E[log{f(Y|®,)/f(Y|®)}]. Here and in our subsequent development, E(-) denotes the
expectation under f(Y|®p).

Letting §(®9, ®) = E{—-2log f(Y|O®)}, we express 2d(@g, ®) by the difference §(®g, ®) — §(O¢, Oy).
Since 0(®g, Og) does not depend on O, any ranking of a set of candidate models corresponding to d(®g, )
would be identical to a ranking corresponding to 6(®g, ®). Thus, for model selection purposes, we may use
0(®g, ®) as a substitute for d(@y, ®).

Now, for a given maximum likelihood estimate (:)k, the exact divergence between the true model and
the fitted model is indicated by 0(®y, @k) However, computing §(®y, (:)k) would require the true density
f(Y|®y), and is for obvious reasons not possible. Addressing the lack of knowledge of ®¢, Akaike (1973)
noted that —210gf(Y|(:)k) serves as a biased estimate of §(®g, ®;), and that the bias adjustment

Br(k, ©) = E[5(®, ©)) — {—2log f(Y|O)}] (2)



can often be approximated by 2k. Specifically, if the following two assumptions are met, one can establish

that Br(k,®) converges to 2k as T tends to infinity (e.g., see Cavanaugh 1997, p204).
(a) The fitted model is either correctly specified or overfit; i.e., f(Y|®q) € F(k).

(b) A set of regularity conditions holds that will ensure the conventional asymptotic properties of the

maximum likelihood estimator @k.

Under assumptions (a) and (b), it follows that the expected value of
AIC = —2log f(Y|®y) + 2k

should asymptotically approach the expected value of §(®y, C:)k) Hence, for large samples, model selection
based on AIC should lead to fitted models f (Y|@k) which are, in the sense of the average Kullback-Leibler
information, closest to f(Y|®y).

The approximation to the bias adjustment Br(k, ®¢) by 2k is derived under fairly general assumptions
and makes AIC applicable to many different statistical frameworks. However, because the approximation
holds only for large samples, the utility of AIC in small-sample settings may be limited. For instance, with
regression and autoregressive models, Hurvich and Tsai (1989) show that as k increases relative to the sample
size T', AIC becomes increasingly negatively biased. The negative bias of AIC in small-sample applications
often results in severe overfitting. One solution to this problem is to impose a strict cut-off for the maximum
dimension to be considered in the model search. However, this approach is rather arbitrary and has no
theoretical basis. An alternative strategy is to develop model selection criteria with better small-sample bias
properties than AIC. As indicated previously, this is often achieved by considering only fitted models in a
restricted candidate class.

In the context of normal linear regression where f(Y|®¢) € F(k), Sugiura (1978) shows that the bias
adjustment (2) is exactly equal to Br(k,®g) = 2Tk/(T — k — 1), where the rank of the design matrix
corresponds to (k — 1). Thus, for a particular fitted model, an exactly unbiased estimator of §(®g, (:)k) is

obtained by evaluating
2Tk

AICc = —2log f(Y|Oy) + e

AICc may be used in univariate Gaussian autoregressive applications to select the order (k — 1) of the
autoregression, but in such contexts the bias correction 2Tk/(T — k — 1) is not exact and AICc is only
asymptotically unbiased for §(®g, ®y,). However, Hurvich and Tsai (1989) demonstrate that the criterion
performs well in small-sample simulations. Further, they show that when the dimension of the largest model
in the candidate class is large compared to the sample size, AICc does not suffer from the severe overfitting
tendencies that often plague AIC.

To address the bias of AICc in autoregressive modeling applications, Hurvich, Shumway, and Tsai (1990)

propose AICi as a refinement of AICc. AICi is based on the premise that the bias adjustment By (k, ®¢) only



loosely depends upon the true parameter @¢. Specifically, when assumptions (a) and (b) hold, Br(k, ®¢)
converges to 2k, implying that the dependence of the bias adjustment on ®( diminishes as the sample size
tends to infinity. In such instances, it should be possible to accurately approximate the bias adjustment
expressed in (2) via Monte Carlo simulation using an arbitrary but convenient choice of a parameter in place
of ®g. To clearly distinguish the parameter used for simulations from the true (but unknown) parameter
®p, we denote the choice of the simulation parameter by @,. Although the simulated approximation
is only guaranteed to be near By (k,®y) for large T', in small to moderate sample-size applications, the
approximation yields a more accurate estimate of Br(k,®¢) than 2k. This claim is supported both by the
simulation results that follow and by those reported in Hurvich, Shumway, and Tsai (1990).
The criterion AICi is then obtained by evaluating

AICi = —2log f(Y|Oy) + Z (©5,04(j)) — {—2log f(Y|Or (i)},

where {O4(1),04(2),...,0(M)} represent a set of estimates based on M samples generated under model
(1) with ©4 as the parameter.

We now outline the development of AICi for the state-space framework.

4 Development of AICi for the State-Space Model

The derivation of AICi proceeds by decomposing the expected directed divergence E{4(®y, (:)k)} into two
terms. The first term suggests that the empirical log likelihood can be used to form a biased estimator of the
directed divergence, and the second term provides the bias adjustment. As indicated in the previous section,
under assumptions (a) and (b), the bias adjustment is asymptotically independent of the true parameter ©y.
It can therefore be estimated via Monte Carlo simulation by using an arbitrary simulation parameter @, as
a proxy for ®¢. Based on the true parameter @, we now develop explicit forms of the directed divergence
and bias adjustment for models defined by (1). A convenient simulation parameter @ is then chosen to
simplify the obtained divergence and bias expressions, and the simplified forms are used in simulations to
estimate the bias adjustment By (k, ®y).

Using the innovations form of the likelihood, we have

T
—2log f(Y|©®) Zlog|2t Z (0, YH'271(@)e (O, Y. (3)

(Here and throughout our development, we have ignored the constant involving 27.) When evaluated at
the MLE (:)k, properties of the multivariate Gaussian distribution can be used to simplify the empirical

log-likelihood (e.g., Johnson and Wichern 1998, p180-181). We have

T
—2log f(Y|®) = Y log|=4(O)| + Tp, (4)
t=1



where p denotes the dimension of the innovations.
From (3), it follows that the directed divergence between the true model f(Y|®g) and the candidate
model f(Y|®) is given by

T T
5(@,0) = log|T¢(O)| + > E{e:(©,Y")E, 1 (©)er(©,Y")}.

t=1
Using the mean and covariance properties of e;(®g, Y!) under the model defined by f(Y|®y), the preceding

can alternatively be expressed as

T T
500,0) = Y log|=i(0) + 3 tr{E:(00)%;}(©)}
t=1 t=1
T
+ 3 E[{e(®,Y") — (@0, Y=, (©){er(©,Y") - e(€0, Y1)} . (5)
t=1
When evaluated at ® = C:)k, 0(®g, ®) yields the directed divergence between the true model and the
fitted model; 6(®y, (:)k) thereby reflects the separation between f(Y|®g) and f(Y|(:)k).
In the interpretation of 6(®y, @k), ®,, is viewed as fixed. Linhart and Zucchini (1986, p11) indicate that
a measure such as §(@p, C:)k) “expresses the magnitude of the lack of fit due to sampling variation.” To
account for this variation, we may consider averaging 6(®,, (:)k) over different values of C:)k arising from its
sampling distribution. The resulting measure, the expected directed divergence E{0(®y, @k)}, reflects the
average separation between the true model and those fitted models having the same structure as f(Y|@k)
The expected directed divergence E{4(®y, (:)k)} involves a two-stage, nested expectation. For the first
stage (the inner expectation), as indicated by (5), we average over the distribution of Y to obtain §(®g, ®).
We then consider evaluating 6(®g, ®) at the estimator ® = (:)k, thereby obtaining the random variable
0(®y, @k) For the second stage (the outer expectation), we average §(®y, @k) over the sampling distribution
of ®, to obtain E{5(Og, O)}.
For conceptual clarity, this two-stage expectation may be represented as a single expectation by intro-
ducing a data vector Y, that is independent of Y yet shares the same distribution as Y. (See, for instance,

Shibata 1997, p376.) With Y. defined accordingly, by (5), E{§(®y, (:)k)} may be expressed as

T T
E{6(©0,01)} = > E{log|=i(0))[} + > Eltr{%:(©)%;,(0)}]

:1T t=1
+ 3 B[{ed(®r, Y1) — (@0, YOV (O1){er(Or, Y1) — (@0, YD} (6)

In the preceding, the expectation jointly averages over both the distribution of Y, and the sampling distri-
bution of O, (as governed by the distribution of Y).
Now consider using —2log f (Y|(:)k) as an estimator of the directed divergence §(®y, (:)k) For the ex-



pectation of §(Oy, (:)k), we can write

E{3(@0,0)} = E{-2logf(Y|O4)} + E[3(O,0y) — {~2log f(Y|O))}]
= E{-2log f(Y|®)} + Br(k, ©p).

This decomposition suggests that —2log f(Y|(:)k) serves as a biased estimator of the directed divergence,

with bias adjustment provided by Br(k,®y). Using (4) and (6), we have

T
Br(k,©) = —Tp+ Yy E[tr{Z(0)Z; " (Ox)}]
. t=1 X X X
+3° E[{ed(®4, Y1) — (@0, YOS, (@) (@1, Y — (@0, YOI (1)

As previously discussed, the bias adjustment is asymptotically independent of the unknown parameter
®p. Br(k,®,) may therefore be approximated via Monte Carlo simulation using a conveniently chosen
simulation parameter @;. Following Hurvich, Shumway, and Tsai (1990), we aim to specify a simulation

parameter which ensures that the process y; is Gaussian white noise: i.e., y; i N(0,I),t=1,2,...,T.

With y; %l N(0,I), it follows that

)

(05, Y") =y — Axi(0,, Y ) =y — E(ye|[Y'™) = yu,
and
3(0;) = E{et(@s;Yt)et(@s,Yt)l} = E(ytyllf) =1,
where the expectations are taken with respect to f(Y|®;). Substituting these expressions into (7) yields

T
Br(k,®,) = -Tp+)Y Eltr{S;"(©:)}]

. =1
+ > E[{A&(O4, Y)Y ET (O4){ A (O, YT} (8)

The penalty term of our criterion is then obtained by simulating the two sums in (8). Specifically, suppose
Y(1),Y(2),...,Y(M),Y.(1),Y.(2),...,Y.(M) represent 2M vectors of data generated with y; % N(0,T).
Then, with (:)k(l), @k(2), e (:)k(M) representing the ML estimates corresponding to Y (1), Y(2),..., Y(M),
the quantity

M
Brho,) - —Tprt z(zn«{z RGN

T
+ > HAX(Ok(7), Y ()Y E7H (O () { Ak (O (), Y (5 ))}]> 9)

provides a Monte Carlo approximation to (8).
AICi is now obtained by
AICi = —2log f(Y|©y) + Br(k, ©,). (10)



The penalty term of AICi, ET(k,G)S), serves as a Monte Carlo approximation to (8), which should be
asymptotically equivalent to the bias adjustment (7) under the assumptions given in section 2.

We emphasize that the developments leading to (9) can be adapted to accommodate a more general
framework of the state-space model, allowing for covariates and correlated error processes (e.g., de Jong

1989).

5 Simulations

In what follows, we present simulation results to evaluate the performance of AICi both as an estimator of the
Kullback-Leibler information and as a model selection criterion. We consider two settings. In the first, the
candidate class consists of models where the state process is a univariate autoregression. In the second, the
class is comprised of models where the state process is an additive combination of a univariate autoregression
and a seasonal component. In both settings, the goal is to choose the order of the autoregression.

For each candidate class of interest, the penalty term of AICi is computed via simulation for various
model orders, and the resulting values are tabulated and later used in the evaluation of (10).

Next we outline the computation of the penalty term, then present and summarize our simulation results.

5.1 Penalty Term Computation

As emphasized by Hurvich, Shumway, and Tsai (1990), once values of the penalty term of AICi are tabulated
for a given candidate class, AICi may be conveniently evaluated for any application involving that class. We
now describe the computation of §T(k, 0O,) for each candidate class employed in the simulations.

In our first candidate class of models, the state process is a univariate Gaussian autoregression z; of order
p. The observed process y; consists of the state-process z; corrupted by additive observation noise v;. The

resulting state-space process can be characterized by two sets of equations:

Yt = 2t + U,

2t = QP12i-1 + P22t—2 + ...+ Ppzi_p + €t (11)

Here, v; < N(0,0%) and € o N(0,05). We shall denote such a state-space process by ARN(p).

Model (11) is put in the general state-space form of (1) by writing the observation equation as

Yt = (1 o --- 0) . +Ut, (12)



and the state-equation as

Y1 P2 $p-1 Pp
2t 1 0 0 0 Zt—1 €t
21 Zp_2 0

=|0 |+ (13)
won) \g g1 o)\ A0

Here, the transition structure @ is as defined in (13), Q is a p X p matrix with all zero entries except for the
entry in the upper left-hand corner, which is 03, and R = 0.

Our first simulation sets are based on a sample size of T = 18 and consider a candidate class of ARN(p)
models of orders 1 through 10. Thus, we compute ten values of §T(k, ®,) corresponding to T = 18 and
p=12...,10 (k = p+ 2). For a given model order, we evaluate ET(k,G)S) via (9) based on M =1000
replications. The estimates ©y(j) are obtained using 100 iterations of the EM algorithm.

The simulated values of the penalty term ﬁT(k,Gs) are given in Table 1. In our first collection of

simulation sets, we make use of these values in evaluating AICi via (10).

Order, p 1 2 3 4 5 6 7 8 9 10
By(k,®,) | 5.7 | 86 | 11.4 | 15.6 | 19.5 | 294 | 48.9 | 65.8 | 111.2 | 217.8

Table 1: AICi penalty term for ARN(p) models, T' = 18.

In our second candidate class of models, the state process is an additive combination of (i) a univariate
Gaussian autoregression z; of order p, and (ii) a seasonal Gaussian process s; of known periodicity d. The
observed process y; consists of the state process z; + s; corrupted by additive observation noise v;. The

resulting state-space process can be characterized by three sets of equations:

Yt = 2t + St + v,

2t =121+ Q2282+ ...+ Qpzp t+ €,

St = —St—1 — St—2 — ... — St—d+1 + Nt (14)
Here, v; < N(0,0%), & w N(0,0%), and 7 u N(0,07), We shall denote such a state-space process by
ARSN(p, d).

Note that the seasonal component can easily be written in the form of the state equation in (1):

St 1 o --- 0 0 St—1 Nt
o o 1 oY (15)
St—d+2 : w0 St—d+1 0
0 -~ 0 1

Since the state process consists of structures that correspond to specific attributes of the underlying

phenomenon, a model such as (14) is often referred to as structural. With (14), the structures are z, a



process for which the dynamics are governed by the autoregressive parameters o1, @2, ..., ¢p; and s¢, a non-
stationary process that cycles through d “seasons” each “yearly” period. Harvey (1989) details econometric
models with d = 4, for quarterly measurements, and d = 12, for monthly measurements.

To put (14) in state-space form, let x; = (2¢,...,2t—p, St,- .-, St—a+2), A1 be the observation operator
used in (12), and A, be a 1 x (d — 1) vector defined as (1,0, ...,0). The observation equation can then be
written as

yr = (A1 Az) x¢ + vy (16)

Here, we let R = ¢%. For the state equation, let the (p +d — 1) x 1 vector v, be defined as v, =
(e1,0,...,0,m,0,...,0), and let ®; and ®, be the transition structures used in (13) and (15), respectively.

The state-equation can then be written as

P 0]
X; = <()1 ¢2> Xt1+ Vs (17)

For the objects in (1), ® is as given in (17), with Q defined as follows. Let Q; be a p X p matrix with all zero
entries except for the entry in the upper left-hand corner, which is 0'22. Similarly, let Q2 be a (d—1) x (d—1)
matrix with all zero entries except for the entry in the upper left-hand corner, which is 0727. Then, Q can be

defined as the (p+d —1) x (p+ d — 1) matrix

o= (% o) (19)

Our second simulation sets are based on a sample size of T = 18 and consider a candidate class of
ARSN(p,4) models of orders 1 through 10. Again, we compute ten values of gT(k, ®,) corresponding to
T=18and p=1,2,...,10 (k = p+ 2). For a given model order, Br(k, ®,) is evaluated via (9) based on
M=1000 replications. The estimates @k(j) are obtained using 100 iterations of the EM algorithm.

The simulated values of the penalty term ﬁT(k:, ©®,) are given in Table 2. In our second collection of

simulation sets, we make use of these values in evaluating AICi via (10).

Order,p | 1 | 2 | 3 1 5 6 7 ) 9 10
Br(k,©,) | 48 | 7.6 | 11.0 | 21.8 | 36.61 | 59.8 | 186.8 | 4128.1 | 5493.4 | 13789.9

Table 2: AICi penalty term for ARSN(p,4) models, T' = 18.

5.2 Simulation Settings

We compile six simulation sets, two based on candidate ARN(p) models and four based on candidate
ARSN(p,4) models. The generating models are listed in Table 3. In sets I, III, V, and VI, the gener-
ating processes are ARN(2), ARSN(2,4), ARSN(1,4), and ARSN(2,4), respectively. Sets IT and IV are based
on a generating process where the autoregression has the form z; = p3z; 3 + €. In set II, the model is of

the ARN structure (11); in set IV, the model is of the ARSN structure (14) with d = 4.

10



For the noise variances, we set 0 = 0.1, 0y = 1.0, and ¢, = 0.1. These variances lead to signal-to-noise
ratios that are common in practice. In each simulation set, 1000 realizations of size T' = 18 are generated,
and for every realization, candidate models based on autoregressions of order 1 through 10 are fit to the

data.

| Set | State-Space Model |
I Ye = 2t + v, 2t =.992: 1 — .80zt 2 + €.
II. Y = 2t + ¢, 2t = —.902¢_3 + €.
IIL. | ys =2t +s¢+vg, 2¢ =.992; 1 — .80zt 2 + €.
IV. Yt = 2t + 8¢ +vg, 2t = —.902¢—3 + €.
V. Yt = 2t + St + v, 2t = —.80z1_1 + €.
VI Yt = %t + St + Uty 2t = 1-402t71 - -492t72 + €.

Table 3: Models for simulation sets.

In addition to AICi, the other criteria considered in the simulations are FPE (Akaike 1969), SIC, BIC,
HQ, AIC, and AICc. The complete set of criteria is listed below. In the definitions, k = p+ 2, and 52 equals

the estimate of the steady-state innovations variance, i.e., 62 = Et((:)k) for “large” t.

AIC = —2log f(Y|©y) + 2k,

~ 2T (p+1
AlICc = —2log f(Y|®Ox) + T_(pip_;’
(T - p)

HQ = —2log f(Y|Oy) + 2klog(log T),

T ~
(Et:1 ytZ) - T5?
+ plog , and

~2

BIC = (T — p) log <TT”

p

SIC = —2log f(Y|®y) + klogT.

(The version of AICc used here is based on the definition provided in Hurvich, Shumway, and Tsai 1990.)

Since the development of AICc, FPE, HQ, and BIC do not extend in any obvious manner to the ARN(p)
or ARSN(p, d) frameworks, it should be emphasized that their application in the present setting is somewhat
ad-hoc. However, the performance of these criteria (as well as AIC and SIC) will provide a useful baseline
with which to evaluate the effectiveness of AICi.

For each of the AIC-type criteria (AICi, AICc, and AIC), the average criterion value over the 1000
realizations is computed for each of the candidate model orders 1 through 10. Also, since the true parameters
are known (see Table 3 and the associated variances), the value of E{6(®y, @k)} can be simulated for each
model order. This allows us to plot the criterion averages and simulated values of E{§(®, ®)} against
the model orders, and enables us to judge the relative effectiveness of the criteria as unbiased estimators of
5(©q, Op).

Next we present the results of our simulation sets.

11



5.3 Simulation Results

The order selections from our six simulation sets are presented in Tables 4 through 9. For a given criterion,
each cell entry shows the number of times (out of 1000) a certain model order is chosen. For simulation
sets T and III, Figures 1 and 2 feature plots of the criterion averages for AICi, AICc, AIC, and the simulated
values of E{0(®y, (:)k)}

In sets I and II, the candidate class consists of models where the state process is a univariate autore-
gression. As shown in Table 4, AICi and AICc obtain the most correct order selections in set I. However,
AICc chooses models that are excessively overparameterized more often than AICi, and our criterion slightly
outperforms AICc in this regard. The remaining criteria perform relatively poorly, often choosing models
that are grossly overspecified.

As an estimator of 0(®y, C:)k), Figure 1 illustrates that AICi exhibits less negative bias than either AICc
or AIC. The strong propensity of AIC to select overspecified models can be explained by this plot: as the
model order is increased beyond the true model order (of p = 2), the negative bias of AIC becomes more
extreme. For the largest model orders in the candidate class, the bias of AIC is so pronounced that the
average value of AIC is less than the average value for the true model order. As a consequence, AIC often
favors such models, even though they are grossly overparameterized and correspond to extremely high values

of the Kullback-Leibler information.

Order | SIC | BIC | HQ | FPE | AIC | AICc | AICi
1 40 16 21 10 19 99 o8
2 517 | 403 | 372 | 170 | 341 | 817 819
3 39 30 42 24 39 60 79
4 30 23 37 25 37 20 23
5 6 9 14 22 19 9 14
6 21 28 24 27 25 11 7
7 20 25 27 26 32 6 0
8 40 62 48 64 51 6 0
9 77 | 120 | 90 | 127 94 9 0

10 210 | 284 | 325 | 505 | 343 3 0

Table 4: Results for simulation set I. True model order: 2.

In set II, as illustrated in Table 5, AICi outperforms all other criteria in terms of obtaining the most
correctly specified model selections and the least overspecified model selections, but the performance of AICc
is competitive. The remaining criteria share a pronounced tendency to favor grossly overfit models.

In sets IIT through VI, the candidate class is comprised of models where the state process is an additive
combination of a univariate autoregression and a structural seasonal component. Sets III and IV are anal-
ogous to sets I and II, respectively, since they are based on the same autoregressions. Thus, sets I through
IV allow us to investigate the impact of additional structural complexity on the selection performance of the

criteria.
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Figure 1: Expected divergence and average criterion values for simulation set I.

Order | SIC | BIC | HQ | FPE | AIC | AICc | AICi
1 o8 7 26 6 22 107 95
2 38 32 23 8 18 61 35
3 404 | 258 | 286 | 123 | 266 | 699 769
4 35 46 49 31 50 60 48
5 23 21 19 23 19 13 25
6 21 34 24 20 26 20 8
7 24 34 27 30 28 12 0
8 o4 86 71 75 7 9 0
9 123 | 184 | 166 | 223 | 173 17 0
10 200 | 298 | 309 | 461 | 321 2 0

Table 5: Results for simulation set II. True model order: 3.

The results from set III are featured in Table 6. In comparing sets I and III on the basis of correct
order selections, the performance of all criteria markedly deteriorates except for that of AICi. In particular,
the inclusion of the seasonal process severely degrades the performance of AICc, now exhibiting a greater
tendency to choose both underspecified and overspecified models. For the other criteria, the addition of the
seasonal component generally results in more underfit selections (i.e., p = 1).

Figure 2 illustrates that AICi provides an estimator of 4(®y, (:)k) with less negative bias than either
AICc or AIC. Relative to Figure 1 (which pertains to set I), the negative bias of AICc and AIC is more
pronounced. As can be seen, AIC dramatically underestimates §(®y, (:)k) for all model orders beyond p = 4.

The results from set IV are featured in Table 7. In comparing the results for sets II (see Table 5) and

IV based on correct order selections, the performance of all criteria deteriorates, including that of AICi.
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Order | SIC | BIC | HQ | FPE | AIC | AICc | AICi
1 72 84 35 8 31 121 129
2 343 | 254 | 210 | 44 185 | 660 815
3 32 30 24 10 23 42 30
4 12 8 18 11 16 24 )
5 25 30 14 15 17 24 1
6 39 o7 45 29 42 40 0
7 49 92 92 46 49 16 0
8 87 | 118 | 113 | 110 | 119 28 0
9 150 | 162 | 196 | 247 | 206 33 0
10 191 | 205 | 293 | 480 | 312 12 0

Table 6: Results for simulation set III. True model order: 2.
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Figure 2: Expected divergence and average criterion values for simulation set III.

However, the deterioration is the least pronounced for AICi, which outperforms all other criteria in terms of
obtaining the most correctly specified model selections and the least overspecified model selections. Again,
inclusion of the seasonal component causes AICc to choose more underspecified and overspecified models.
Moreover, as with the comparison between sets I and III, the addition of the seasonal component generally
results in more underfit selections; specifically, more selections of the minimal order p = 1.

The results from set V are featured in Table 8. In set V, the true order of the autoregression is p = 1.
Thus, the criteria can only be evaluated based on their overfitting properties, and AICi clearly performs best
in this regard. As with the previous simulation sets, AIC, FPE, and HQ exhibit the most extreme tendencies
to favor overspecified models.

The results from the last set, set VI, are featured in Table 9. Here, all criteria appear to have difficulty
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Order | SIC | BIC | HQ | FPE | AIC | AICc | AICi
1 69 75 37 4 32 158 202
2 20 14 14 1 12 43 76
3 173 | 122 | 97 13 83 449 699
4 64 74 o1 16 50 105 23
5 33 38 27 12 27 34 0
6 o8 o8 48 31 49 46 0
7 64 82 69 98 63 26 0
8 125 | 157 | 147 | 154 | 155 61 0
9 160 | 187 | 207 | 235 | 212 99 0
10 234 | 193 | 303 | 476 | 317 19 0

Table 7: Results for simulation set IV. True model order: 3.

Order | SIC | BIC | HQ | FPE | AIC | AICc | AICi
1 426 | 430 | 238 | 51 214 | 727 852
2 50 29 44 12 45 84 102
3 24 19 16 2 15 32 39
4 25 19 23 8 23 35 7
) 19 11 22 10 22 13 0
6 21 26 34 27 36 15 0
7 33 42 45 50 46 10 0
8 83 | 118 | 122 | 142 | 119 46 0
9 123 | 137 | 176 | 241 | 185 35 0
10 196 | 169 | 280 | 457 | 295 3 0

Table 8: Results for simulation set V. True model order: 1.

in distinguishing between the correct model order p = 2 and the minimal model order p = 1. AICi again
obtains the most correct order selections, yet chooses the order 1 model more frequently than the order 2
model. AICc, BIC, and SIC also choose the order 1 model more often than the order 2 model. Again, AICi
does not favor overfit models. All other criteria, with the possible exception of AICc, exhibit inordinate

overfitting tendencies.

Order | SIC | BIC | HQ | FPE | AIC | AICc | AICi
1 264 | 278 | 129 | 26 108 | 477 520
2 185 | 166 | 139 | 47 129 | 342 424
3 22 26 25 9 25 38 49
4 16 13 10 6 10 23 7
5 28 30 29 20 29 29 0
6 44 50 42 29 39 34 0
7 35 98 96 50 58 15 0
8 72 89 | 110 | 117 | 115 22 0
9 133 | 127 | 190 | 253 | 203 17 0
10 181 | 163 | 270 | 443 | 284 3 0

Table 9: Results for simulation set VI. True model order: 2.

15



6 Conclusion

Based on the work of Hurvich, Shumway, and Tsai (1990), we develop a model selection criterion for the
linear state-space model. The criterion, AICi, is straightforward to evaluate once its penalty term has been
tabulated via Monte Carlo simulations.

The results of our simulations show that AICi performs effectively as a model selection criterion in
small-sample settings. Our results also indicate that AICi estimates the Kullback-Leibler information with
less bias than traditional AIC or corrected AIC, that AICi does not exhibit a propensity to favor grossly
overparameterized models, and that AICi generally outperforms its competitors in terms of correct order
selections. Importantly, if the candidate class consists of models with structural complexity, the order
selection properties of AICi appear to be far superior to those of its competitors.

Our development suggests that an AICi may be devised for additional settings in which the forecast
density may be conveniently expressed and evaluated. Such settings could include observation-driven models

for serial counts (cf. Brockwell and Davis 1991, p291-303) as well as other practical time series frameworks.
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