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Abstract

While home services is a fast growing industry, little attention has been given

to the management of its workforce. In particular, the productivity of home-service

technicians depends not only on efficiently routing from customer-to-customer, but

also the management of their skillsets. This paper introduces a model of technician

routing that explicitly models individualized, experience-based learning. The results

demonstrate that explicit modeling and the resulting ability to capture changes in

productivity over time due to learning lead to significantly better and different solutions

than those found when learning and workforce heterogeneity is ignored. We show that

these differences result from the levels of specialization that occur in the workforce.

Keywords: Workforce Planning, Routing, Learning

Highlights

• Model multi-period technician routing problem with experience-based learning.

• Explicitly modeling learning and workforce heterogeneity impacts solutions.

• Taking advantage of the capacity of fast learners is important.

• Technicians specialize more when they have less experience.
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1. Introduction

Home services is one of the fastest growing industries in the US. For example, revenue from

heating, ventilation and air conditioning service is expected to rise at an average annual rate

of 5.9% between 2012 and 2017, reaching $2.5 billion by 2017 (Panteva 2012). To maintain

growth, a key challenge for home-service companies is managing their expensive and limited

labor resources. In particular, the time an employee needs to provide high quality service

often depends on his/her experience. Importantly, experience increases over time, thus grad-

ually decreasing the time required to provide service. By accounting for employee experience

and the accompanying learning, managers can take advantage of capacity increases that re-

sult from experience, improving efficiency and enabling further growth.

While home service workers have many job titles, we will generically refer to them as

technicians throughout this paper. As such, it is easy to see that the problem discussed in

this paper is a variant of the technician routing and scheduling problem (TRSP), a problem

first introduced by Dutot et al. (2006). In the TRSP, a set of technicians serves a set of

customer requests. The key difference between the TRSP and traditional routing problems

is that, in the TRSP, customers are associated with certain tasks and different tasks can

have different service times associated with them. In our version of the problem, in addition

to the task, technicians can have different service times depending on their experience with

the skill required for the task. These differences in service times are a reflection of each

technician’s experience.

In this paper, we consider the TRSP over multiple periods or days and account for the

fact that productivity increases (or service time decreases) as technicians gain experience.

These increases in productivity are often referred to as “learning.” We assume that the

time that it takes a technician to complete a task depends on the technician’s experience

in the skill associated with the task and how quickly the technician learns. How quickly

a technician learns is known as the technician’s learning rate. We assume that we have a

set of heterogeneous technicians whose learning rates and initial experience are known. For
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this problem, the experience of a technician with a skill depends on the number of times the

technician has performed the task.

We assume that daily demand is not revealed until the day of service. Each day, the

technicians serve the day’s known demand, starting and ending each day at the depot.

In this work, we seek to minimize the sum of each day’s makespan over a finite horizon,

accounting for both travel and service times on each individual day. The objective accounts

for the desire to increase the capacity available to grow the business. We call our problem

variant the technician routing problem with experience-based service times (TRSP-EST).

To solve the problem, we implement a rolling-horizon procedure, creating routes for each

day’s known demand without regard for future demand. In the rolling-horizon framework,

the objective becomes simply the minimization of the makespan for a given day. To solve

the daily routing problem, we use a variant of the record-to-record travel algorithm (RTR),

a heuristic first introduced by Li et al. (2005). At the end of each day, we update each

technician’s accumulated experience.

As the first to explicitly model the impact of experience-based learning on technician

productivity, this paper makes several contributions to the literature. First, we introduce

to the literature a Markov decision process model of the problem and introduce a myopic

solution approach. In addition, this paper presents several important insights. These are:

1. Explicitly modeling workforce heterogeneity and learning offers better solutions in

comparison to assuming homogeneous learning curves and/or static productivity.

2. Importantly, modeling workforce heterogeneity and learning captures that fast learners

have more capacity that can be used to improve solution quality.

3. Regardless of the learning rate, inexperienced technicians specialize more than more

experienced technicians.

Further, we show that, in the presence of workforce heterogeneity and human learning,

technician routing solutions trade-off routing and scheduling. We introduce “rules of thumb”
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that demonstrate which aspect is more important based on the individual characteristics of

a technician.

The remainder of this paper is organized as follows. Section 2 reviews the literature on

problems related to the TRSP-EST. Section 3 presents a model for the problem. Section 4

describes the solution approach. Section 5 introduces the datasets used in this paper, and

Section 6 presents our computational results. Finally, Section 7 concludes this work and

suggests areas of future research.

2. Literature Review

Two major fields of literature are related to the problem studied in this paper: the technician

routing and scheduling problem (TRSP) and learning.

2.1 Technician Routing and Scheduling

The existing literature contains a variety of technician routing and scheduling problems. The

TRSP was first introduced by Dutot et al. (2006) based on a real problem in the telecommu-

nications industry. In problem as introduced in Dutot et al. (2006), technicians are grouped

into teams, and tasks are assigned to teams so that skill requirements and the skill level

can be matched. However, neither learning nor the extended horizon over which learning

occurs is considered. In 2007, the French Operations Research Society introduced a challenge

(http://challenge.roadef.org/2007/en/) based on Dutot’s work and offered a real-world

data set for technician scheduling. The challenge resulted in a stream of papers. The papers

are largely algorithmic, and none of the papers resulting from the challenge consider routing.

Hurkens (2009) uses mixed integer programming to construct a day schedule and demon-

strates the effectiveness of the linear programming techniques in solving scheduling problems.

Firat and Hurkens (2011) propose a solution methodology that uses a flexible match model

for a special multi-skill workforce scheduling problem, in which a set of combined technicians
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stays together for the duration of a work day. Cordeau et al. (2010) propose a construc-

tion heuristic and an adaptive large neighborhood search heuristic for the technician and

task scheduling problem arising in a large telecommunications company. The objective is

to minimize a weighted combination of makespans of each priority class. Hashimoto et al.

(2011) present a variant of the Greedy Randomized Adaptive Search Procedure (GRASP)

for solving the technician and interventions scheduling problem for telecommunications. The

authors also introduce a lower bounding procedure for the problem.

Other literature has considered both the travel and service time aspects of the problem,

but again, does not consider learning and a multi-period horizon. Kovacs et al. (2012) define

the service technician routing and scheduling problem with and without team building.

The objective is to minimize the sum of total routing and outsourcing costs. Tsang and

Voudouris (1997) and Pillac et al. (2012a) propose heuristics for related problems. Alsheddy

and Tsang (2011) consider a bi-objective optimization problem in which both the technician

routing costs and the employees’ interests are considered.

Additional papers incorporate dynamic and stochastic service requests. Similar to the

work in this paper, Bostel et al. (2008) consider a multi-period planning and routing problem

of technicians in the field. However, Bostel et al. (2008) do not consider learning that takes

place over time. Also similar to this work, the problem is solved without incorporating

information about future information. Other work considers single-day problems. Inspired

by British Telecommunications plc, Lesaint et al. (2000) describe a dynamic scheduler based

on a combination of heuristic search and constraint-based reasoning for dynamic workforce

scheduling problem. Weintraub et al. (2012) address the routing and scheduling of service

technicians for energy providers in Chile. Customers service requests are considered to be

stochastic and priorities of different tasks are taken into consideration. The objective is to

minimize the response time to these requests. Pillac et al. (2012b) study the Dynamic TRSP

in which new requests appear over time by proposing a fast reoptimization approach based

on a parallel Adaptive Large Neighborhood Search and a Multiple Plan Approach.
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Home healthcare scheduling and routing is a special case of the technician routing prob-

lem. A key feature of the home healthcare literature is the need to respect patient preferences

for particular healthcare workers. These preferences usually result from a patient’s prior ex-

perience with a particular worker. In a sense, these preferences capture the fact that the

home healthcare problems are multi-period, even if they are not explicitly modeled as such.

Examples include Bertels and Fahle (2006), Bard et al. (2014), Rasmussen et al. (2012).

The authors are aware of only limited work that incorporates learning in a routing con-

text. Zhong et al. (2007) explicitly models driver learning, but in the context of familiarity

with a particular geographic area and the customers found in that area. Unlike this work, the

heterogeneity of tasks at the individual customers is ignored. While learning is not explicitly

modeled, work on consistency in multi-day vehicle routing often cites advantages of repeat

visits to the same region or same customers. For example, Smilowitz et al. (2012) suggests

that repeated visits may allow a delivery driver to “more efficiently serve her customer base.”

2.2 Models of Learning

The impact of experience on service or production times is often called “learning” in the

literature. There exists an extensive body of literature that develops mathematical rep-

resentations for the improvement in service and production times as experience increases.

These representations are often called learning curves. Detailed discussions of various learn-

ing curves and their applications are available in Dar-El (2000), Jaber and Sikström (2004),

Jaber (2006), and Anzanello and Fogliatto (2011). A review of learning curves in optimiza-

tion models other than routing can be found in Hewitt et al. (2014). To the best of our

knowledge, the effect of learning has never been investigated in the context of the technician

routing.

Wright (1936) first quantified learning curves with the observation that the cost of as-

sembling airplanes decreases as the number of airplanes manufactured increases. To formally

describe this phenomenon, Wright introduced the now well known Power Model (also called
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the Log-linear Model). Due to its simplicity and flexibility, the Power Model has been the

most widely used model (Dar-El 2000). The Power Model has been applied to various areas

including the service sector and job rotation in manufacturing systems. In this research, we

use the modified Power Model or De Jong Model introduced by De Jong (1957). In con-

trast to the original Power Model, the De Jong model accounts for the empirically observed

phenomenon that there are limits to the degree to which production or service times can be

reduced, and notably that times do not go to zero regardless of the amount of experience

that has been accumulated. We note that, while we employ the De Jong model, most learn-

ing curves have similar shapes and would support conclusions similar to those discussed in

Section 6.

3. Problem Description, Model, and Solution Approach

In this section, we first present a formal description of the TRSP discussed in this paper.

We then present a model of the problem and describe our solution approach.

3.1 Problem Description

In the TRSP, we assume a horizon of T days, and let the set T = {1, 2, . . . , T} index the

days of the planning horizon. We let K = {1, 2, . . . , K} be a set of technicians and assume

K is invariant in t. Let R = {1, 2, . . . , R} be the set of all possible skill types.

Associated with each customer is a task requiring skill r in R, and associated with each

technician k in K is a set of parameters related to the technician’s ability to learn that skill.

Let dr0 be the service time for skill r for any technician with a minimum level of training. Let

Dk
r be the steady state service time for technician k performing task requiring skill r. The

parameter Lkr is the individual learning factor for technician k on skill r. These parameters

are typically estimated from empirical data.

For each day t in the planning horizon, we capture the experience of technician k at
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the start of day in the R–dimensional vector P k
t = (pk1t, p

k
2t, . . . , p

k
Rt), where the rth entry pkrt

indicates the technician k’s experience with the rth skill at the start of day t. Let P k
0 represent

technician k’s experience at the beginning of the horizon. Each skill r is associated with a

service time dkrt for day t and technician k, which is negatively related to the technician’s

skill experience. Assuming the De Jong Model of learning, we compute dkrt as

dkrt = Dk
r + dr0(pkrt)

−Lk
r .

As suggested previously, this learning function accounts for both learning and the fact that

service or production times do not go to zero. Thus, the service time is divided into two

parts. The first term represents the “incompressible” part of the task. As noted by De Jong

(1957), the incompressible time is not related to the technician’s experience level. The second

term describes the learning process.

On a given day t, we seek to serve a set of customers Ct = {1, 2, . . . , Ct}. We assume

that this set of customers becomes known only at the beginning of day t. Each customer

requires the completion of a single task requiring skill r in R. Every technician departs from

and returns to the depot, denoted by 0 at the beginning of the day and by Ct + 1 at the

end of the day. An arc (i, j) is associated with each pair of elements in Ct ∪ {0, Ct + 1}, and

each arc (i, j) is associated with a travel time τij. We assume that no driver incurs service

time at the depot. Our problem objective is to minimize the expected sum of latest task

completions time for each day.

3.2 Markov Decision Process Model

The TRSP described above is a sequential and stochastic decision making problem. A natural

modeling framework for such a problem is a Markov decision process (MDP). In this section,

we present a formal MDP model for the problem.

• States
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In this problem, decisions are made at the beginning of each day during the planning

horizon. Let t = 1, 2, . . . , T be the decision epochs, where day T is the last day in the

problem horizon. The state of the system at the beginning of day t captures all the

information that is needed to make a routing and scheduling decision. For this problem,

the state needs to capture the experience of the technicians at the start of day t as well

as the service requests on day t. Let Qt be the matrix of the technicians’ experience on

day t with elements qkrt for all k ∈ K and r ∈ R. To capture the customer requests, we

consider a vector of tuples. We represent each tuple in the vector as (latct, longct, rct),

where latct is the latitude of the cth customer requesting service on day t, longct the

longitude of the cth customer requesting service on day t, and rct is the skill required to

perform the task at the cth customer requesting service on day t. We denote the vector

of tuples representing the requests on day t as Wt. Then, the state of the system on

day t is given by st be the state of the system on day t, st = (Qt,Wt).

• Actions

Given state st, an action is a set of routes that serves the day t requests. For convenience

we convert the vector of tuples Wt into the set of customers Ct. We formally represent

the action for day t as at(st) = {xkijt : i ∈ Ct ∪ {0}, j ∈ Ct ∪ {Ct + 1}, k ∈ K} where

binary variables xkijt equal to 1 if arc (i, j) is traversed by technician k in day t. A
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feasible action satisfies the following constraints:

∑
i∈Ct∪{0}

∑
k∈K x

k
ijt = 1 ∀j ∈ Ct, (1)∑

j∈Ct∪{Ct+1} x
k
0jt = 1 ∀k ∈ K, (2)∑

i∈Ct∪{0} x
k
i(Ct+1)t = 1 ∀k ∈ K, (3)∑

j∈Ct∪{0} x
k
jit −

∑
j∈Ct∪{Ct+1} x

k
ijt = 0 ∀i ∈ Ct,∀k ∈ K, (4)

dkrt = Dk
r + dr0(qkrt)

−Lk
r ∀r ∈ R,∀t ∈ T ,∀k ∈ K, (5)

Bj ≥
∑

k∈K(Bi +
∑

r∈R zird
k
rt + τij)x

k
ijt ∀i ∈ Ct ∪ {0}, ∀j ∈ Ct, (6)

xkijt ∈ {0, 1} ∀i ∈ Ct ∪ {0}, ∀j ∈ Ct ∪ {Ct + 1},

∀k ∈ K, (7)

Bi ≥ 0 ∀i ∈ C ∪ {0, Ct + 1}. (8)

Constraints (1) ensure that a customer is assigned to exactly one technician and that

it is assigned only once. Constraints (2) and (3) guarantee that every technician starts

and ends a day’s working at the depot. Flow constraints (4) require the technician

to enter and leave a customer if the customer has been assigned to that technician.

Constraints (5) state the negative relationship between service time and experience

level. Constraints (6) state precedence relationship between two consecutive customers

for every technician. Constraints (7) through (8) ensure integrality and non-negativity.

Let At(st) be the set of actions available on day t, the set of actions is the set of sets

of routes that serve the day t requests.

• Transition Function

We consider the transition in two parts. The first is a deterministic transition governed

by the action selected on day t. We call this new state the post-decision state. Given

that the state is currently st and that action at in At(st) is selected, a deterministic

transition is made to post-decision state sat = Qa
t by updating technicians’ experience
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as follows:

qkr(t+1)(st, at) = qkrt +
∑

i∈Ct
∑

j∈Ct∪{Ct+1} x
k
ijtzir ∀k ∈ K,∀r ∈ R, (9)

where zir = 1 if customer i requires task r and set zir = 0 otherwise.

On day t + 1, a transition is made from post-decision state sat to pre-decision state

st+1 = (Qt+1.Wt+1) by observing new service requests Wt+1 arriving at the beginning

of day t1. In this transition, technicians’ experience remain unchanged from the post-

decision state, and thus Qt+1 = Qa
t .

• Contribution function

At decision epoch t, given state st and action at(st), a transition from pre-decision

state sk to post-decision state sak results in a contribution

c(st, at) = etmax ∀at ∈ At(st), (10)

which is the time required to complete the last task on day t.

• Objective function

The problem objective is then minπ∈Π E
[∑T

t=1 c(st, a
π
t (st))

]
, where π is a policy that

determine actions for all days t over the problem horizon T and Π is the set of all

policies.

3.3 Myopic Solution Approach

To solve MDPs, authors often turn to the well known Bellman equation:

V (st) = min
at∈At(st)

{c(st, at) + E [V (st+1) | st, at]}. (11)
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Because of the size of the state space and the challenges associated with even computing the

expectation in the Bellman equation, however, we propose a myopic solution approach. In

the language of MDPs, we are seeking the optimal myopic policy (Powell 2011). A myopic

policy is constructed by, at each decision epoch or in our case on each day, choosing an

action that minimizes the current state costs while ignoring information about the future.

This approach is equivalent to using the decision rule argminat∈At(st){c(st, at)}. Thus, the

problem becomes one of solving a series of daily routing problems.

For our problem, this approach offers several important computational advantages. First,

by not considering the cost-to-go in the Bellman equation, we solve a daily routing problem

that is a deterministic problem. Second, in the fashion of rolling horizon or rollout methods

(for discussion, see (Goodson et al. 2015)), rather than solving for every state as is necessary

in traditional backward dynamic programming, we can step forward in time and solve for

only the observed demand realizations. A sketch of our solution approach can be found in

Algorithm 1. In the next section, we describe how we solve the daily routing problem and

update technician productivity based on accumulated experience.

Algorithm 1 Myopic Solution Approach

1: for day t = 1 TO T do
2: Observe demand for day t
3: Solve daily routing problem, minimizing the completion time of last task
4: Update technician productivity based on experience gained on day t
5: end for

4. The Daily Routing Problem

In this section, we present a model and solution approach for the daily routing problem.

Throughout, to make explicit the dependence of service times on accumulated experience,

where appropriate, we subscript our parameters and variables with the day t.

In addition to the notation introduced in the previous section, we let r(i) ∈ R indicate

the skill needed to perform the task required by customer i ∈ Ct. For customers i and j
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in Ct, our model uses binary variables xkijt equal to 1 if arc (i, j) is traversed by technician

k. Continuous variable Bi ≥ 0 is the start time of service at customer i, and emaxt is the

completion time of the last task on day t. With this notation, the daily technician routing

problem with experience-based service times can be modeled as follows:

min emaxt

s.t.
∑

i∈Ct∪{0}
∑

k∈K x
k
ijt = 1 ∀j ∈ Ct, (12)∑

j∈Ct∪{Ct+1} x
k
0jt = 1 ∀k ∈ K, (13)∑

i∈Ct∪{0} x
k
i(Ct+1)t = 1 ∀k ∈ K, (14)∑

j∈Ct∪{0} x
k
jit −

∑
j∈Ct∪{Ct+1} x

k
ijt = 0 ∀i ∈ Ct,∀k ∈ K, (15)

Bj ≥
∑

k∈K(Bi + dkr(i)t + τij)x
k
ijt ∀i ∈ Ct ∪ {0}, ∀j ∈ Ct, (16)

emaxt ≥ Bi +
∑

j∈Ct∪{Ct+1}
∑

k∈K
∑

r∈R x
k
ijt(d

k
r(i)t + τij) ∀i ∈ Ct, (17)

xkijt ∈ {0, 1} ∀i ∈ Ct ∪ {0}, ∀j ∈ Ct ∪ {Ct + 1},

∀k ∈ K, (18)

Bi ≥ 0 ∀i ∈ C ∪ {0, Ct + 1}. (19)

The objective of the model is to minimize the completion time of the last task. Con-

straints (12) ensure that a customer is assigned to exactly one technician and that it is

assigned only once. Constraints (13) and (14) guarantee that every technician starts and

ends a day’s working at the depot. Flow constraints (15) require the technician to enter

and leave a customer if the customer has been assigned to that technician. Constraints (16)

state precedence relationship between two consecutive customers for every technician. Con-

straints (17) impose that emaxt is no less than the completion time of any task. Constraints

(18) through (19) ensure integrality and non-negativity.

To solve the daily routing problem, we modify the record-to-record travel (RTR) algo-
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rithm presented in Li et al. (2005). We chose the RTR algorithm for our problem for two

reasons. First, the algorithm is known to return high-quality solutions for vehicle routing

problems and does so in relatively short run times. Second, code for the algorithm is open

source and available in the COIN-OR repository (https://projects.coin-or.org/VRPH).

This open-source code shortens development times.

In the algorithm, the record represents the best solution found so far. The RTR is a

multi-phase local search algorithm. The algorithm alternates between two phases. The first

phase is a diversification phase in which an uphill criterion is applied. That is, non-improving

neighboring solutions are accepted if they are within a particular threshold of the record.

The diversification phase ends after a fixed number of iterations. In the second phase, the

improvement phase, only improving moves are accepted. The improvement phase continues

until a local minimum is found.

To overcome convergence to local minima, a perturbation step follows the improvement

phase (see Li et al. (2005)). The sequence of the diversification, improvement, and perturba-

tion phases is run for a minimum number of iterations before the algorithm terminates. The

algorithm terminates when no solution can be found that, after a fixed number of attempts,

improves the best known solution by more than ε. In our implementation, the threshold is

(1 + 0.01) times the value of the record or best known solution, the number of iterations in

the diversification phase is 30, ε is 0.00001, and the number of attempts is 5. These values

are suggested by Li et al. (2005). A detailed algorithmic description can also be found in Li

et al. (2005).

Because the daily routing problem must be solved multiple times over the horizon T ,

we update each technician’s experience and service times based on the assignments of the

previous day. For each t ∈ T , t 6= T , for each k ∈ K, we have:

pkrt = pkr(t−1) +
∑

i∈Ct:r(i)=r
∑

j∈Ct∪{Ct+1} x
k
ij(t−1)∀k ∈ K, ∀r ∈ R (20)
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and

dkrt = Dk
r + dr0(pkrt)

−Lk
r ∀r ∈ R,∀k ∈ K. (21)

Equation (20) updates a technician’s experience for a particular skill. Equation (21) com-

putes the service times based on previous experience.

Our implementation of the RTR is a modification of existing RTR code, called VRPH,

available in the COIN-OR repository (https://projects.coin-or.org/VRPH) and described

in Groër et al. (2010). The code was originally developed to solve the capacitated vehicle

routing problem. To solve the daily routing problem, we modify the code to account for

service times. We can solve for each day in our horizon by updating the service times using

the solution from the previous day (see equations (20) and (21)) and calling RTR with data

for each new day.

5. Instances

This section describes the instances that were used to examine the impact of including learn-

ing in technician routing models. There are three sets of attributes that define an instance of

the TRSP-EST: (1) the number and geographic diversity of the customers requiring service,

(2) the number of different skills required to perform tasks requested by customers, and, for

each skill, the length of time a novice technician needs to perform a task requiring that skill,

and, (3) the number of technicians and each technician’s individual traits.

The TRSP-EST is a multi-period/day problem, with the number of customers and their

geographic distribution not known until the beginning of each day. For our experiments, we

limit our analysis to a 29 day period and generate an instance by creating a series of 29 daily

customers sets, where the set for day t is Ct. The number of customers and their geograph-

ical distributions in these customer sets is based on instances taken from the Symmetric

CVRP instances found in VRPLIB: A Vehicle Routing Problem LIBrary. This library of in-
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stances is provided by the Operations Research Group at the University of Bologna, Italy and

can be found at: http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/

VRPLIB.html. Specifically, the 29 instances “E072-04f” to “E151D14r” are used, with the

number of customers in these instances ranging from 71 to 150. To generate a 29-day

instance, we randomly order these 29 daily instances. We generate 10 such instances by

considering 10 different orderings of the 29 daily instances. In all instances, travel times

correspond to Euclidean distances.

Regarding the second set of attributes, in each instance, each customer i ∈ Ct on day t

requires a task to be performed and performing that task requires a skill r ∈ R. We refer

to the customer diversity of an instance as the number of different skills required to serve

all the customers, or |R|. In our experiments, each instance can have one of four diversity

levels: 5, 10, 25, and 50. For each of the 29 instances “E072-04f” to “E151D14r” and each

diversity level |R|, we randomly assign each customer a skill from the set {1, . . . , |R|}.

As discussed in Section 3, we model the relationship between experience and productivity

using the function dkrt = Dk
r +dr0(pkrt)

−Lk
r . Thus, each instance requires values for the param-

eters dr0, ∀r ∈ R, which represents the time it would take a novice technician to perform

a task requiring skill r. We assign the parameter dr0 one of five initial service time values:

100, 200, 300, 400, and 500 (time units). These values were chosen to represent values that

were on the order of travel times (100 units) versus those that were significantly greater (500

units).

These values are assigned to skills in a round-robin manner. For example, with a customer

diversity of ten, skills one and six (r = 1, 6) will be assigned an initial service time of 100

(d10 = d60 = 100), skills two and seven (r = 2, 7) will be assigned an initial service time of

200 (d20 = d70 = 200) and so forth. As noted earlier, the skill associated with any particular

customer R is assigned randomly among the customers in the geography.

Regarding the third set of attributes, in each instance we consider a workforce that

consists of 18 technicians. Again recalling the equation dkrt = Dk
r + dr0(pkrt)

−Lk
r , we see
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that an instance requires values for the parameters Dk
r , p

k
r0, and Lkr , ∀r ∈ R, k ∈ K. In all

experiments, we set Dk
r = 5 ∀r ∈ R, k ∈ K. As noted previously, this value is unrelated

to the technician’s experience and ability to learn and reflects that fact that task times do

not tend to zero. As such, while the value is chosen arbitrarily, a different parameter value

would change the values of our solutions, but not the trends discussed subsequently.

We assume that an individual technician k has the same learning rate on all skills, or,

Lkr = Lkr′ ,∀r, r′ ∈ R. This choice reflects the literature on human learning that suggests that

individuals tend to learn different skills at the same rate (Ree and Earles 1991). As a result,

we refer to Lkr as Lk, and the parameter values used are given in Table 1. According to Dar-El

(2000), the learning rates 0.515, 0.321, and 0.152 are associated with “fast,” “medium,” and

“slow” learners, respectively. To contextualize these parameter values, Table 1 also notes

the reduction in service times resulting from doubling a technician’s experience level on a

skill.

Label
Fast Medium Slow

Lk .515 .321 .152
Reduction in dkrt when experience doubled 30% 20% 10%

Table 1: Learning rates used in experiments

Finally, similar to parameter Lkr , we have constructed our experiments so that technician

k has the same initial experience, pkr0 in all skills. That is, pkr0 = pkr′0, ∀r, r′ ∈ R. Thus, we

can refer to this parameter as pk0. We consider three values for this parameter, pk0 = 1, which

we call Low, pk0 = 25, which we call Medium, and pk0 = 50, which we call High. We illustrate

in Figure 1 each of the three learning curves, as well as where each initial experience level

puts a technician on his/her curve.

With three possible learning rates and initial experience levels, there are nine possible

combinations of these traits, and the workforce of 18 technicians that we use in our experi-

ments consists of two technicians for each combination. We present the workforce in detail
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Figure 1: Learning curves

Technician
Learning rate

Fast Medium Slow
Initial Low 1,10 4,13 7,16

experience Medium 2,11 5,14 8,17
High 3,12 6,15 9,18

Table 2: Workforce

in Table 2. Throughout the rest of the paper ,“X-Y” refers to technicians with learning rate

“X” and initial experience level “Y.” For example, “Slow-Low” refers to technicians 7,16 (see

Table 2), who are slow learners (Lk = .152) and have low initial experience (pk0 = 1).

In summary, we consider 10 different orderings of the 29 daily customer sets, and for each

ordering, we consider four diversity levels. For each ordering and diversity level, we consider

one random assignment of skills to customers. For all experiments, we consider the same

workforce. As such, our experimental setup consists of 40 different instances.

6. Computational Analysis

In this section, we perform a computational study to analyze whether, and at what fidelity,

learning should be considered when making daily planning decisions. Specifically, we begin

our analysis by running a series of experiments to quantify the magnitude of the benefits

associated with recognizing both that learning occurs and that each technician’s individual

traits impact how much they learn when making daily assignments of technicians to tasks.
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We then seek to understand which is the source of these benefits: recognizing that learning

occurs or that each technician has individual traits that impact how they learn.

We then turn our analysis to specialization. Specifically, we study whether when mak-

ing daily assignments a planner should focus on giving a technician a high level of experi-

ence in a limited set of skills (making them “experts”) or some experience in many skills

(making them “jacks-of-all-trades”). We also study whether a technician’s traits (learning

rate, initial experience levels) should determine whether they become “experts” or “jacks-

of-all-trades.” Finally, we study whether the number of different skills on which technicians

can gain experience impacts whether technicians should specialize and/or which technicians

should specialize.

6.1 Value of Heterogeneity and Learning

In this section, we first consider the value of our model versus models that do not incorporate

workforce heterogeneity and individual learning. We then demonstrate the value of our model

versus models that consider workforce heterogeneity but not individual learning

6.1.1 Comparison versus Not Modeling Heterogeneity and Learning

Our analysis begins by studying whether a service organization should track their techni-

cians’ experience levels on different skills and then recognize both experience level and each

technician’s learning rate when performing daily assignments of technicians to tasks. To ex-

plore this question, we first run Algorithm 1 on each of the 40 instances described above and

record the makespan emaxt for each day. As learning is explicitly recognized when Algorithm

1 is executed, we label these values emax−Lt .

Next, we compare the values emax−Lt with the daily makespan values seen when both

learning and a technician’s individual traits (learning rate, experience levels) are ignored

when making daily planning decisions. To do so, we run a variant of Algorithm 1 that ignores

individual learning rates and individually accumulated experience when determining daily
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assignments. Specifically, recalling that technician k′s time to complete a task requiring skill

r in period t is modeled by the equation dkrt = Dk
r + dr0(pkrt)

−Lk
r , in this variant of Algorithm

1, daily routes are created with the assumption that dkrt = d̄ ∀r ∈ R, t = 1, . . . , T , k ∈

K. To calculate the value d̄, we first assume that all 18 technicians described in Table 2

have Medium initial experience (pk0 = p̄0 = 25, ∀k ∈ K) and learn at the Medium rate

(Lk = L̄ = 0.321,∀k ∈ K). Next, to calculate d̄, we model that, while an organization

may not track each technician’s actual accumulated experience level, a planner may still use

a forecast of accumulated experience when making daily decisions. We presume that this

forecast of accumulated experience in each skill depends on the number of different skills

required by the customers, or |R|, and report in Table 3 the values p̄|R|. As such, we have

that technician k′s time to complete a task requiring skill r in period t is dictated by the

equation dkrt = Dk
r + dr0(p̄|R|)

−L̄.

|R|
5 10 25 50

p̄|R| 43 33 28 27

Table 3: Fixed experience levels, p̄, used in experiments

While this variant of Algorithm 1 determines daily routes without acknowledging that

technicians accumulate experience or differ in their individual traits, to make a fair com-

parison to emax−Lt , we calculate daily makespans for those routes using the appropriately

updated values for pkrt, d
k
rt as specified by Equations (20) and (21). That is, when calculating

the daily makespan for the solutions returned by the variant of Algorithm 1, we recognize

that experience accumulates and that the time a technician needs to perform a task requir-

ing a specific skill decreases at a rate that depends on his/her individual traits. Because

in these experiments we do not consider learning and essentially assume the workforce is

homogeneous when making daily planning decisions, we refer to these daily makespan values

as emax−NL−Ht .

As an example, consider an instance of the TRSP-EST for which |R| = 5. Per Table 3,
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on all days, all technicians are assumed to have the experience level 43 on all skills. Suppose

that the variant of Algorithm 1 described above prescribed that Technician 3 performs three

tasks that required skill 2 on day 0 and is currently determining the task assignments for day

1. When executing the RTR code to solve the routing problem for day 1, d1
23, or the time

Technician 3 needs to perform a task requiring skill 2, is set to the value D3
2 +d20(43)−.321 (i.e.

the experience accumulated on day 0 is ignored and the Medium learning rate is assumed).

However, after the routes have been created, the makespan value, emax−NL−H1 is calculated

with the value d1
23 set to the value D3

2 + d20(50 + 3)−.515 (recall that Technician 3 is a fast

learner with high initial experience).

Figure 2: Impact of planning without recognizing individual traits or learning

Figure 2 presents the daily relative gap in the makespans (calculated as
emax−NL−H
t −emax−L

t

emax−NL−H
t

),

averaged over instances with the same customer diversity level. We see in this figure that

assuming a homogeneous workforce that does not learn leads to significantly worse routes

across all diversity levels and that these routes tend to get worse over time.

To try to understand the source of these large gaps, Figures 3(a)-3(d) present the degree

to which the daily assignment of tasks to technicians is imbalanced. Specifically, for the case

in which the workforce is assumed to be homogeneous and learning is not recognized, the

line “NL-H-Low” represents the number of tasks assigned to the technician that is assigned

the smallest number of tasks, averaged over the 10 instances associated with the respective

diversity level. The line associated with “L-Low” is the analogous result for the workforce

when recognizing learning and technician heterogeneity. For the case in which the workforce
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is assumed to be homogeneous and learning is not recognized, the line “NL-H-High” repre-

sents the number of tasks assigned to the technician that is assigned the largest number of

tasks, averaged over the 10 instances associated with the respective diversity level. The line

“L-High” is the analogous result for the workforce when recognizing learning and technician

heterogeneity. The results show that, across all diversity levels, there is a larger imbalance

in assigned work when learning is recognized.
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Figure 3: Workload imbalance by diversity

This imbalance results from assignments in the case of recognizing learning and het-

erogeneity that take advantage of the productivity associated with fast learners. Figure 4

shows, by technician type (combination of learning rate and initial experience), the total

number of tasks performed. The results show that the solutions considering both learning

and workforce heterogeneity assign more tasks to technicians with the Fast learning rate and

fewer to those that have a Slow learning rate. Alternatively, the poorer quality solutions

resulting from not considering heterogeneity distribute tasks evenly across the workforce. In
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summary, when not recognizing learning or individual traits, one ignores the extra capacity

associated with Fast learners.
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Figure 4: Total number of tasks performed by technician type

While our results are from a 29-day planning horizon, we believe the problems associ-

ated with ignoring learning and assuming a homogeneous workforce will persist over longer

horizons. As evidence, Figures 5(a)-5(d) present the distribution of technicians’ experience

levels at the end of the planning horizon, averaging over all 10 instances with a task diver-

sity of 5 and by technicians with the same learning rate and initial experience. Specifically,

to calculate the “Skill 1” point on the “Slow-Low” curve, we first calculate the quantities

f 1
7 =

p291,7∑5
r=1 p

29
r,7

and f 1
16 =

p291,16∑5
r=1 p

29
r,16

, with the first representing the fraction of technician 7’s

assignments over the 29-day period that were to a task that required Skill 1 and the second

is the same only for technician 16. Then, the “Skill 1” point for a “Slow-Low” technician is

calculated as f 1
SL = (f 1

7 + f 1
16)/2. Other points in the figures are calculated similarly.

The figures show that the distribution of experience levels for technicians are different

when learning and individual traits are recognized from when they are not. For example,

when learning and individual traits are recognized, the experience levels for technicians with

Low initial experience (Figure 5(b)) are not evenly distributed across all skills as they are

when they are ignored. As these experience levels impact the productivity of technicians
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in subsequent days, we conclude that ignoring learning and individual traits will leave a

workforce poorly prepared for the future. We note that similar graphs for other diversity

levels (|R| = 10, 25, 50) exhibit a similar pattern. Recognizing learning and individual

traits leads to a workforce with experience unevenly distributed across all skills whereas not

recognizing these factors does not. We explore this issue further in the next subsection.

6.1.2 Comparison versus Modeling of Heterogeneity but not Learning

In the previous analysis, recognizing learning and each technician’s individual traits leads

to much better daily decisions and a different workforce at the end of the 29-day planning

horizon, in terms of skill proficiency, than not doing so. We next discuss experiments that

seek to understand whether recognizing workforce heterogeneity, but still not recognizing

learning, will close the gaps seen in Figure 2.
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Figure 6: Impact of planning without recognizing learning but recognizing individual traits

Specifically, we again execute a variant of Algorithm 1 where daily routes are created with

the assumption that each technician has a static experience level on each skill. In contrast

to the previous experiments in which experience was fixed based on the assumption that

everyone began with a Medium experience level, in these experiments, the fixed experience

level for a technician is based on the appropriate value pk0 according to Table 2. Similarly, in

the previous experiments, the time a technician needed to perform a task d̄ was calculated

based on the assumption that the technician learned at the Medium learning rate. In these
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experiments, the value d̄k for technician k is calculated based on their individual value Lk

from Table 1 and according to Table 2. As in the previous experiment, we also assume that

each technician reaches a level of forecasted experience. Finally, analogous to the previous

experiment, while we generate solutions that ignore learning, we evaluate the solutions re-

turned by the algorithm by including learning and accumulated experience. We denote these

solutions values by emax−NLt for each day t in the horizon.

We now perform an analysis similar to what was done for the previous experiments.

Figures 6(a) and 6(b) present results calculated in a manner similar to those presented in

Figure 2. We see that, while recognizing individual traits reduces the gaps seen in Figure 2, it

does not close them. The gaps still range from 2% to 10% at the end of the 29-day planning

horizon.

Evidence for why the gaps close can be seen in Figures 7(a) and 7(b), which display results

similar to those seen in Figures 3(a) and 4. The figures show that recognizing workforce

heterogeneity, yet still ignoring learning, leads to a much better appreciation of the capacity

associated with Fast learners and thus a similar imbalance of work as when learning is

recognized. While we only show figures for |R| = 5, results for other diversity levels exhibit

a similar pattern.
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(b) Total distribution by technician type

Figure 7: Workload analysis when recognizing individual traits but not learning (|R| = 5)

The reason that the gaps do not close completely can be seen by analyzing two differences

in the distributions of experience levels at the end of the 29-day period: (1) the differences
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between when learning is recognized and when both learning and individual traits are ig-

nored, and, (2) the differences between when learning is recognized and when learning is

ignored but individual traits are not. We calculate the quantities f rXY (e.g. f 1
SL as discussed

previously) for each of the three runs of Algorithm 1: (1) when learning is recognized, which

we label f r−LXY , (2) when learning and individual traits are ignored, which we label f r−NL−HXY ,

and (3) when learning is ignored but individual traits are not, which we label f r−NLXY . Fig-

ure 8(a) presents the quantities |f r−LXY − f
r−NL−H
XY |, ∀r ∈ R and all technician types, “X-Y”

(e.g. “Slow-Low”). Figure 8(b) presents the quantities |f r−LXY − f r−NLXY |, ∀r ∈ R and all

technician types. Similar to what was seen in Figures 5(a) to 5(d), we see that ignoring
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Figure 8: Differences in distribution of experience levels at end of 29 days when recognizing
learning and not(|R| = 5)

learning and individual traits leaves a workforce with a very different set of skill levels than

recognizing learning does. Figure 8(b) suggests that recognizing individual traits reduces the

differences in skill levels but does not eliminate them. Again, while we only display results

for |R| = 5, the pattern is similar for other diversity levels. In summary, while recognizing

individual traits is better than not doing so, it is best to recognize learning as it has benefits

in the short term and the impact of doing so persists through differences in the distribution
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of final experience levels.

6.2 Workforce Specialization

Having established that an organization should consider both an up-to-date accounting of

their technician’s experience levels at different skills as well as their individual learning rates,

we next turn our attention to what insights can be gained into how experience levels and

learning rates should be mapped to daily scheduling and routing decisions. Our analysis

primarily focuses on the concept of specialization and looks at whether a technician should

become an expert in a small set of skills and whether a technician’s traits impact this decision.

To measure specialization, we use the Coefficient of Variation (CV = StandardDeviation
Mean

) of

the number of times a technician performs tasks requiring each skill. For example, suppose

that at the end of 29 days, a technician has performed tasks that require Skill 1 five times,

tasks that require Skill 2 one time, tasks that require Skill 3 two times, tasks that require

Skill 4 three times, and tasks that require Skill 5 four times. Then, the expected number of

times that technician performs a task requires a given skill is µ = (5 + 1 + 2 + 3 + 4)/5 = 3.

Similarly, the standard deviation of the number of times a task requiring a skill can be

calculated as σ =
√

(5−3)2+(1−3)2+(2−3)2+(3−3)2+(4−3)2

5
= 1.414, leaving a CV = 1.414

3
= 0.471.

In the analysis that follows, we calculate CV values based on a technician’s experience at

the end of the 29-day planning horizon. Specifically, CVk = σk
µk

where µk =
∑

r∈R p
k
r29

|R| and

σk =
√∑

r∈R(pkr29−µk)2

|R| . When referring to a CV value for a technician type, such as a “Slow-

Low” technician, we refer to the average of the CVs of the technicians that are of that type;

e.g. CVSlow−Low = (CV7 + CV16)/2. Higher CV values represent greater specialization as

they indicate a wider disparity between the tasks done the most times and those done the

least.

Figures 9(a)-9(d) present CV values averaged over all 10 instances of each customer diver-

sity and by technician type. The figures show that, regardless of diversity level, technicians

with Low initial experience specialize the most, and their degree of specialization increases as
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diversity increases (note the scale is different for each figure). On the other hand, technicians

with High initial experience specialize the least.

To understand the result, consider that workers with low initial experience are relatively

inefficient in all tasks, and more importantly, see a very large marginal benefit from additional

experience on a task. As a result, the workers with Low initial experience see significant

gains in productivity on the tasks to which they are assigned in the first few days of the

horizon. These gains make Low initial experience workers relatively more attractive on those

tasks relative to workers with High initial experience. Thus, the best solutions see Low initial

experience workers frequently assigned to the tasks on which they gain the most experience

in the first few days.

!"!!!!
!#$%#!!
!#$&#!!
!#$'#!!
!#$(#!!
!#$)#!!
!#$*#!!
+,-.!/01!

+,-.!234567!

+,-.!859:!

234567!/01!

234567!
234567!234567!859:!

;<01!/01!

;<01!234567!

;<01!859:!

(a) |R| = 5

!"!!!!
!#$%#!!
!#$&#!!
!#$'#!!
!#$(#!!
!#$)#!!
!#$*#!!
!#$+#!!
,-./!012!

,-./!345678!

,-./!96:;!

345678!012!

345678!
345678!345678!96:;!

<=12!012!

<=12!345678!

<=12!96:;!

(b) |R| = 10

!"!!!!
!#$%#!!
!#$&#!!
!#$'#!!
!#$(#!!
!#$)#!!
!#$*#!!
!#$+#!!
!#$,#!!
!#$-#!!
./01!234!

./01!56789:!

./01!;8<=!

56789:!234!

56789:!
56789:!56789:!;8<=!

>?34!234!

>?34!56789:!

>?34!;8<=!

(c) |R| = 25

!"!!!!
!#$%#!!
!#$&#!!
!#$'#!!
!#$(#!!
!)$##!!
!)$%#!!
*+,-!./0!

*+,-!123456!

*+,-!7489!

123456!./0!

123456!123456!123456!7489!

:;/0!./0!

:;/0!123456!

:;/0!7489!

(d) |R| = 50

Figure 9: Specialization by customer diversity and technician type

We next look at specialization from a different perspective. If daily routes were evaluated

based only on travel times, one expects specialization to only occur due to the geographic

distribution of customers (e.g. a cluster of customers requesting tasks that require the same
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skill). Conversely, if daily routes were evaluated based only on service times, one would

expect a high degree of specialization. We next seek to understand whether, when making

daily task assignment decisions, some technician types can be treated as individuals for

whom one should focus on routing (minimizing travel time) or scheduling (minimize service

time).

To do so, we run two different variants of Algorithm 1 for each instance; each variant

differs from Algorithm 1 only in how emaxt is calculated. The first variant only counts travel

times when minimizing emaxt . We treat the CV values (which we label CV TT
X−Y ) in solutions

produced with this variant as lower bounds on the amount of specialization one should see in

a solution produced by Algorithm 1. Similarly, the second variant only counts service times

when minimizing emaxt , and we interpret the CV values (which we label CV ST
X−Y ) in solutions

produced with this variant as upper bounds. We present an example of these three sets of

CV values in Figure 10. With these values, we hypothesize that a planner should focus on

routing technician type “X-Y” when

CVX−Y − CV TT
X−Y < CV ST

X−Y − CVX−Y , (22)
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Figure 10: Determining assignment rules (|R| = 5)

or, the CV value produced when running Algorithm 1 is closer to the one produced when

only counting travel times than the one produced when only counting service times. We

31



then say that a planner should focus on scheduling technician type “X-Y” when Inequality

(22) does not hold. For example, referring to Figure 10, we conclude that a planner should

focus on routing “Medium-Medium” technicians and scheduling “Slow-Low” technicians.

Essentially, specializing matters more for “Slow-Low” technicians than “Medium-Medium”

technicians.

We then calculate average CV, CV TT
X−Y , and CV ST

X−Y values over all 10 instances for each

diversity level and apply this line of reasoning to derive heuristics or “rules of thumb” for

what a planner should focus on when making daily task assignments. Tables 11(a)-11(d)

present these rules for all technician types and by customer diversity level. We see that

the rules are fairly static across customer diversity levels, with the only differences being

the degree to which a planner should focus on scheduling individuals with “Low” initial

experience. For all cases of a “High” or “Medium” initial experience and either “Fast”

or “Medium” learning rate, routing is the dominant factor in determining the assignment.

Further, when initial experience is “Low” and the learning rate is “Slow,” the scheduling

dominates. Further, for diversity levels of 25 and 50, the assignments of the technicians

with “Low” initial experience are dominated by the scheduling concerns. Differentiation

comes at the lower diversity levels and the case of “Low” initial experience. For the case

of a diversity of 10, technicians with “Medium” initial experience and “Slow” or “Medium”

learning rates are dominated by routing. For the diversity of five, technicians with “Medium”

initial experience, and “Slow” or “Medium” learning rates, the assignments are dominated

by routing and scheduling, respectively. We believe that the difference in the “Low” initial

experience and “Medium” learning rate is the result of sampling error and that there is

no significant difference to focusing assignments on the routing or scheduling of “Slow” or

“Medium” learners with “Low” initial experience.
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Assignment Learning rate
rule Fast Medium Slow

Init. Low Route Schedule Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(a) |R| = 5

Assignment Learning rate
rule Fast Medium Slow

Init. Low Route Route Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(b) |R| = 10

Assignment Learning rate
rule Fast Medium Slow

Init. Low Schedule Schedule Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(c) |R| = 25

Assignment Learning rate
rule Fast Medium Slow

Init. Low Schedule Schedule Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(d) |R| = 50

Figure 11: Assignment rules by customer diversity and technician type

7. Conclusions

In this paper, we present a model and approach for accounting for on-the-job learning in the

daily routing of technicians. Our objective minimizes the completion time of the last task.

We solve the daily routing problems using the record-to-record travel (RTR) heuristic. Our

results offer the following key insights:

1. Explicitly modeling both learning and technician heterogeneity leads to better and

different solutions in comparison to assuming homogeneous learning curves and/or

static productivity.

2. Relatedly, explicitly modeling both learning and technician heterogeneity leads to dif-

ferent distributions of skills in comparison to assuming homogeneous learning curves

and/or static productivity.

3. Inexperienced technicians specialize the most and experienced technicians the least.

The differences in the solutions to the model that incorporates workforce heterogeneity and

human learning versus those that do not demonstrates the importance of incorporating

workforce characteristics into the model when applicable. While the importance of such

characteristics have been discussed in the manufacturing literature, this paper is the first to

show it for routing problems.
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Ultimately, our results reveal the need to balance routing and scheduling when mak-

ing assignments for a heterogeneous workforce that learns. Our experiments and “rules of

thumb” identify that the scheduling aspect is particularly dominant for workers who are

“Slow” learners or who are of “Low” initial experience. Routing dominates the assignments

for “Fast” or “Medium” learners coupled with either “High” or “Medium” initial experi-

ence. This rule-based approach can help managers develop effective daily plans with less

computational efforts than what is required by our optimization.

Because the on-the-job learning is a new addition to the technician routing and schedul-

ing literature, there are many directions for future research. One direction is to incorporate

information about the future into the solution approach. Currently, we decompose the prob-

lem into a series of myopic, daily routing problems. By incorporating some estimate of the

future, we can direct the effects of learning. In particular, by including an estimate of the

future, the solution for today can trade off near-term task completion times for experience en-

hancement that will yield benefits in later days. This global consideration over the planning

horizon may better demonstrate the difference between fast and slow learning technicians

in improving the routing and scheduling decisions. At the same time, this work considers a

min-max objective. In some circumstances, it may be more appropriate to minimize the sum

of service and routing times or of cost. Similarly, because the min-max objective can lead

to workload imbalances, the addition of workload balancing constraints may be desirable.

Finally, on any given day, a technician may work slower or faster than suggested by his/her

experience and the learning curve. In such cases, it might make sense to dynamically adjust

assignments throughout the day. Another avenue of future work would be to consider such

dynamic routing.
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