An Akaike Information Criterion
for Model Selection

in the Presence of Incomplete Data

by
Joseph E. Cavanaugh
Department of Statistics, University of Missouri, Columbia, MO 65211
and
Robert H. Shumway
Division of Statistics, University of California, Davis, CA 95616

Abstract

We derive and investigate a variant of AIC, the Akaike information criterion, for model selection
in settings where the observed data is incomplete. Our variant is based on the motivation provided
for the PDIO (“predictive divergence for incomplete observation models”) criterion of Shimodaira
(1994, in Selecting Models from Data: Artificial Intelligence and Statistics IV, Lecture Notes in
Statistics 89, Springer-Verlag, New York, 21-29). However, our variant differs from PDIO in its
“soodness-of-fit” term. Unlike AIC and PDIO, which require the computation of the observed-
data empirical log-likelihood, our criterion can be evaluated using only complete-data tools, readily
available through the EM algorithm and the SEM (“supplemented” EM) algorithm of Meng and
Rubin (1991, Journal of the American Statistical Association 86, 899-909). We compare the
performance of our AIC variant to that of both AIC and PDIO in simulations where the data being
modeled contains missing values. The results indicate that our criterion is less prone to overfitting

than AIC and less prone to underfitting than PDIO.
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1. Introduction

Modeling in the presence of incomplete or partially observed data arises in a large variety of
practical problems, including applications involving ANOVA and regression models (Rubin, 1976;
Little, 1979), state-space models (Shumway and Stoffer, 1982), latent class models (Goodman,
1974), and mixture models (Titterington, Smith, and Makov, 1985). In such settings, we generally
view the observed, incomplete data Y ;s together with unobserved, missing data Y ,,;s as comprising
the complete data Y. A parametric family of models f(Y| @) is postulated for the complete data
Y, where the size of the parameter vector @ dictates the complexity of the corresponding model.
The complete-data model f(Y| @) implies a model for the incomplete data, f(Y.s| @), although
the latter is often more difficult to represent or to work with than the former. In many frameworks,
a fitted model for the complete data f(Y| 8) can be conveniently found through utilizing the
well-known EM (expectation/maximization) algorithm (Dempster, Laird, and Rubin, 1977).

In most applications, finding a suitable dimension for the parameter vector € is an important
component of the modeling problem. A common approach is to choose several different dimensions
for @, find the fitted models corresponding to these choices, compute a model selection criterion for
each of the fitted candidate models, and determine the dimension of @ for the final model based on
the values of the criterion. The Akaike information criterion (Akaike, 1973, 1974), or AIC, is the
most widely known and used of the criteria which have been proposed for this purpose.

In the present context, AIC can be interpreted as a measure of separation between the fitted
model for the incomplete data, f(Yps] wvu and the “true” or generating model which presumably
gave rise to the incomplete data, say f(Yops| 65). Yet as indicated by Shimodaira (1994), in many
applications it may be more natural or desirable to use a criterion based on the complete data, which
assesses the separation between the fitted model (Y| @) and the generating model f(Y| 8,). There
are several arguments to be made in defense of this idea. First of all, the implementation of the EM
algorithm is based on the premise that a convenient class of models can be specified for the complete
data Y, whereas the corresponding class of models for the incomplete data Y ,,s may be difficult
to exhibit or to work with. Since it is the complete data for which the investigator postulates the
family of models, it seems reasonable to base model selection on measures which assess the propriety
of fitted candidate models within this family. Secondly, as pointed out by Meng and Rubin (1991,
page 899), the EM algorithm essentially involves “capitalizing on computing power and complete-
data tools to handle missing-data problems.” Because the EM algorithm utilizes complete-data

tools, it may be more computationally convenient to calculate a selection criterion based on these



quantities rather than analogous incomplete-data quantities. And finally, the complete-data density
f(Y] 8) is composed of the product of the incomplete-data density f(Y,s| @) and the conditional

density of the missing data Y,,;s given the incomplete data Y y; i.e.,
\A<_ Qv = \A<ovm_ Qv \A<3Nm_ M«cvmu%v.

Suppose that the density f(Ymis| Yobs, @) is substantially affected by deviations of @ from the “true”
parameter vector @,. Model selection based on the discrepancy between f(Y|8) and f(Y| 6,) would
incorporate this information; it is not clear that model selection based on the discrepancy between
F(Xops| 0) and f(Yops| 0,) would do the same.

The last of the aforementioned arguments is further explored in the next section. In Section 3,
we present an informal derivation of a model selection criterion which is analogous to AIC, yet
is based on complete-data rather than incomplete-data concepts and tools. We call this criterion
AICcd, where the notation “cd” stands for “complete data”. Our criterion is motivated by the
same principle as the PDIO (“predictive divergence for incomplete observation models”) criterion
introduced by Shimodaira (1994), yet differs from PDIO in its goodness-of-fit term.

In Section 4, we describe the evaluation of AICcd, and indicate the computational advantage the
criterion holds over PDIO and AIC. We contrast the forms of AICcd, PDIO, and AIC in Section 5,
and discuss several key principles related to the behavior of these criteria. These principles are
illustrated by the simulation sets presented in Sections 6 and 7. In these simulations, we compare
the effectiveness of AICcd, PDIO, and AIC at selecting a model of correct dimension within a
candidate class, where the data being modeled contains various degrees of missing values. Our
results demonstrate that AICcd is generally less prone to underfitting than PDIO and less prone to
overfitting than AIC. The simulations in Section 6 involve modeling bivariate normal data whereas

the simulations in Section 7 are based on multivariate regression models. Section 8 concludes.

2. Complete-Data versus Incomplete-Data

Kullback-Leibler Discrepancy

Let f(Y| @) and f(Yos| @) respectively denote parametric densities for the complete data Y
and the incomplete data Y . Assume that the parameter vector @ is d-dimensional. Let 6, denote
the “true” parameter vector, so that f(Y|8,) and f(Ys| 0,) respectively represent the generating

densities for the complete and the incomplete data.



A well-known measure of separation between two models is given by the non-normalized Kullback-
Leibler information (Kullback, 1968), also known as the cross entropy or discrepancy. The complete-
data Kullback-Leibler discrepancy between a candidate model f(Y]| @) and the generating model
f(Y| 8,) is defined by

Dvy(0,6,) =Evy{-2Inf(Y| 6)}, (2.1)

where Ey denotes the expected value with respect to the density f(Y|8,). Similarly, the incomplete-
data Kullback-Leibler discrepancy between a candidate model f(Y 5| €) and the generating model
F(Yops| 0,) is defined by

Dy, A%“ Qev = mu%‘%mﬁlw_B,:%%m_ QVT AM.MV

where Ey_, denotes the expected value with respect to the density f(Yops| 65). Since the evaluation

obs
of (2.1) and (2.2) requires knowledge of 6,, these quantities are not directly accessible. Thus, it is
not possible to assess the exact discrepancy between a fitted candidate model, parameterized by
6 = 0, and the corresponding generating model.

An important contribution of Akaike (1973, 1974) was in showing that in certain large-sample

settings, the expected value of

.Nv<evm AQJ QQV = m<ovm ﬁlw _.5 .\.A<Q~um_ va_enw AMWV
(with respect to f(Yops| 05)) is approximately the same as the expected value of
AIC = —2InL(0 | You,) + 2d, (2.4)

where L(6 | Y,,) denotes the incomplete-data empirical likelihood. In other words, AIC serves as

an approximately unbiased estimator of the expected incomplete-data discrepancy

AY,,(d,80) = By, {Ev,, {210 f (Yors| 0)Hg_p}- (2.5)

The terms —21n ha | Yobs) and 2d in AIC are commonly referred to as the “goodness-of-fit” and
“penalty” terms, respectively.
Our objective is to propose a version of AIC that will have an expected value (with respect to

f(Yops| @,)) which, in large-sample settings, is approximately the same as the expected value of

Dy(8,6,) = Ey{-2In f(Y| 8) (2.6)

v_mnw.



(Note that (2.6) is a function of Y, through its dependence on 8, yet does not involve the missing
data Y,,;s.) Equivalently, we wish to propose an approximately unbiased estimator of the expected

complete-data discrepancy

Av(d,0,) = By, {By{-2mm (Y| 0)}|y o} (2.7)

The relationship between (2.1) and (2.2) provides an important insight into why it may be
preferable to base model selection on the former as opposed to the latter. To establish this rela-

tionship, recall that
\AMN_ S = \AMNR;_ S \AMNSS.M_ MN%EQY Aw.mv

meaning
Ey{—-2Inf(Y]0)} = Ey{—-2Inf(Yous| 0)} + Exy{—2In f(Ymis| Yobs,0)}. (2.9)
Using (2.8), it is easily shown that
Ev{-2Inf(Yos| 0)} = Dv,,,(0,0,),
meaning that (2.9) can be written as

@M\A%J Qov =Dy AQJ Qov + HM\ﬁlw _S\JA<§@.%_ <ovmu va AM.HOV

obs

Now consider the second of the two terms on the right-hand side of (2.10). Define

.NvMNSZ.LMNovm AQJ Qa_ <ovmv = m<§&m_<ovmﬁ|w _5\&%3@%_ <e?f QVT AM”:.V

where Ey v . denotes the expected value with respect to the density f(Ymis| Yobs, 05). We will

obs

refer to (2.11) as the conditional missing-data discrepancy. Using (2.8), it is easily shown that
Ev{—2Inf(Ymis| Yobs;0)} = Ev,,, {DY ;Yo (0500 Yous)},
meaning that (2.10) can be written as
Dy (0,0,) = Dy, (0,0,) + Ey_, {Dy,... ;Y. (6,00] Yobs)}- (2.12)
Now one can easily establish using Jensen’s inequality that for any Y, and any 6,

Dy, i 1¥0:(0,00] Yous) > Dy 1y, (00, 600] Yobs)- (2.13)



If we then define k(0,) = Ey_, {Dy,.,.|Y.;. (€0, 00| Yobs)}, by (2.12) and (2.13), we have for any 8

Dy (6,8,) > Dy, (8,0,) + k(8,). (2.14)

obs A

Thus as a function of 6, the complete-data discrepancy Dy (0, 8,) is always at least as great as the
incomplete-data discrepancy Dy, (8,8,), adjusted by the constant £(8,).

From (2.12) and (2.14), we can infer that the complete-data discrepancy is potentially more
sensitive than the incomplete-data discrepancy to deviations of 8 from 6, which affect the condi-
tional missing-data discrepancy (2.11). This implies that in the presence of missing data, Dy (6, 6,)
may be preferable to Dy, (6,80,) for assessing the separation between a model parameterized by
0 and one parameterized by 6,. As a consequence, an estimator of Ay (d, 8,) may be preferable to
an estimator of Ay, (d,0,) as a model selection criterion, provided of course that the former is
accurate enough to sufficiently reflect the sensitivity of Ay (d,6,).

In the next section, we introduce and derive the AICcd statistic, which in large-sample settings,
serves as an approximately unbiased estimator of Ay (d,8,). This criterion has different goodness-
of-fit and penalty terms than AIC, yet both terms reduce to their AIC counterparts when Y =Y ps.
The criterion shares the penalty term of Shimodaira’s (1994) PDIO, yet differs in the goodness-of-fit
term, where PDIO and AIC agree.

3. Derivation of AICcd

We seek an approximately unbiased estimator of Ay (d,8,). We will require that the parameter
space for the candidate model under consideration includes 6, as an interior point. (This strong
assumption is also used in the derivation of AIC. See Linhart and Zucchini, 1986, page 245.) We
will assume that the fitted parameter vector 8 is obtained using the EM algorithm, making 6 a
maximum likelihood estimator of 6,. We will require the usual regularity conditions needed to

ensure the consistency and asymptotic normality of 6.

Following conventions similar to those of Meng and Rubin (1991), let

Q01102 = [ {1 f(Y] 01} F(Yonisl Yobs: 02) Y e (3.1)
?Inf(Y| 6
Le|y) = -2B0) )
o Imm:f:%%m_ Qv
HQAQ_<Q¥V - @QQQ\ ) Aw.wv
Pl f(Y]9)

I,.0|Y = \ y Y nis| Yobs, @) dY s 3.4
A _ %L Y., 9000 ,2 _ obs v A v



To begin, expand Ey{—21n f(Y] Sw_e about 6, to obtain
Ev{-2Inf(Y| 0)}y_p~ Ex{-2Inf(Y] 0,)} + (0 — 6,) Ex{L,(8, | Y)}(6 - 0,).  (3.5)
Now using (2.8), one can show that

@Jwﬁlwws.\.ﬁfq_ %e: = @JN&MAIMQAQQ _ QQZJ Aw.mv
and that
@JwﬁHeA%e _ %1: = @Jw%m AHonAQQ _ M«cvm:. Aw.ﬂv

Substituting (3.6) and (3.7) into (3.5), we obtain

By {~2Inf(Y|0)}y_g = Ex,, {~2Q(00 | 0,)} + (8 — 0,) By, {Toc(0 | Yo} (8 — 0,). (3.8)

Yet for large n, it is justifiable to replace Io.(6, | Yops) in (3.8) with I,e(8 | Yop). This leads to
the large-sample approximation

Ev{~2Inf(Y| 0)}y_g ~ By,, {~2Q(0 | 05)} + (8 —0,) By, {Lc(0 | Yors)} (0 — 0,). (3.9)

>

Next, expand the first argument of —2Q(6, | 8) about 0 to obtain
. P oQ(0 | 6)
200, 19) ~ —2006) - ﬁ O,
0, 0) 200 16) 9,0 3.10
.TA o v @%@Q _Q % A o v A : v

Now on the right-hand side of (3.10), the second of the three terms is zero, since

9Q(6 1 9)

55 lo_o =0 (3.11)

(In the EM algorithm, the point of convergence 8 provides a solution to the equation (9Q(8 | 8))/(96)

= 0.) We can rewrite the third of these three terms by noting that

’QO18)
|§_mum = Toe(60 | Yobs)- (3.12)
Using (3.11) and (3.12), we can express (3.10) a
|M@A%o _ ®v ~ |M@A® _ ®v + Aw - Qev\Henmw _ <%mX® - %ov. Awva

Yet for large n, it is justifiable to replace Ioo(0 | Yops) in (3.13) by Ey,, {Ioc(8 | Yops)}. This leads
to the large-sample approximation

—2Q(8, | 8) =~ —2Q(8 | 8) + (0 — 0,) Ev,, {Toc(8 | Yous) (0 — 8,). (3.14)



Now consider using Q(6, | 8) as an approximation to Q(8, | 8,) in (3.9). We obtain

~

Ev{—2Inf(Y| 0)}y g~ By, {-2Q(00 | 0)} + (0 — 0,) Ev,,, {Toc(8 | Yo} (8 — 6,). (3.15)

If we then substitute the right-hand side of (3.14) for —2Q(8@, | 6) in (3.15), we have

m<ﬁlw _5.\.A<_ mvw_auw ~ m<0vmﬁ|M©A® _ @vw l_l m<cvm AA@ - mev\m<0vm ﬁHQGA@ _ .‘.DWQVWA@ - QQVM
+(0—0,) By, {Toc(0 | Yors)} (0 —0,).  (3.16)
Taking expectations of both sides of (3.16) with respect to f(Yops| 6,) yields the following useful
large-sample approximation for Ay (d, 8,):

Av(d.0,) = By, {By{-2n/(Y]|0)}, o}

@%eg,ﬂlw©ﬁw _ @1 + 2By, AA® - Qov\que% AHQ%@ _ <Q¥VH:® - %evw - (3.17)

Q

Consider the estimation of the two terms on the right-hand side of (3.17). The first of these
terms can be estimated by —2Q(0 | 8), which is easily evaluated after the last iteration of the EM
algorithm. For the second of these terms, we will use the well-known fact that the large-sample

variance/covariance matrix of (8 — @,) is approximated by I-1(0 | Yo,). Thus, we can write

2By, {(0 — 0,) Ey,, {Loc(0 | Yor)}(0 — 0,)}
=2 trace { By, {Toc(8 | You:)}Ev,,, {(0 — 0,)(0 — 6,)'}}
~ 2 trace ?,egﬁsa | Yous)} I,1(0 | 5&. (3.18)
A natural estimator for (3.18) is given by
2 trace{Toe(0 | Yous) I, (0 | Yobs)}- (3.19)

Using —2Q(0 | 0) and (3.19) to approximate the terms on the right-hand side of (3.17) suggests

the following large-sample estimator for Ay (d, 8,):
AICcd = —2Q(0 | ) + 2 trace{I,c(0 | You) I;1(0 | Yous)}- (3.20)
Shimodaira’s (1994) PDIO criterion, written in the present notation, has the form
PDIO = —2In L(0 | Yops) + 2 trace{L,c(0 | Yous) I;1(8 | Yous)}. (3.21)

Our derivation of AICcd is similar to Shimodaira’s derivation of PDIO, yet differs is several key
aspects: most noticeably in the development of the goodness-of-fit term. The difference between
these terms in AICcd and PDIO causes the criteria to behave quite differently, as the discussion in

Section 5 and the simulations in Sections 6 and 7 will indicate.



4. Evaluating AICcd

The penalty term (3.19) of AICcd and PDIO involves the information matrix I,(8 | Yops). An
explicit expression for I,(0 | Yops) via (3.3) can be difficult to obtain directly, since f(Y 5| @) is
often inaccessible or cumbersome to work with. Fortunately, the “supplemented” EM or SEM algo-
rithm of Meng and Rubin (1991) provides a convenient mechanism for evaluating both HMHQ | 'Yobs)
and the penalty term (3.19) without the need for such an expression. (Evaluating I;(0 | Y ops),
the approximate large-sample variance/covariance matrix of wu is the motivation behind the SEM
algorithm. The EM algorithm alone does not provide this matrix.)

Let @S
by Meng and Rubin (1991), the EM algorithm defines a mapping M(0) = (M(8), ..., M4(8)) such
that 8" = EQEV fort =0,1,.... If 9" converges to @ (and M(@) is continuous), we must
have @ = M(@). A first-order expansion of ESSV about @ leads to the approximation

denote the estimate of 8, obtained on the #*" iteration of the EM algorithm. As indicated

QA_vC PN

@ -6~ (6

where DM is a d x d matrix having {(0M;(8))/(00;)} _m|® in row ¢ and column j; i.e.,

OM;(6) 1<i,j<d.

pm = |29
ﬁ 90 Tmm“ -

Thus, as Meng and Rubin state (1991, page 901), in a neighborhood of wu “the EM algorithm is
essentially a linear iteration with rate matrix DM, since DM is typically nonzero.”

Meng and Rubin (1991) go on to show
Helew _ <ovmv = HeInHmw _ <e@mV AH - UH/\._HVIHJ E”Hv

and

YO | Yous) = 1510 | Yous) + 10 | Yop)DM(I — DM) L, (4.2)

(See page 901, (2.3.1), (2.3.4), (2.4.6), and (2.4.7).) This means that the penalty term (3.19) can

be written using (4.1) as

2 trace{(I - DM)™'}, (4.3)

or written using (4.2) as
2d + 2 trace {Tpe(8 | Yous){I; (8 | Yops) DM(I - DM)'}} (4.4)
= 2d + 2 trace{DM(I — DM)~'}. (4.5)



The computation of DM is discussed in subsection 3.3 of Meng and Rubin (1991). Once DM is
obtained, the penalty term of AICcd and PDIO can be easily evaluated using (4.3). (I, 1(8 | Yops)
is typically computed using (4.2).)

Expression (4.4) is useful for the purpose of comparing the penalty term of AIC (2d) to the
penalty term of AICcd and PDIO. The matrix I,1(8 | Y,5,) DM(I — DM) ! is described by
Meng and Rubin (1991, page 901) as representing “the increase in variance [of 8] due to missing
information”. Thus, the trace term in (4.4) can be conveniently viewed as a measure of the amount
of data which is missing in Y; or more precisely, as a measure of the extent to which the missing
data Y, affects the fitted model. If Y = Y, this trace term will be zero (since DM = 0);
otherwise, it will be positive. Moreover, this term will be substantial in settings where the amount
of missing data is large relative to the complexity of the fitted model. Thus, (4.4) implies that the
penalty term of AICcd and PDIO is composed of the penalty term of AIC together with a term
which assesses an additional penalty in accordance to the impact of the missing data on the fitted
model.

In discussing the evaluation of AICcd, it is important to note that its goodness-of-fit term
is based on the complete-data function Q(€ | @), which is the principal tool used by the EM
algorithm. The evaluation of this term should always be straightforward. The same cannot be said
of the goodness-of-fit term of AIC and PDIO, which is based on the incomplete-data log-likelihood
InL(0 | Yops). We feel that one of the most compelling features of AICcd is that its computation
involves only complete-data quantities which arise naturally in the execution of the EM and SEM
algorithms. It is therefore readily accessible in any of the wide variety of incomplete-data problems

for which the EM algorithm has been proposed.

5. Contrasting AICcd, PDIO, and AIC

An evaluation of comparable expressions for AICcd, PDIO, and AIC can serve as a starting
point to an investigation of the behavior of these criteria. A convenient representation for the

goodness-of-fit term of AICcd is obtained by defining

HO: 102 = [ {10 f(Yonisl Yo 000} F(Yonil Yons,02) Ao,

and by utilizing (3.1) and (2.8) to show that

—2Q(61 | 62) = —2H (61 | 02) + {—21In f(Yous| 01)}. (5.1)



By (3.20), (3.21), and (2.4), along with (5.1) and representation (4.5) for (3.19), we have

AlCed = {=2WL(B | You) +{~2H(8 | 0)}} + {2d + 2 trace{DM(I - DM)~'}}, (5.2)
PDIO = —2InL(8 | Yo) + {2d + 2 trace{DM(1 - DM)~'}}, (5.3)

AIC = —2InL(8 | Yo,) + 2d. (5.4)

Each of the preceding criteria is comprised of the sum of a goodness-of-fit term and a penalty
term. As the fitted model becomes more complex, the penalty term increases, whereas the goodness-
of-fit term tends to decrease. (The latter behavior is a reflection of the improvement in fit which
results from using larger, more flexible models.) Ideally, the fitted model which provides the optimal
balance between fidelity to the data and parsimony is identified by the minimum criterion value.

The goodness-of-fit term of AIC and PDIO, —2In L(8 | Y,,), measures the conformity of the
observed data Yy to the fitted model f(Y gps] 3 This term as well as the additional component
—2H (0 | ) comprise the goodness-of-fit term of AICcd. The component —2H (6 | @) measures the

conformity of the missing data Y,,;s to the fitted model f(Y,nis| Yops, @) in the following sense:

if many realizations of Y,,;s were generated according to the density f(Ymis| Yobs, @), and the
goodness-of-fit measure —21n f(Y ;5] <%$®v was averaged over these realizations, this average
would approximate —2H (6 | 6).

First, we consider the relative behavior of PDIO and AIC. These criteria share the same
goodness-of-fit term, yet a comparison of (5.3) and (5.4) indicates that the penalty term of PDIO
is always at least as large as the penalty term of AIC. (Recall from the discussion in Section 4 that
trace{DM (I — DM)~!} is always nonnegative, and is positive when Y # Y ps.) Thus, PDIO will
always choose a fitted model in a candidate class which is no larger than the model chosen by AIC.
This implies that PDIO is more prone than AIC to underfitting (i.e., to choosing a model of lower
dimension than the generating model), whereas AIC is more prone than PDIO to overfitting (i.e.,
to choosing a model of higher dimension than the generating model). These tendencies become
more extreme as the amount of missing data increases, since the trace component in the penalty
term of PDIO grows in relation to the amount of missing information.

We next consider the relative behavior of AICcd and PDIO. These criteria share the same
penalty term, but an inspection of (5.2) and (5.3) reveals that the goodness-of-fit terms differ by
the component —2H (@ | ). In applications where the degree of missing information is large relative
to the degree of complete information, the penalty term of PDIO often dominates its goodness-

of-fit term; as a result, the criterion may tend to underfit excessively. (This behavior is exhibited

10



in the simulations reported by Shimodaira, 1994.) The additional component —2H (8 | ) in the
goodness-of-fit term of AICcd counteracts this underfitting tendency, thus providing AICcd with
a certain level of protection against choosing models which are too small. This tendency will be
illustrated by the simulations which follow in Sections 6 and 7.

Finally, we consider the relative behavior of AICcd and AIC. By comparing (5.2) and (5.4), we
note that AICcd contains extra components in both the goodness-of-fit term and the penalty term,
each of which involve the missing information. Note that the component —2H (8 | ) provides a
missing-data supplement to the goodness-of-fit term of AIC in the same way that the component
2 trace{DM(I — DM)~!} provides a missing-data supplement to the penalty term of AIC. It
would be difficult to give a general characterization of the contribution made by the sum of these
components to AICcd. However, extensive simulation results (including those which follow) indicate
that in settings where the criteria do not exhibit similar selection behavior, AICcd generally tends to
overfit to a lesser degree than AIC. In such instances, AICcd may tend to underfit more frequently
than AIC, yet rarely to the same extent as PDIO.

To summarize, the additional penalty term which AICcd and PDIO share over AIC,
2 trace{DM(I — DM)~!}, penalizes a fitted model in accordance to the impact the missing data
has on the model. Thus, in applications where the observed data is incomplete, AICcd and PDIO
often favor lower-dimensional models than AIC. Yet unlike AICcd, PDIO does not contain the
additional goodness-of-fit term —2H (@ | 8). The inclusion of this term attenuates the effect of the
extra penalty term, and protects AICcd from the type of excessive underfitting which PDIO may

exhibit when there exists a significant amount of missing information.

6. Simulations: Modeling Bivariate Normal Data

Let p1, 2, 02, 03, and 012 denote, respectively, the two means, two variances, and covariance
for a general bivariate normal model.

Suppose we collect a data set consisting of observations on a pair of random variables (y1,y2).
To model this data, we consider a candidate class consisting of four types of bivariate normal
models corresponding to certain parameter constraints. The constraints, along with the implied

dimensions and estimation requirements of the associated models, are as follows:

11



Dimension Parameter Constraints Parameters to be Estimated

5 None [i1, ji2, 07, 03,012
4 Qw HQW = o2 tft?qmusm

3 o2 =02=0 =2 =p w02, 019

2 o?=0t=0> p=pz=p,012=0 p,o?

In each of our simulation sets, 1000 samples of size 50 are generated using a known bivariate
normal model in the preceding candidate class. In some sets, certain data pairs within each sample
are made incomplete by eliminating either the first or the second observation. Whether a data pair
is made incomplete is determined at random according to specified discard probabilities. We will
use Pr(y; mis) to denote the probability that the first observation is discarded and the second is
retained, and Pr(ys mis) to denote the probability that the second observation is discarded and
the first is retained. (Thus, in a simulation set where Pr(y; mis) and Pr(ys mis) are both set at
0.30, for each sample of size 50, one would expect roughly 15 pairs where y; is missing but ys is
observed, 15 pairs where y; is observed but ys is missing, and 20 pairs where y; and yo are both
observed.)

For each of the 1000 samples in a set, all four models in the candidate class are fit to the data
using the SEM algorithm; the criteria AIC, PDIO, and AICcd are evaluated using (2.4), (3.21),
and (3.20); and the candidate model selected by each criterion is determined. The distribution of
selections by each criterion is recorded for the 1000 samples and presented in Table 1. In this table,
the dimension of the generating model is listed in the second column, and the discard probabilities
are listed in the third column.

We include four simulation sets for each of the following generating models:

Set True True

Numbers Dimension Parameter Values

1-4 3 pr=p2=p=0, o0l=03=0%2=10, 012="6
58 3 w1 = po =p =0, QWHQWQOHHo, o9 =8
9-12 4 pr=0,p2=2, ol=03=0%2=10, 012=F6
13-16 4 pr=0,p2=2, ol=03=0%2=10, 012=28

For the first of the four sets corresponding to a generating model, none of the data is discarded.
For the second, third, and fourth sets, the discard probabilities Pr(y; mis) and Pr(ys mis) are both
set at 0.15, 0.30, and 0.40, respectively.
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When none of the data is missing, AIC, PDIO and AICcd are all equivalent, and therefore all

yield the same selection results. As the discard probabilities are increased, differences in the behav-

ior of the criteria become more apparent. The simulation results support the following conclusions.

(i)

The selection performance of the criteria improves as the correlation between y; and yo is
increased. FKach criterion performs more effectively in sets 5 through 8 than in sets 1 through
4, and more effectively in sets 13 through 16 than in sets 9 through 12. In the sets where data
is discarded, this behavior can be easily explained. When the correlation is high, incomplete
data pairs are less costly since it is possible to accurately impute the missing elements. All

criteria should benefit in such a setting.

In every simulation set where data is discarded, AICcd underfits to a lesser degree than PDIO,

and overfits to a comparable or to a slightly lesser degree than AIC.

As the discard probabilities are increased, PDIO becomes more prone towards selecting lower
dimensional models, which results in excessive underfitting in sets 4, 8, 12, and 16. AICcd

exhibits this propensity to a much lesser extent.

As mentioned in Section 5, as the discard probabilities are increased, the trace component
2 trace{DM (I-DM)~!} in the penalty term (4.5) tends to increase. The goodness-of-fit term
of PDIO, —2In hﬁw | Yops), does not compensate for this behavior and as a result, becomes
increasingly less competitive with the penalty term. This causes PDIO to become more prone
towards selecting lower dimensional models, which results in excessive underfitting in sets 4,
8, 12, and 16. The additional goodness-of-fit component in AICed, —2H S | @Y provides

protection against this tendency.

Figures 1 through 5 provide some insight into the nature of the expected complete-data dis-

crepancy Ay(d,6,), the expected incomplete-data discrepancy Ay, , (d,8,), and the estimators of
these quantities provided by AICcd, PDIO, and AIC.

Figures 1, 2, and 3 illustrate the changes which occur in Ay(d,8,) and Ay, (d,0,) as the

discard probabilities are increased. The samples from sets 1 through 4 are used in simulating the

expected discrepancies. To serve as a reference in each figure, the simulated Ay (d,8,) curve from

set 1 (based on no missing data) is plotted against the candidate model dimensions d = 2, 3, 4, 5.

The simulated Ay (d,8,) and Ay

(d,8,) curves from sets 2, 3, and 4 are overlaid in Figures 1, 2,

obs

and 3, respectively. (For comparison purposes, each curve is translated so that its minimum at d

13



= 3 is set at zero. The curves are then scaled by dividing each value by the difference between the
maximum and the minimum of the reference curve, Ay (d, 8,) from set 1.)

As the discard probabilities are increased, the values of Ay (d,8,) and Ay, (d,8,) decrease for
d = 2 and increase for d = 4, 5. However, Ay (d, 8,) decreases to a lesser extent than Ay , (d,8,)
for d = 2, and increases to a greater extent for d = 4, 5. Note that as a result, the minimum of
the Ay (d, 8,) curve becomes sharper and better defined, whereas the minimum of the Ay, (d, 6,)
curve becomes less pronounced. This phenomenon suggests that in the presence of incomplete

data, an estimator of Ay (d,8,) may be preferable to an estimator of Ay , (d,8,) for the purpose

c@mA
of model selection, provided that the former adequately reflects the discriminatory behavior of
Ay(d,8,).

Figure 4 illustrates how effectively AICcd and PDIO serve as approximately unbiased estimators
of Ay(d,8,), and Figure 5 illustrates how effectively AIC serves as an approximately unbiased

estimator of Ay , (d,0,). Figure 4 features the simulated Ay(d,8,) curve for simulation set 3

obs A

plotted for d = 2, 3, 4, 5 along with the curves which represent the average values of AICcd and

PDIO. In Figure 5, the simulated Ay , (d,,) curve for set 3 is plotted for d = 2, 3, 4, 5 along

obs A
with the curve which represents the average values of AIC. (Each curve has been translated so that
its minimum at d = 3 is set at zero. The curves in Figure 4 are then scaled by dividing each value
by the difference between the maximum and the minimum of the reference Ay (d,,) curve. The
curves in Figure 5 are similarly scaled using the reference Ay, (d,,) curve.)

Note that the average AICcd and AIC curves respectively follow the simulated Ay (d,8,) and

Ay, (d,8,) curves to a comparable degree. Both the AICcd and AIC curves exhibit a more gradual

obs A
slope than the corresponding expected discrepancy curves over d = 3, 4, 5. The average PDIO
curve tracks Ay (d,8,) more effectively than the AICcd curve over these dimensions, yet assumes
a value at d = 2 which is much lower than Ay (d,8,). This type of behavior is more pronounced
in simulation sets with higher discard probabilities, and helps to illustrate why the PDIO criterion
is often prone to underfitting.

The preceding section of simulations considers the performance of the criteria in a simplistic,
illustrative setting, albeit one where the use of model selection criteria would not be typically em-

ployed. In the next section, we consider the behavior of the criteria in a more practical, traditional

framework.
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Table 1. Dimension Selections for Bivariate Normal Simulations

Dimension Selections

Set True Pr(y; mis), AIC PDIO AICcd

Dim. Pr(yymis) 2 3 4 5 5 3 4 5 5 3 4 5
1 3 0.00, 0.00 1 799 118 82 1 799 118 82 1 799 118 82
2 3 0.15, 0.15 10 776 123 91 18 849 84 49 11 783 119 87
3 3 0.30, 0.30 51 718 129 102 213 730 35 22 54 714 127 105
4 3 0.40, 0.40 207 573 119 101 739 252 ) 4 193 605 109 93
) 3 0.00, 0.00 0 813 122 65 0 813 122 65 0 813 122 65
6 3 0.15, 0.15 0 800 130 70 0 891 77 32 0 797 129 74
7 3 0.30, 0.30 0 791 131 78 11 942 38 9 0 783 139 78
8 3 0.40, 0.40 16 735 143 106 389 600 10 1 15 738 149 98
9 4 0.00, 0.00 0 0 850 150 0 0 850 150 0 0 850 150
10 4 0.15, 0.15 1 0 844 155 1 3 882 114 1 2 846 151
11 4 0.30, 0.30 8§ 11 830 151 108 39 794 59 17 13 812 158
12 4 0.40, 0.40 56 32 738 174 672 38 277 13 105 85 660 150
13 4 0.00, 0.00 0 0 860 140 0 0 860 140 0 0 860 140
14 4 0.15, 0.15 0 0 852 148 0 0 905 95 0 0 863 137
15 4 0.30, 0.30 0 0 829 171 10 9 934 47 0 0 835 165
16 4 0.40, 0.40 6 7 807 180 461 65 465 9 11 30 789 170
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7. Simulations: Multivariate Regression Modeling

Consider the multivariate regression model
Y =XB+ U,

where the n X p matrix Y consists of rows which are independent, p-dimensional random vectors, the
n X m matrix X is a known design matrix of covariate values, and the m X p matrix 8 is an unknown
matrix of regression parameters. The n X p matrix U is comprised of rows which are independent
p-variate normal random vectors, each with a mean vector of zero and a variance/covariance matrix
3.

One of the most important problems in regression modeling is that of choosing the number
of predictors to include in the model; i.e., of determining the size of the design matrix X. If m
regressors are retained for a candidate regression model, the overall dimension of the model is given
by d =mp +p(p+1)/2.

We consider a setting where p = 2, so that the rows of Y represent bivariate data pairs. The
design matrices X for our class of candidate models range in size from m = 1 column to m = 8
columns, representing models of dimension d = 5 through d = 19. We assume that the candidate
models are nested; i.e., if X1 has m; columns and X5 has my columns where m < mo, the columns
of X1 comprise the first mq columns of Xs.

The first column of each X is taken to be a vector of ones. The covariate values are generated
by taking independent measurements on a random variable having a uniform distribution on the
interval (0,5). Setting up the design matrices in this simplistic fashion ensures that the simulation
results are not unduly influenced by such factors as multicollinearity and high-leverage cases.

For each simulation set, 1000 response matrices Y of dimension 50 x 2 are generated from a

model having the form
4 7

7 16

Y =X,8,+U, where X =

Thus, the response variable represented in the first column of Y, ¥, is much less variable than the
response variable represented in the second column of Y, ys.

Three different parameter matrices 3, are used. For each B, a collection of five simulation sets
are run with the pair of discard probabilities (Pr(y; mis), Pr(y2 mis)) set at (0.00,0.00), (0.00, 0.60),
(0.20,0.40), (0.40,0.20), and (0.60,0.00). The m, x 2 parameter matrices 3, have all elements set
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equal to 1, and have sizes determined by m, = 3 (d, = 9), m, =5 (d, = 13), and m, = 7 (d, = 17).

The fifteen sets corresponding to these three 3, are labeled 1 - 5, 6 - 10, and 11 - 15, respectively.

For each of the 1000 samples in a set, all 8 models in the candidate class are fit to the data using

the SEM algorithm; the criteria AIC, PDIO, and AICcd are evaluated using (2.4), (3.21), and (3.20);

and the candidate model selected by each criterion is determined. The distribution of selections

by each criterion is recorded for the 1000 samples and presented in Table 2. In this table, the

dimension of the generating model d, is listed in the second column, and the discard probabilities

for the samples are listed in the third column. For brevity, we group the dimension selections into

three categories: “< d,” (underfitting), “d,” (correct dimension), and “> d,” (overfitting).

The results of the simulations support the following conclusions.

(i)

(i)

(iii)

As the dimension of the generating model d, is increased, each criterion tends to become

more prone towards underfitting and less prone towards overfitting.

In every simulation set where data is discarded, AICcd overfits to a lesser degree than AIC
and underfits to a lesser degree than PDIO. Moreover, although PDIO often obtains more
correct dimension selections than AICcd, AICcd maintains the greatest level of consistency as
a selection criterion. In sets where AIC demonstrates a strong propensity towards overfitting
(e.g., 7), and in sets where PDIO demonstrates a strong propensity towards underfitting (e.g.,

15), AICcd exhibits these tendencies to a much lesser extent.

In the simulation sets where data is discarded, Pr(y; mis) 4+ Pr(y, mis) is held constant at
0.60. Yet as Pr(y; mis) is increased and Pr(y, mis) is decreased, PDIO becomes more prone
towards selecting lower dimensional models; this results in excessive underfitting in sets such

as 5, 10, and 15. AICcd exhibits this tendency to a much lesser extent.

Since Var(y;) = 4 and Var(ys) = 16, increasing Pr(y; mis) and decreasing Pr(y2 mis) results
in discarding a larger percentage of the less variable data and retaining a higher percentage of
the noisier data. This causes the goodness-of-fit term of PDIO, —21n h% | Yobs), to become
less effective against its penalty term, which will be large since Pr(y; mis) + Pr(y, mis) is
substantial. As a result, PDIO increasingly favors lower dimensional models. In sets such as
5, 10, and 15, this tendency results in PDIO underfitting to an excessive degree. Here again,
the additional goodness-of-fit component in AICcd, —2H Aw | wvﬂ provides protection against

this behavior.
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Table 2. Dimension Selections for Multivariate Regression Simulations

Dimension Selections

Set ~ True  Pr(y; mis), AIC PDIO AICcd
Dim.: d, Pr(yp mis) <d, d, >d, <d, d, >d, <d, d, >d,
1 9 0.00, 0.00 0 713 287 0 713 287 0 713 287
2 9 0.00, 0.60 1 606 393 31 912 57 13 722 265
3 9 0.20, 0.40 3 618 379 41 904 55 13 724 263
4 9 0.40, 0.20 2 636 362 76 874 50 21 739 240
5 9 0.60, 0.00 9 611 380 188 768 44 45 697 258
6 13 0.00, 0.00 0 710 290 0 710 290 0 710 290
7 13 0.00, 0.60 0 598 402 72 885 43 31 759 210
8 13 0.20, 0.40 0 628 372 85 862 53 27 758 215
9 13 0.40, 0.20 3 636 361 112 837 51 23 771 206
10 13 0.60, 0.00 8 598 394 305 660 35 84 709 207
11 17 0.00, 0.00 0 792 208 0 792 208 0 792 208
12 17 0.00, 0.60 0 697 303 219 760 21 127 725 148
13 17 0.20, 0.40 0 731 269 177 782 41 73778 149
14 17 0.40, 0.20 9 726 265 289 680 31 89 778 133
15 17 0.60, 0.00 17 685 298 462 509 29 157 704 139
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8. Conclusion

In Sections 2 through 5, we derived and discussed an analogue of AIC for model selection in
applications where the observed data is incomplete. Our criterion estimates the expected complete-
data Kullback-Leibler discrepancy in the same manner that Akaike’s (1973, 1974) AIC estimates
the expected incomplete-data discrepancy.

AIC lacks the property of consistency, but is asymptotically efficient in the sense of Shibata
(1980), which is arguably a property of greater practical value. (See, for example, Hurvich and
Tsai, 1989; Bhansali, 1993.) AICcd should possess the same asymptotic properties as AIC under
the assumption that the proportion of missing information to complete information tends to zero
as the degree of complete information (i.e., the overall sample size) tends to infinity. Establishing
the properties of AICcd when this assumption is not met is a topic for future investigation.

As a model selection criterion, AIC performs effectively in a large variety of applications. How-
ever, recent work has shown that in settings where the sample size is small relative to the dimension
of the largest model in the candidate class, AIC provides an estimator of the expected discrepancy
which is significantly negatively biased. “Corrected” variants of AIC which compensate for this
small-sample bias have been developed for such applications: see Hurvich and Tsai (1989); Hur-
vich, Shumway, and Tsai (1990); and Bedrick and Tsai (1994). In future work, we hope to develop
analogous “corrected” variants of AICcd, since AICcd itself will exhibit substantial negative bias
in the type of settings previously mentioned.

Our simulations in Sections 6 and 7 indicate that in the presence of incomplete data, AICcd
tends to underfit to a lesser degree than PDIO, and tends to overfit to a lesser degree than AIC.
AICcd achieves the latter by incorporating a penalization for missing information which is lacking
in AIC; it achieves the former by incorporating a goodness-of-fit term for missing information which
is lacking in PDIO.

AICcd is based entirely on complete-data tools. Unlike AIC and PDIO, it does not require the
evaluation of the observed-data empirical log-likelihood, which may be problematic or burdensome
to compute. Thus, AICcd can be easily evaluated in the framework of the SEM algorithm without
any additional programming. This important property of AICcd, along with its promising perfor-
mance in our simulation sets, will hopefully encourage the usage and further investigation of this

criterion as well as others based on complete-data tools and principles.
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