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1. Introduction

The first model selection criterion to gain widespread acceptance was the Akaike (1973,

1974) information criterion, AIC. AIC was developed to estimate the expected Kullback-

Leibler (1951) discrepancy between the generating model and a fitted candidate model. AIC

is applicable in a broad array of modeling frameworks, since its large-sample justification only

requires conventional asymptotic properties of maximum likelihood estimators. However, in

settings where the sample size is small, AIC may underestimate the expected discrepancy

for fitted candidate models of high dimension. As a result, the criterion may choose such

a model even when the expected discrepancy for the model is relatively large (Hurvich and

Tsai, 1989). This limits the effectiveness of AIC as a model selection criterion. To adjust

for this weakness, the “corrected” AIC, AICc, has been proposed.

AICc (Sugiura, 1978; Hurvich and Tsai, 1989) has proven to be one of the most effective

model selection criteria in an increasingly crowded field (McQuarrie and Tsai, 1998, p. 2).

Originally developed for linear regression, AICc has been extended to a number of addi-

tional frameworks, including autoregressive moving-average modeling (Hurvich, Shumway,

and Tsai, 1990), vector autoregressive modeling (Hurvich and Tsai, 1993), and multivariate

regression modeling (Bedrick and Tsai, 1994). In small-sample applications, AICc often dra-

matically outperforms AIC as a selection criterion. Since the basic form of AICc is identical

to that of AIC, the improvement in selection performance comes without an increase in com-

putational cost. However, AICc is less generally applicable than AIC since its justification

relies upon the structure of the candidate model.

In the mixed modeling framework, developing a corrected variant of AIC that is appro-

priate for comparing models having both different mean and different covariance structures

presents a formidable challenge. In the setting of mixed models amenable to longitudinal

data analysis, AICc has recently been justified by Azari, Li, and Tsai (2006) for comparing

models having different mean structures yet the same covariance structure. Yet the authors
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remark (p. 3065) “. . . finding a selection criterion to jointly select regression variables and

covariance parameters would be a potential research area for further study.”

With this motivation, we propose two bootstrap-corrected variants of AIC for the joint

selection of the fixed and random components of a linear mixed model. These variants are

justified by extending the asymptotic theory of Shibata (1997). They can be easily applied

under nonparametric, semiparametric, and parametric bootstrapping. We investigate the

performance of the bootstrap criteria in a simulation study.

The idea of using the bootstrap to improve the performance of a model selection rule

was introduced by Efron (1983, 1986), and is extensively discussed by Efron and Tibshirani

(1993, pp. 237-253). Ishiguro and Sakamoto (1991) advocated a bootstrap variant of AIC,

WIC, which is based on Efron’s methodology. Ishiguro, Morita, and Ishiguro (1991) used

this variant successfully in an aperture synthesis imaging problem. Cavanaugh and Shumway

(1997) proposed a bootstrap variant of AIC, AICb, for state-space model selection. Shibata

(1997) has established the asymptotic equivalence of AICb and WIC under a general set of

assumptions, and has indicated the existence of other asymptotically equivalent bootstrap-

corrected AIC variants. Shibata’s framework, however, applies only to independent data,

and therefore does not accommodate the type of data arising in mixed modeling applications.

In Section 2, we present the mixed model and briefly review the motivation behind AIC.

We then present the bootstrap AIC variants. In Sections 3 and 4, the performance of the

variants is investigated in a simulation study that also evaluates AIC. Section 5 concludes.

A theoretical asymptotic justification for the criteria is presented in the Appendix.

2. The Bootstrap AIC Variants

For i = 1, . . . , m, let yi denote an ni × 1 vector of responses observed on the ith case,

and let bi denote a q × 1 vector of associated random effects. Assume the vectors bi are

independently distributed as N(0, D). Let N =
∑m

i=1 ni denote the total number of response

measurements.
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The general linear mixed model can be represented as

Y = Xβ + Zb + ε, (2.1)

where Y denotes the N ×1 response vector (y1
′, . . . , ym

′)′; X is an N × (p+1) design matrix

of full column rank; Z is an N × mq block diagonal design matrix comprised on m blocks,

where each block is an ni × q matrix; β is the (p + 1)× 1 fixed effects parameter vector; b is

the mq × 1 random effects vector (b1
′, . . . , bm

′)′; and ε is the N × 1 error vector. We assume

b ∼ N(0, D) and ε ∼ N(0, σ2R), with b and ε distributed independently. Here, R and D are

positive definite block diagonal matrices and D is mq × mq and comprised of m identical

blocks, each of which is D.

Let θ denote the unknown parameter vector, consisting of the elements of the vector β,

the matrix D, and the scalar σ2. Let V = ZDZ ′+σ2R. Note that V represents the covariance

matrix of Y and that V is positive definite.

A well-known measure of separation between two models is given by the non-normalized

Kullback-Leibler information, also known as the cross entropy or discrepancy. Let θo rep-

resent the set of parameters for the “true” or generating model and θ represent the set

of parameters for a candidate or approximating model. The Kullback-Leibler discrepancy

between the models is defined as

d (θ, θo) = Eo{−2 log L(θ | Y )},

where Eo denotes the expectation under the generating model, and L(θ | Y ) represents the

likelihood corresponding to the approximating model.

For a given set of estimates θ̂, the overall Kullback-Leibler discrepancy

d (θ̂, θo) = Eo{−2 log L(θ | Y )} |θ=θ̂ (2.2)

would provide a useful measure of separation between the generating model and the fit-

ted approximating model. Yet evaluating (2.2) is not possible since doing so requires the

knowledge of θo.
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Akaike (1973), however, noted that −2 log L(θ̂ | Y ) serves as a biased estimator of the

expected value of (2.2), and that the bias adjustment

Eo{Eo{−2 log L(θ | Y )} |θ=θ̂} − Eo{−2 log L(θ̂ | Y )} (2.3)

can often be asymptotically estimated by twice the dimension of θ̂.

Thus, if we let k represent the dimension of θ̂, then under appropriate conditions, the

expected value of

AIC = −2 log L(θ̂ | Y ) + 2k

should be asymptotically close to the expected value of (2.2), say

�(k, θo) = Eo{d (θ̂, θo)}

= Eo{Eo{−2 log L(θ | Y )} |θ=θ̂}

= Eo{−2 log L(θ̂ | Y )}

+[Eo{Eo{−2 log L(θ | Y )} |θ=θ̂} − Eo{−2 log L(θ̂ | Y )}]. (2.4)

Note that the “goodness of fit” term in AIC, −2 log L(θ̂ | Y ), estimates the first of the terms

in (2.4), whereas the “penalty” term in AIC, 2k, estimates the bias expression (2.3).

AIC provides us with an asymptotically unbiased estimator of �(k, θo) in settings where

the sample size is large and k is comparatively small. In settings where the sample size is

small and k is comparatively large, 2k is often much smaller than the bias adjustment (2.3),

making AIC substantially negatively biased as an estimator of �(k, θo) (Hurvich and Tsai,

1989). If AIC severely underestimates �(k, θo) for higher dimensional fitted models in the

candidate set, the criterion may favor the higher dimensional models even when the expected

discrepancy between these models and the generating model is rather large.

To adjust for this weakness of AIC in the setting of mixed models, we utilize the boot-

strap to develop two variants of AIC. These criteria are formulated by constructing approx-

imately unbiased estimators of the expected discrepancy �(k, θo). Specifically, we propose
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two bootstrap-based estimators for the bias adjustment (2.3), which in small-sample settings

should estimate (2.3) more accurately than 2k.

Let Y ∗ represent a bootstrap sample, based on resampling on a case-by-case basis (i.e.,

based on resampling from {y1, . . . , ym}). Let E∗ represent the expectation with respect to the

bootstrap distribution (i.e., with respect to the distribution of Y ∗). Let {θ̂∗(i), i = 1, . . . , W}
represent a set of W bootstrap replicates of θ̂. We use θ̂ to denote the maximum likelihood

estimator of θ based on maximizing L(θ | Y ). Accordingly, θ̂∗ represents the maximum

likelihood estimator of θ based on maximizing L(θ | Y ∗).

The bootstrap sample size is taken to be the same as the size of the observed sample Y

(i.e., m). The properties of the bootstrap when the bootstrap sample size is equal to the

original sample size are discussed by Efron and Tibshirani (1993).

Let

b1 = E∗{−2 log L(θ̂∗ | Y ) − {−2 log L(θ̂∗ | Y ∗)}}, and

b2 = 2E∗{−2 log L(θ̂∗ | Y ) − {−2 log L(θ̂ | Y )}}. (2.5)

In the Appendix, we establish that under suitable conditions, b1 and b2 in (2.5) serve as

consistent estimators of the bias adjustment (2.3), and are asymptotically equivalent.

Now by the strong law of large numbers, as W → ∞, one can argue that

1

W

W∑
i=1

−2 log L(θ̂∗(i) | Y ) → E∗{−2 log L(θ̂∗ | Y )} a.s., and

1

W

W∑
i=1

−2 log L(θ̂∗(i) | Y ∗(i)) → E∗{−2 log L(θ̂∗ | Y ∗)} a.s. (2.6)

Expressions (2.5) and (2.6) therefore lead us to the following large-sample estimators of

�(k, θo):

AICb1 = −2 log L(θ̂ | Y ) +
1

W

W∑
i=1

−2 log
L(θ̂∗(i) | Y )

L(θ̂∗(i) | Y ∗(i))
, and

AICb2 = −2 log L(θ̂ | Y ) + 2

{
1

W

W∑
i=1

−2 log
L(θ̂∗(i) | Y )

L(θ̂ | Y )

}
. (2.7)
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Note that AICb1 and AICb2 are composed of two terms. The “goodness of fit” term,

−2 log L(θ̂ | Y ), estimates the first term in (2.4). The “penalty” terms in AICb1 and AICb2,

the second terms in (2.7), estimate the bias expression (2.3).

We note that the criterion AICb1 was originally introduced by Efron (1983, 1986). This

criterion was named WIC by Ishiguro and Sakamoto (1991), who further promoted its use.

The criterion AICb2 was originally introduced as AICb by Cavanaugh and Shumway (1997)

in the context of Gaussian state-space model selection. Shibata (1997) considered AICb1 and

AICb2 in addition to three additional bootstrap-corrected AIC variants, AICb3 – AICb5.

Our simulation results have indicated that AICb4 has similar bias properties as AICb2, yet

performs less effectively at selecting a model of appropriate form. AICb3 often exhibits sim-

ilar selection patterns as AICb1, yet has inferior bias properties. AICb5 is characterized by

both poor bias properties (comparable to those of AICb3) and deficient selection tendencies.

Thus, we limit our consideration to only AICb1 and AICb2.

In the Appendix, we extend the development of Shibata (1997) to provide an asymptotic

justification of AICb1 and AICb2 for candidate models of the form (2.1). In our justification,

two points must be emphasized.

First, unlike the asymptotic justification of AIC and the small-sample validations of AICc,

our asymptotic justification of the bootstrap criteria does not require the assumption that

the candidate model subsumes the true model. Thus, our justification applies to candidate

models which are underspecified as well as to those which are correctly or overspecified.

Second, our justification of the bootstrap criteria holds regardless of normality. Even

though normality is referenced in presenting the candidate models via (2.1), our theoretical

development does not require this assumption. We have therefore investigated the behavior

of AICb1 and AICb2 under nonparametric and semiparametric bootstrapping, where nor-

mality is not employed, along with parametric bootstrapping, where normality is utilized in

generating the bootstrap sample. However, for the sake of brevity, only parametric boot-
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strapping results are presented in our simulation study. Results based on semiparametric

and nonparametric bootstrapping are briefly described.

We encourage the use of the bootstrap criteria in two instances: (1) when the sample

size is small enough to cast doubt on the efficacy of AIC, or (2) when bootstrapping is used

as part of the overall analysis in a mixed modeling application. In small-sample settings, we

will illustrate the improved performance of the bootstrap criteria over AIC in our simulation

study.

3. Description of Simulations

Consider a setting in which data arises from a generating model of the following form:

Y = Xoβo + Zoτo + εo, (3.1)

where Y denotes the N × 1 response vector (y1
′, . . . , ym

′)′; Xo is an N × (po + 1) design

matrix of full column rank; Zo is an N × m block diagonal design matrix comprised on m

blocks, where each block is an ni × 1 vector consisting of all 1′s; βo is a (po + 1) × 1 fixed

effects parameter vector; τo is a m×1 random effects vector; and εo is an N ×1 error vector.

Assume τo ∼ N(0, σ2
τ oI) and εo ∼ N(0, σ2

oI), with τo and εo distributed independently. The

covariance matrix of Y is given by Vo = ZoZ
′
oσ

2
τ o + σ2

oI.

The true model parameter vector θo can be defined as (βo
′, στ o, σo)

′. Note that ko, the

dimension of θo, is po + 3.

Assume that two types of candidate models are considered for modeling data Y arising

from model (3.1). First, we entertain a mixed model having the same covariance structure

as the generating model: i.e., the “compound symmetric” covariance structure. Such a

candidate model can be represented in the format of model (2.1) by writing

Y = Xβ + Zτ + ε, (3.2)

where Y is as defined as previously; X is an N × (p + 1) design matrix of full column rank;

Z is an N × m block diagonal design matrix having the same format as Zo in (3.1); β is a
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(p + 1) × 1 fixed effects parameter vector; τ is a m × 1 random effects vector; and ε is an

N × 1 error vector. We assume τ ∼ N(0, σ2
τI) and ε ∼ N(0, σ2I), with τ and ε distributed

independently. The covariance matrix of Y is represented by V = ZZ ′σ2
τ + σ2I.

The candidate model parameter vector θ can be defined as (β ′, στ , σ)′. Note that k, the

dimension of θ, is p + 3. The MLE’s of the parameters, θ̂ = (β̂ ′, σ̂τ , σ̂)′, can be found via the

EM algorithm. The MLE of V is given by V̂ = ZZ ′σ̂2
τ + σ̂2I.

The second type of candidate model is the traditional normal linear regression model:

i.e., a fixed effects model that treats within-case correlations as zero. Such a model is a

special case of model (3.2), and can be written as

Y = Xβ + ε. (3.3)

The covariance matrix of Y is represented by V = σ2I.

The candidate model parameter θ can be defined as (β ′, σ)′. Note that k, the dimension

of θ, is p + 2. The MLE’s of the parameters, θ̂ = (β̂ ′, σ̂)′, can be easily found via ordinary

least squares. The MLE of V is given by V̂ = σ̂2I.

In the simulation setting outlined, we assume that data arises from the mixed model

(3.1) having a compound symmetric covariance structure. We consider modeling such data

using candidate models both with and without the appropriate covariance structure. Model

selection requires the determination of a suitable set of regressors for the design matrix

X, and a decision as to whether the random effects should be included (as in (3.2)) or

excluded (as in (3.3)). For the specification of the regressor set, supposing we have P

explanatory variables of interest, we might consider candidate models of the form (3.2) and

(3.3) corresponding to design matrices X of ranks p+1, where p = 1, 2, . . . , P . The smallest

models (p = 1) would be based only one regressor, and the largest model (p = P ) would

contain all P regressors.

To envision how such a setting might arise in practice, consider a biomedical study in

which data is collected on patients in a multi-center clinical trial. A response variable and a
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collection of covariates are measured on each patient, and the biostatistician must determine

which covariates are appropriate for inclusion in a model designed to explain or predict the

response. Additionally, since groups of patients are associated with multiple centers, the

inclusion of a random center effect should be investigated. The random effect would account

for clustering that may occur among responses from the same center. If the random effect

is included, the model treats responses for patients within the same center as correlated and

responses for patients in different centers as independent; if the random effect is excluded,

the model treats all responses as independent.

In our simulations, we examine the behavior of AIC, AICb1, and AICb2 in settings where

the criteria are used to select a fitted model from the candidate class. In each set, 100 samples

are generated from the true model. For every sample, candidate models of the form (3.2)

and (3.3) are fit to the data, the criteria are evaluated, and the fitted model favored by each

criterion is recorded. Over the 100 samples, the distribution of model selections is tabulated

for each of the criteria.

For a given set of estimates θ̂, the discrepancy d (θ̂, θo) is evaluated via

d (θ̂, θo) = log |V̂ | + tr(V̂ −1Vo) + (Xoβo − Xβ̂)′V̂ −1(Xoβo − Xβ̂).

Since AIC and the bootstrap variants of AIC serve as proxies for d (θ̂, θo), the performance

of d (θ̂, θo) as a selection rule serves as an appropriate “gold standard” for assessing the

performance of the criteria. Averaging values of d (θ̂, θo) over various samples allows us to

evaluate �(k, θo), the expected discrepancy.

In configuring our simulations, we require that one of the candidate models in our class

is correctly specified, i.e., contains the same regressors and features the same covariance

structure as the true model. We randomly generate all regressors as independent, identically

distributed variates from a standard normal distribution.

Our simulation study consists of two parts. In the first part, the candidate models are

based on nested design matrices X. Thus, with P regressor variables of interest, we entertain
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P candidate models based on a sequence of design matrices X of ranks 2, 3, . . . , (P +1). Each

successive design matrix contains all of the regressors in its predecessors. We refer to p, the

number of regressors in the candidate model, as the order of the model, and to po as the

true order. For the candidate models of the form (3.2), the model of order po is correctly

specified (1 ≤ po ≤ P ). Fitted models for which p < po are underfit, and those for which

p > po are overfit.

In the second part, the candidate models are based on design matrices X corresponding

to all possible subsets of the regressor variables. With P regressor variables of interest, a

total of 2P − 1 design matrices may be constructed. (Intercept-only models are excluded.)

We again entertain candidate models based on design matrices X of ranks 2, 3, . . . , (P + 1);

however, for each regressor subset size p (p = 1, 2, . . . , P ), we must consider
(

P
p

)
design

matrices representing various combinations of p regressors. For the candidate models of the

form (3.2), one of the models having a design matrix X based on po regressors is correctly

specified (1 ≤ po ≤ P ). Fitted models corresponding to design matrices that do not contain

all of the regressors in the true model are underfit. For such models, the column space of

the design matrix for the fitted model, C(X), does not contain the column space of the

design matrix for the true model, C(Xo); i.e., C(Xo) � C(X). Fitted models corresponding

to design matrices for which p > po that contain all of the regressors in the true model are

overfit. For such models, the column space of the design matrix for the true model is a proper

subset of the column space of the design matrix for the fitted model; i.e., C(Xo) ⊂ C(X).

For practical applications, the all possible regressions (APR) framework is more realistic

than the nested models (NM) framework. However, the latter setting is often used in simu-

lation studies for model selection criteria so that large candidate models may be considered

without making the number of models in the candidate class excessively high. (See, for in-

stance, McQuarrie and Tsai, 1998.) When P is large and the sample size is relatively small,

criteria with penalty terms justified asymptotically are often outperformed by variants with
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penalty terms refined for finite samples. Thus, simulations based on nested models may

allow us to better assess the efficacy of the bootstrap-corrected criteria.

Our goal is to search among a class of candidate models of the form (3.2) and (3.3) for the

fitted model which serves as the best approximation to the true model (3.1). Since the true

model is included in the candidate class, and since �(k, θo) is minimized when the structure

of the candidate model corresponds to that of the true model, the optimal fitted candidate

model is correctly specified. We investigate the effectiveness of AIC, AICb1, and AICb2 at

choosing this optimal fitted candidate model.

In the computation of the penalty terms for AICb1 and AICb2, the parametric bootstrap

is employed. Simulation results for semiparametric and nonparametric bootstrapping have

been compiled, and will be briefly described for the sets based on nested models. However,

such results are not featured here.

In the context of the mixed model (3.2), the algorithm for parametric bootstrap can be

outlined as follows.

Let yi denote the ni × 1 response vector for case i, let Xi denote the ni × p design matrix

for case i, and let zi denote an ni × 1 vector consisting of all 1′s.

(1) Fit the candidate mixed model (3.2) to the data to obtain the estimators β̂, σ̂2
τ , and

σ̂2.

(2) Generate the bootstrap sample on a case-by-case using the fitted model

y∗
i = Xiβ̂ + ziτ

∗
i + ε∗i , i = 1, ..., m,

where τ ∗
i and ε∗i are generated from N(0, σ̂2

τ ) and N(0, σ̂2I) distributions, respectively.

(3) Fit the candidate mixed model (3.2) to the bootstrap data, thereby obtaining the

bootstrap MLE’s β̂∗, σ̂2∗
τ , and σ̂2∗.

(4) Repeat steps (2)-(3) W times.
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Note that the same algorithm may be applied in the context of the traditional regression

model (3.3), yet the ziτ
∗
i model term and its associated variance component σ̂2

τ are omitted.

For our simulation sets, the EM algorithm was employed as a fitting procedure when the

algorithm was applied to the mixed model (3.2).

4. Presentation of Simulation Results

4.1 Nested Models

To generate the simulated data, we choose the parameters βo = (1, 1, 1, 1, 1, 1, 1)′, σ2
τ o = 2,

and σ2
o = 1 in model (3.1). We consider sample sizes of m = 15, 20, 30, and 50 with n = 3

observations for each case. For each simulation set, 100 samples consisting of N = m × n

observations are generated from the specified true model of order po = 6. The maximum

order of the candidate class is set at P = 12. In the computation of AICb1 and AICb2,

W = 500 bootstrap replicates are used.

For each simulation set (m = 15, 20, 30, 50), the distributions of selections by AIC, AICb1,

AICb2, and the discrepancy d (θ̂, θo) are compiled over the 100 samples.

For AIC, AICb1, and AICb2, over the 100 samples, the average criterion value is com-

puted for each of the candidate models (3.2) and (3.3) over the orders 1 through P . The

value of �(k, θo) is approximated by averaging values of d (θ̂, θo). To explore the effectiveness

of the criteria as asymptotically unbiased estimators of �(k, θo), for each candidate model

type, we plot �(k, θo) along with the averages for AIC, AICb1, and AICb2 against the orders

from 1 to P .

The order selections for AIC, AICb1, AICb2, and d (θ̂, θo) are reported in Tables 4.1−4.4.

Over all four sets, AICb2 obtains the most correct model selections. In the sets where the

sample size is small (m = 15 or m = 20) or moderate (m = 30), AICb1 and AICb2 both

outperform AIC as a selection criterion. However, in the set where the sample size is large

(m = 50), only AICb2 outperforms AIC in choosing the correct model. In this set, AICb1
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and AIC obtain a comparable number of correct model selections, although AICb1 tends to

choose more parsimonious models.

Figures 4.1−4.4 demonstrate how effectively the bootstrap criteria serve as approximately

unbiased estimators of �(k, θo). With an increase in sample size, the average curves for

AICb1 and AICb2 tend to grow closer, both approaching the simulated �(k, θo) curve. The

figures illustrate the large-sample theory derived in the Appendix: the bootstrap criteria are

not only asymptotically unbiased estimators of �(k, θo), but they are also asymptotically

equivalent.

For correctly specified or overfit models, the average AICb1 curve follows the simulated

�(k, θo) curve more closely than either the average AIC or AICb2 curve. The figures also

reveal that AICb1 and AICb2 are less biased estimators of �(k, θo) than AIC.

As mentioned previously, the preceding results are based on parametric bootstrapping.

We have also compiled results under semiparametric and nonparametric bootstrapping. With

semiparametric bootstrapping, the model selections for AICb1 and AICb2 are similar to those

obtained for parametric bootstrapping. When figures such as 4.1−4.4 are constructed based

on the criterion averages, the curves for AICb1 and AICb2 reflect the general shape of the

simulated �(k, θo) curve. However, in terms of location, the AICb1 and AICb2 curves are

separated from one another and from the �(k, θo) curve. A possible explanation for this

tendency is provided by the results of Morris (2002), who demonstrated both mathematically

and by simulation that the semiparametric bootstrap for mixed models (based on resampling

BLUP’s) will consistently underestimate the variation of the parameter estimates.

With nonparametric bootstrapping, the model selections for AICb1 and AICb2 are again

similar to those obtained for parametric bootstrapping. In small-sample settings, however,

unusually large criterion values occasionally result from certain samples. Thus, when figures

such as 4.1 − 4.4 are constructed based on the criterion averages, the curves for AICb1 and

AICb2 are quite dissimilar from the simulated �(k, θo) curve when the sample size is small
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(e.g., m = 15). The presence of the atypically large criterion values implies that nonpara-

metric bootstrapping in small-sample applications may not lead to accurate estimators of

�(k, θo).

4.2 All Possible Regressions

To generate the simulated data, we choose the parameters βo = (1, 1, 1, 1)′, σ2
τ o = 2,

and σ2
o = 1 in model (3.1). We again consider sample sizes of m = 15, 20, 30, and 50

with n = 3 observations for each case. For each simulation set, 100 samples consisting of

N = m × n observations are generated from the specified true model containing po = 3

regressor variables. The largest model in the candidate class is based on P = 5 regressors.

In the computation of AICb1 and AICb2, W = 500 bootstrap replicates are used.

Again, for each simulation set (m = 15, 20, 30, 50), the distributions of selections by

AIC, AICb1, AICb2, and the discrepancy d (θ̂, θo) are compiled over the 100 samples. The

parametric bootstrap is employed.

The model selections for AIC, AICb1, AICb2, and d (θ̂, θo) are reported in Tables 4.5−4.8.

The selections are grouped according to (a) whether the chosen model includes or excludes the

random effects, and (b) whether the mean structure is correctly specified (C(Xo) = C(X)),

underspecified (C(Xo) � C(X)), or overspecified (C(Xo) ⊂ C(X)).

Again, over all four sets, AICb2 obtains the most correct model selections. In the set

based on the smallest sample size (m = 15), AICb1 and AICb2 both outperform AIC as a

selection criterion. However, in the remaining sets (m = 20, 30, 50), AICb1 and AIC obtain

a comparable number of correct model selections. Thus, the selection patterns in the APR

setting are similar to those in the nested model setting, although the propensity for AIC to

choose an overfit model is reduced in the APR sets because fewer models in the candidate

class are overspecified in the mean structure.

We close this section by commenting on how to choose the number of bootstrap samples

W used in the evaluation of the bootstrap criteria. As W increases, the averages which
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comprise the penalty terms of the bootstrap criteria stabilize. Choosing a value of W which

is too small may result in inaccurate estimation of the bias expression (2.3), yet choosing a

value of W which is too large will waste computational time. The value 500 for W was chosen

since smaller values seemed to marginally diminish the number of correct model selections

for the bootstrap criteria while larger values did not appreciably improve the performance

of the bootstrap criteria.

5. Conclusion and Further Directions

We have focused on model selection for the general linear mixed model. Under suitable

conditions, the bootstrap criteria AICb1 and AICb2 serve the same objective as traditional

AIC, in that they provide asymptotically unbiased estimators of the expected discrepancy

�(k, θo) between the generating model and a fitted approximating model. The two bootstrap

criteria are asymptotically equivalent.

Our simulation results indicate that AICb1 and AICb2 perform effectively in choosing a

mixed model with an appropriate mean and covariance structure. AICb2 exhibits a higher

success rate in identifying the correct model than either AIC or AICb1. In small-sample

applications, both bootstrap criteria outperform AIC in selecting the correct model.

Akaike criteria are designed to serve as estimators of the expected Kullback-Leibler dis-

crepancy (2.4). Figures 4.1−4.4 illustrate the bias characteristics of AIC, AICb1, and AICb2

as estimators of �(k, θo). Our investigations indicate that the criteria are quite comparable

in terms of variance; hence, the accuracy of the criteria as estimators of �(k, θo) is largely

governed by their bias properties. In small to moderate sample-size settings, the bias of

AICb1 is substantially less than that of AIC, which tends to underestimate �(k, θo) for cor-

rectly specified and overfit models. The bias of AICb1 is also less than that of AICb2, which

tends to overestimate �(k, θo) for such models. Thus, as an estimator of �(k, θo), AICb1

is superior to AIC and AICb2 in terms of accuracy. However, the tendency for AICb2 to

marginally overestimate �(k, θo) arises from a penalty term that imposes a greater penal-
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ization for overfitting than the bias adjustment (2.3) dictates. As a result, the difference

between AICb2 values for an overfit model and the correctly specified fitted model tends to

exceed the difference between AICb1 values or AIC values. Thus, AICb2 tends to be more

sensitive towards detecting overspecification than either of its competitors.

AICb1 and AICb2 can be justified in the context of a general model formulation under

a nonrestrictive set of conditions. Our justification and simulations focus on the framework

of the mixed model, yet the criteria have potential applicability in a large array of practical

modeling frameworks. Also, although AICb1 and AICb2 are more computationally expensive

to evaluate than AIC, they have simplistic forms, and should be convenient to compute as

part of an overall bootstrap-based analysis.

Apart from their utility in small-sample applications, we also hope to investigate other

advantages of using bootstrap criteria. We wish to further explore the effectiveness of the

criteria in selecting an appropriate covariance structure for the random effects, even when

the true covariance structure is not represented among the models in the candidate class.

We wish to also develop bootstrap-based procedures for constructing confidence intervals for

the expected discrepancy �(k, θo). Such intervals could be used to determine whether values

of �(k, θo) statistically differ; point estimates of �(k, θo) alone cannot address this issue.
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Table 4.1: Model Selections for Simulation Set 1 (m = 15)

Model Structure Selections
Random Mean

Effects Order AIC d(θ̂, θo) AICb1 AICb2

With

1-4 0 1 0 0
5 0 7 1 1
6 56 84 78 81
7 6 5 7 3
8 7 2 3 3
9 5 0 1 1
10 6 0 1 0
11 7 0 0 0
12 10 0 0 0

Without

1-5 0 0 0 0
6 0 1 6 8
7 0 0 2 2

8-12 3 0 1 1

Table 4.2: Model Selections for Simulation Set 2 (m = 20)

Model Structure Selections
Random Mean

Effects Order AIC d(θ̂, θo) AICb1 AICb2

With

1-5 0 1 0 0
6 62 94 77 83
7 11 3 13 10
8 7 2 5 3
9 5 0 0 0
10 5 0 1 0
11 1 0 0 0
12 7 0 0 0

Without 1-12 2 0 4 4
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Table 4.3: Model Selections for Simulation Set 3 (m = 30)

Model Structure Selections
Random Mean

Effects Order AIC d(θ̂, θo) AICb1 AICb2

With

1-5 0 0 0 0
6 70 97 77 88
7 12 1 15 7
8 7 1 6 3
9 2 1 0 1
10 3 0 1 0
11 3 0 0 0
12 3 0 1 1

Without 1-12 0 0 0 0

Table 4.4: Model Selections for Simulation Set 4 (m = 50)

Model Structure Selections
Random Mean

Effects Order AIC d(θ̂, θo) AICb1 AICb2

With

1-5 0 0 0 0
6 74 95 72 81
7 8 4 15 10
8 9 0 6 5
9 3 1 3 1
10 1 0 1 1
11 3 0 2 2
12 2 0 1 0

Without 1-12 0 0 0 0
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Figure 4.1: Criterion Averages and Simulated �(k, θo) (Set 1, m = 15)
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Figure 4.2: Criterion Averages and Simulated �(k, θo) (Set 2, m = 20)
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Figure 4.3: Criterion Averages and Simulated �(k, θo) (Set 3, m = 30)
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Figure 4.4: Criterion Averages and Simulated �(k, θo) (Set 4, m = 50)
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Table 4.5: Model Selections for Simulation Set 5 (m = 15)

Model Structure Selections
Random Mean

Effects Structure AIC d(θ̂, θo) AICb1 AICb2
With

Underfit
0 1 0 0

Without 0 0 0 0
With

Correctly Specified
67 83 78 83

Without 1 0 0 3
With

Overfit
32 16 20 13

Without 0 0 2 1

Table 4.6: Model Selections for Simulation Set 6 (m = 20)

Model Structure Selections
Random Mean

Effects Structure AIC d(θ̂, θo) AICb1 AICb2
With

Underfit
0 0 0 0

Without 0 0 0 0
With

Correctly Specified
73 87 73 79

Without 0 0 0 1
With

Overfit
27 13 27 20

Without 0 0 0 0
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Table 4.7: Model Selections for Simulation Set 7 (m = 30)

Model Structure Selections
Random Mean

Effects Structure AIC d(θ̂, θo) AICb1 AICb2
With

Underfit
0 0 0 0

Without 0 0 0 0
With

Correctly Specified
74 93 74 79

Without 0 0 0 0
With

Overfit
26 7 26 21

Without 0 0 0 0

Table 4.8: Model Selections for Simulation Set 8 (m = 50)

Model Structure Selections
Random Mean

Effects Structure AIC d(θ̂, θo) AICb1 AICb2
With

Underfit
0 0 0 0

Without 0 0 0 0
With

Correctly Specified
74 92 71 81

Without 0 0 0 0
With

Overfit
26 8 29 19

Without 0 0 0 0
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Appendix

Here, we present a formal justification of AICb1 and AICb2 as asymptotically unbiased

estimators of �(k, θo).

We first establish that b1 and b2 are asymptotically equivalent (as both W → ∞ and

m → ∞).

Let Θ represent the parameter space for θ, the set of parameters for a candidate model.

Let θ̄ represent the θ corresponding to the global maximum of Eo{log L(θ | Y )}, or equiva-

lently, the θ for which Eo{−2 log L(θ | Y )} is minimized. We assume that θ̄, the “pseudo”

true parameter, exists and is unique.

To prove the asymptotic equivalence of b1 and b2, we must establish the consistency of

both θ̂ and θ̂∗. Here, consistency means that the estimator converges to θ̄ almost surely as

the sample size m approaches infinity.

We establish consistency by presenting a set of fundamental conditions that will allow us

to appeal to Lemma 1 of Shibata (1997).

Assumption 1

(i) The parameter space Θ is a compact subset of k-dimensional Euclidean space.

(ii) Derivatives of the log likelihood up to order three exist with respect to θ, and are

continuous and bounded over Θ.

(iii) θ̄ is an interior point of Θ.

Regarding the likelihood ratio, we provide relevant notation. Let fi(yi | θ) denote the

marginal density for case i, and consider the log-likelihood ratio statistic defined for a neigh-

borhood U in Θ by

Ri(yi, θ, U) = inf θ̃∈U log
fi(yi | θ)

fi(yi | θ̃)
.

We assume that the limit

Ī(θ̄, U) = lim
m→∞

1

m

m∑
i=1

Eo{Ri(yi, θ̄, U)}
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exists and is finite in a neighborhood U = Uθ for any θ in Θ.

From the Lebesgue monotone convergence theorem,

lim
q→∞

Ī(θ̄, U
(q)
θ ) = Ī(θ̄, θ) = lim

m→∞
1

m
Eo

{
log L(θ̄ | Y ) − log L(θ | Y )

}
(A.1)

holds true for a monotone decreasing sequence of neighborhoods U
(q)
θ , q = 1, 2, . . . , converging

to a parameter θ. The preceding is valid provided that log L(θ | Y ) is continuous with respect

to θ, that is,

lim
θ̃→θ

{log L(θ̃ | Y )} = log L(θ | Y )

for any θ ∈ Θ. Note that the right hand side of (A.1) is nonnegative by the definition of θ̄.

We use analogous notation for the bootstrap sample Y ∗ = (y∗
1
′, . . . , y∗

m
′)′. We have

ĪB(θ̄, U) = lim
m→∞

1

m

m∑
i=1

EoE∗{Ri(y
∗
i , θ̄, U)}

and

lim
q→∞

Ī(θ̄, U
(q)
θ ) = ĪB(θ̄, θ) = lim

m→∞
1

m
EoE∗

{
log L(θ̄ | Y ∗) − log L(θ | Y ∗)

}
.

Assumption 2

(i) Both 1
m

∑m
i=1 Ri(yi, θ̄, Uθ) and 1

m

∑m
i=1 Ri(y

∗
i , θ̄, Uθ) almost surely converge to Ī(θ̄, Uθ)

and ĪB(θ̄, Uθ), respectively, in a neighborhood Uθ for any θ ∈ Θ.

(ii) Ī(θ̄, θ) > 0 and ĪB(θ̄, θ) > 0 for any θ ∈ Θ where θ 	= θ̄.

The assumption (i) means that the average of the log-likelihood ratio statistics has a

limit in a neighborhood Uθ̄ of θ̄. The assumption (ii) is an identifiability condition.

Assumptions 1 and 2 allow us to apply Lemma 1 of Shibata (1997). Thus, we can assert

that θ̂ and θ̂∗ almost surely converge to θ̄ as m tends to infinity. For any neighborhood Uθ̄

of θ̄, the estimators θ̂ and θ̂∗ lie in the neighborhood for sufficiently large m.
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Assumption 3

E∗{log L(θ̂ | Y ∗)} = log L(θ̂ | Y ), where θ̂ is the MLE based on maximizing log L(θ | Y ).

We explore this assumption in the context of the general linear model (2.1).

With parametric bootstrapping, a bootstrap sample Y ∗ is produced via the formula

Y ∗ = Xβ̂ + ξ∗,

where β̂ is the maximum likelihood estimate of β, and the bootstrap residuals ξ∗ are gener-

ated from a normal distribution with mean vector 0 and covariance matrix V̂ = ZD̂Z ′+σ̂2R.

Note that V̂ is the maximum likelihood estimate of V under model (2.1).

Neglecting the constant in log L(θ̂ | Y ∗), we have

E∗{log L(θ̂ | Y ∗)} = E∗

{
−1

2
log |V̂ | − 1

2
(Y ∗ − Xβ̂)′V̂ −1(Y ∗ − Xβ̂)

}

= −1

2
log |V̂ | − 1

2
E∗‖V̂ − 1

2 ξ∗‖2

= −1

2
log |V̂ | − 1

2
tr(V̂ −1V̂ )

= −1

2
log |V̂ | − 1

2
N.

Recall that N denotes the total number of observations in the vector Y .

Similarly,

log L(θ̂ | Y ) = −1

2
log |V̂ | − 1

2
(Y − Xβ̂)′V̂ −1(Y − Xβ̂).

From Christensen (1996, pp. 271-272), for the MLE’s V̂ and β̂, we have

(Y − Xβ̂)′V̂ −1(Y − Xβ̂) = N.

Thus,

log L(θ̂ | Y ) = −1

2
log |V̂ | − 1

2
N.

Therefore, Assumption 3 holds true under parametric bootstrapping.

27



For semiparametric and nonparametric bootstrapping, we can verify that the relation

E∗{log L(θ | Y ∗)} = log L(θ | Y ) holds for any θ ∈ Θ, although this demonstration is

nontrivial. Thus, Assumption 3 holds as a special case where θ = θ̂.

Let Ĵ (Y, θ) = − ∂2

∂θ∂θ′{log L(θ | Y )} and Ĵ (Y ∗, θ) = − ∂2

∂θ∂θ′{log L(θ | Y ∗)} denote the

observed Fisher information matrices under the original sample Y and under the bootstrap

sample Y ∗, respectively. We now present and discuss our fourth and final assumption.

Assumption 4

Ĵ (Y, θ)/m and Ĵ (Y ∗, θ)/m almost surely converge to positive definite matrices J̄ (θ) and

J̄B(θ), respectively. Furthermore, J̄ (θ̄) = J̄B(θ̄).

First, the regularity conditions under Assumption 1 allow us to assert that both Ĵ (Y, θ)/m

and Ĵ (Y ∗, θ)/m have limits. Specifically, let

J̄ (θ) = lim
m→∞

1

m
Eo{Ĵ (Y, θ)}, and J̄B(θ) = lim

m→∞
1

m
EoE∗{Ĵ (Y ∗, θ)}.

Then, we may claim that

lim
m→∞

1

m
Ĵ (Y, θ) = J̄ (θ) a.s., and lim

m→∞
1

m
Ĵ (Y ∗, θ) = J̄B(θ) a.s.

Under parametric bootstrapping, J̄ (θ) = J̄B(θ) may not hold for any θ ∈ Θ; however,

J̄ (θ) = J̄B(θ) holds when θ = θ̄. By Assumptions 1 and 3, along with the consistency of θ̂,

we have

lim
m→∞

1

m
Ĵ (Y ∗, θ̂) = J̄B(θ̄) a.s.

= lim
m→∞

1

m
EoE∗{Ĵ (Y ∗, θ̂)}

= lim
m→∞

1

m
Eo

{
− ∂2

∂θ∂θ′
{log L(θ | Y )} |θ=θ̂

}

= lim
m→∞

1

m
Eo{Ĵ (Y, θ̂)} = J̄ (θ̄) a.s.

Therefore, under parametric bootstrapping, J̄ (θ̄) = J̄B(θ̄).
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Through Assumption 3, in the context of the general linear mixed model (2.1), we can

prove that J̄ (θ) = J̄B(θ) for any θ ∈ Θ under semiparametric and nonparametric bootstrap-

ping. Clearly, J̄ (θ̄) = J̄B(θ̄) holds as a special case.

We now make use of Assumptions 1-4 to establish the asymptotic equivalence of b1 and

b2.

First, consider a second-order expansion of −2 log L(θ̂ | Y ∗) about θ̂∗. We have

−2 log L(θ̂ | Y ∗) = −2 log L(θ̂∗ | Y ∗) + (θ̂ − θ̂∗)′Ĵ (Y ∗, θ∗)(θ̂ − θ̂∗). (A.2)

Here, θ∗ is a random vector which lies between θ̂ and θ̂∗.

Taking expectations with respect to both sides of (A.2), and using the consistency of θ̂

and θ̂∗ along with Assumption 4, we obtain

E∗{−2 log L(θ̂ | Y ∗) − {−2 log L(θ̂∗ | Y ∗)}}

= E∗{m(θ̂ − θ̂∗)′J̄B(θ̄)(θ̂ − θ̂∗)}(1 + o(1)) a.s. (A.3)

as m → ∞.

Next, consider a second-order expansion of −2 log L(θ̂∗ | Y ) about θ̂. We have

−2 log L(θ̂∗ | Y ) = −2 log L(θ̂ | Y ) + (θ̂∗ − θ̂)′Ĵ (Y, θ∗∗)(θ̂∗ − θ̂). (A.4)

Here, θ∗∗ is a random vector which lies between θ̂∗ and θ̂.

Taking expectations with respect to both sides of (A.4), and using the consistency of θ̂

and θ̂∗ along with Assumption 4, we obtain

E∗{−2 log L(θ̂∗ | Y ) − {−2 log L(θ̂ | Y )}}

= E∗{m(θ̂∗ − θ̂)′J̄ (θ̄)(θ̂∗ − θ̂)}(1 + o(1)) a.s. (A.5)

as m → ∞.

Since J̄B(θ̄) = J̄ (θ̄), we know that

E∗{(θ̂ − θ̂∗)′J̄B(θ̄)(θ̂ − θ̂∗)} = E∗{(θ̂ − θ̂∗)′J̄ (θ̄)(θ̂ − θ̂∗)}.
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Considering (A.3) and (A.5), as m → ∞, we have

E∗{−2 log L(θ̂ | Y ∗) − {−2 log L(θ̂∗ | Y ∗)}}

= E∗{−2 log L(θ̂∗ | Y ) − {−2 log L(θ̂ | Y )}}(1 + o(1)) a.s. (A.6)

With reference to (2.5), by (A.6) and Assumption 3, as m → ∞, we can assert

b1 = E∗{−2 log L(θ̂∗ | Y ) − {−2 log L(θ̂∗ | Y ∗)}}

= 2 E∗{−2 log L(θ̂∗ | Y ) − {−2 log L(θ̂ | Y )}}(1 + o(1)) a.s. (A.7)

= b2 (1 + o(1)) a.s.

Thus, b1-b2 in (2.5) are asymptotically equivalent to each other.

Next, we will justify that b1-b2 in (2.5) are consistent estimators of the bias adjustment

(2.3).

Let

QB = E∗{m(θ̂ − θ̂∗)′J̄B(θ̄)(θ̂ − θ̂∗)} = E∗{m(θ̂ − θ̂∗)′J̄ (θ̄)(θ̂ − θ̂∗)}.

By (A.5) and (A.7), we can conclude that b1 and b2 are asymptotically equivalent to 2QB.

Hence, our goal can be modified to prove that 2QB is a consistent estimator of the bias

adjustment (2.3).

We begin our justification by obtaining a useful expression for the limit of QB. The

derivation of this expression will involve the matrix

Î(θ, Y ) =

{
∂

∂θ
log L(θ | Y )

∂

∂θ′
log L(θ | Y )

}
.

The regularity conditions under Assumption 1 imply that Î(θ, Y )/m has a limit. Specifically,

let

Ī(θ) = lim
m→∞

1

m
Eo

{
Î(θ, Y )

}
.

We may then claim that

lim
m→∞

1

m
Î(θ, Y ) = Ī(θ) a.s. (A.8)
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As shown in what follows, the limit of QB is based on the matrices Ī(θ) and J̄ (θ).

Lemma 1

lim
m→∞

QB = tr
{Ī(θ̄)J̄ (θ̄)−1

}
a.s.

Proof:

We expand ∂
∂θ

log L(θ̂ | Y ) around θ̂∗ to obtain

θ̂ − θ̂∗ =

{
− ∂2

∂θ∂θ′
log L(θα | Y )

}−1
∂

∂θ
log L(θ̂∗ | Y ). (A.9)

Here, θα is a random vector between θ̂ and θ̂∗.

Substituting (A.9) for θ̂∗ − θ̂ into QB, and utilizing Assumption 4 along with the consis-

tency of θ̂ and θ̂∗, we can establish that

lim
m→∞

QB

= lim
m→∞

E∗

{
1

m

{[
∂

∂θ′
log L(θ̂∗ | Y )

]
J̄ (θ̄)

−1

}
J̄ (θ̄)

{
J̄ (θ̄)

−1

[
∂

∂θ
log L(θ̂∗ | Y )

]}}
a.s.

= lim
m→∞

E∗tr
{{

1

m

[
∂

∂θ
log L(θ̂∗ | Y )

∂

∂θ′
log L(θ̂∗ | Y )

]}
J̄ (θ̄)−1

}
a.s.

= lim
m→∞

E∗tr
{{

1

m
Î(θ̂∗, Y )

}
J̄ (θ̄)−1

}
a.s. (A.10)

Now using (A.8) and the consistency of θ̂∗, we have

lim
m→∞

1

m
Î(θ̂∗, Y ) = Ī(θ̄). (A.11)

Thus, by (A.10) and (A.11), we can argue

lim
m→∞

QB = tr
{Ī(θ̄)J̄ (θ̄)−1

}
a.s. (A.12)

Therefore, the lemma is established by (A.12).

Lemma 2

2QB is a consistent estimator of the bias adjustment (2.3).
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Proof:

First, consider expanding Eo{−2 log L(θ | Y )} |θ=θ̂ about θ̄ to obtain

Eo{−2 log L(θ | Y )} |θ=θ̂ = Eo{−2 log L(θ̄ | Y )}

+(θ̂ − θ̄)′Eo

{
− ∂2

∂θ∂θ′
log L(θγ | Y )

}
(θ̂ − θ̄)

= Eo{−2 log L(θ̄ | Y )}

+(θ̂ − θ̄)′Eo

{
Ĵ (Y, θγ)

}
(θ̂ − θ̄). (A.13)

Here, θγ is a random vector which lies between θ̂ and θ̄.

Next, we expand −2 log L(θ̄ | Y ) about θ̂ and take expectations of both sides of the

resulting expression to obtain

Eo{−2 log L(θ̄ | Y )} = Eo{−2 log L(θ̂ | Y )}

+Eo

{
(θ̄ − θ̂)′

{
− ∂2

∂θ∂θ′
log L(θδ | Y )

}
(θ̄ − θ̂)

}
= Eo{−2 log L(θ̂ | Y )}

+Eo

{
(θ̂ − θ̄)′Ĵ (Y, θδ)(θ̂ − θ̄)

}
. (A.14)

Here, θδ is a random vector which lies between θ̂ and θ̄.

With regard to (A.13) and (A.14), we arrive at

Eo{−2 log L(θ | Y )} |θ=θ̂ −Eo{−2 log L(θ̂ | Y )}

= (θ̂ − θ̄)′Eo

{
Ĵ (Y, θγ)

}
(θ̂ − θ̄) + Eo

{
(θ̂ − θ̄)′Ĵ (Y, θδ)(θ̂ − θ̄)

}
. (A.15)

Again, θγ and θδ are random vectors which lie between θ̂ and θ̄.

Therefore, from (A.15), we note that the expected value of

(θ̂ − θ̄)′Eo

{
Ĵ (Y, θγ)

}
(θ̂ − θ̄) + (θ̂ − θ̄)′Ĵ (Y, θδ)(θ̂ − θ̄) (A.16)

should be close to the bias adjustment (2.3) provided that m is large.

Now, we will show that as m → ∞, the limits of (A.16) and 2QB are identical. Thus,

2QB should be asymptotically close to the bias adjustment (2.3). The lemma will therefore

be established.
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By Assumption 4 and the consistency of θ̂,

lim
m→∞

{
1

m
Ĵ (Y, θδ)

}
= lim

m→∞
Eo

{
1

m
Ĵ (Y, θγ)

}
= J̄ (θ̄) a.s. (A.17)

Expanding ∂
∂θ

log L(θ̂ | Y ) about θ̄, we have

θ̂ − θ̄ =

{
− ∂2

∂θ∂θ′
log L(θε | Y )

}−1
∂

∂θ
log L(θ̄ | Y ). (A.18)

Here, θε is a random vector between θ̂ and θ̄.

By the consistency of θ̂, the limits (A.8) and (A.17), result (A.18), and Lemma 1, the

limit of (A.16) reduces as follows:

lim
m→∞

{
(θ̂ − θ̄)′Eo

{
Ĵ (Y, θγ)

}
(θ̂ − θ̄) + (θ̂ − θ̄)′Ĵ (Y, θδ)(θ̂ − θ̄)

}
= 2 lim

m→∞

{
1

m

{[
∂

∂θ′
log L(θ̄ | Y )

]
J̄ (θ̄)

−1

}
J̄ (θ̄)

{
J̄ (θ̄)

−1

[
∂

∂θ
log L(θ̄ | Y )

]}}
a.s.

= 2 lim
m→∞

tr

{{
1

m

[
∂

∂θ
log L(θ̄ | Y )

∂

∂θ′
log L(θ̄ | Y )

]}
J̄ (θ̄)

−1

}
a.s.

= 2 lim
m→∞

tr

{{
1

m
Î(Y, θ̄)

}
J̄ (θ̄)

−1

}
a.s.

= 2 tr
{
Ī(θ̄)J̄ (θ̄)

−1
}

a.s.

= 2 lim
m→∞

QB a.s. (A.19)

Hence, the lemma is established by (A.19).

Lemma 2 allows us to assert that b1 and b2 are consistent estimators of the bias ad-

justment (2.3). Therefore, the criteria AICb1 and AICb2 as given in (2.7) provide us with

asymptotically unbiased estimators of �(k, θo).
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