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Sugar mills in Brazil represent significant capital investments. To maintain appropriate returns on their

investment, sugar companies seek to run the mills at capacity over the entire nine months of the sugarcane

harvest season. Because the sugar content of cane degrades considerably once it is cut, maintaining inventories

of cut cane is undesirable. Instead, mills want to coordinate the arrival of cut cane with production. In this

paper, we present a model of the sugarcane harvest logistics problem in Brazil. We introduce a series of valid

inequalities for the model, introduce heuristics for finding an initial feasible solution, and for lifting the lower

bound. Computational results demonstrate the effectiveness of the inequalities and heuristics. In addition,

we explore the value of allowing trucks to serve multiple rather than single locations and demonstrate the

value of allowing the harvest speed to vary.
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1. Introduction

Since 1989, the monthly global price of raw sugar has averaged US$ 0.1191 per pound. Starting

in 2008, however, the price of raw sugar has steadily risen, peaking at US$ 0.3209 per pound in

January of 2011. While prices have fallen from those highs, raw sugar was trading at US$ 0.2039 per

pound in October 2012, the last month for which aggregate data is available (Economic Research

Service 2012). There are two key sources of this rise in world sugar prices. First, consumption is

increasing in countries such as India, China, Indonesia, and Turkey (McConnell et al. 2010). Second,

ethanol production diverts raw sugar from consumers. Between 2000 and 2010, world ethanol use

increased by 300%, and as a result of increasing oil prices, economic growth, and new government

mandates, the growth is expected to continue (Valdes 2011). Importantly, the recent lifting of an

US import tariff on foreign-made ethanol led to a ninefold increase in US imports of Brazilian

sugar-based ethanol in 2012. Additional growth is expected in 2013 (Wexler December 17, 2012).
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In the face of these high sugar prices, both consumers and producers have a keen interest in

increasing world sugar supplies. As the world’s largest exporter of both raw and refined sugar

and the country whose production costs drive world sugar prices (McConnell et al. 2010), Brazil

deserves particular focus. Yet surprisingly, the authors are not aware of any research that addresses

logistics in the Brazilian sugarcane industry, and the work from other countries does not apply due

to significant industry differences.

The focal point of the Brazilian industry is its sugar mills that crush raw cane to extract the juice

from which raw sugar is eventually made. Sugar mills represent significant capital investments, and

to maintain appropriate returns on their investment, sugar companies seek to run the mills near

or at capacity over the entire nine months of the sugarcane harvest season.

Running the mills at capacity requires an adequate supply a sugar cane. To overcome the chal-

lenges of coordinating harvest and transport operations with the mill needs, the obvious solution is

to decouple the mill operation from the supply operation by carrying a stock of raw cane. However,

raw cane presents a complication. Because of evaporation and bacterial growth, the sugar content

of cut cane degrades considerably over time (Salassi et al. 2004, Saska et al. 2009, Saxena et al.

2010). In areas of the world where cane is cut whole stalk, the cut stalk can last several days with-

out significant lost of sugar content. However, in Brazil and some other countries, cane is primarily

mechanically harvested, resulting in 12 - 18 inch billets of cane stalk. The multiple exposed ends

increase the degradation in comparison to whole stalk cane (Salassi et al. 2004).

Because of the degradation, sugar producers want to reduce the cut-to-crush time, the time

between when the sugar cane is cut in the field and when it is crushed at the mill. According to our

conversations with our industry partners, a conservative estimate of average cut-to-crush time in

a typical mill area in Brazil is three hours, even though the average travel time between the fronts

and the mill is less than an hour (Personal Communication with Jose Coelho, Sugar Cane Segment

Manager, John Deere, April 13, 2010). Improved logistics coordination, particularly coordinating

the rate of harvest with the availability of trucks, offers an opportunity to reduce the cut-to-crush

time and improve sugar yields while maintaining required service levels at the mill.

Estimating the cost of sugar loss is challenging. Sugar loss is affected by the cane variety, tem-

perature, whether the cane is cut whole stock or billeted, whether it is burnt or clean, and the

amount of debris entering the cane stalk during cutting and storage. These attributes differ by

country, and only limited research explores the issue. As a rough estimate, for 2012/2013, Brazil

is expected to crush 570 metric tons of sugarcane (Barros 2012). According to Saska et al. (2009),

sugar loss per hour is linear over 24 hours and depends on the temperature range of the cane. Saska

et al. (2009) finds that, for billeted cane (the case in Brazil) in the temperature range of 22-27 ◦C

a reasonable range for temperatures during the harvest season in Brazil’s largest sugar producing



Lamsal, Jones, and Thomas: Sugarcane Harvest Logistics
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 3

region, the center-south, is 0.03 tons per 100 tons of sugarcane per hour. At $0.20 per pound of

sugar, the cost of sucrose loss alone is over $225 million and over $330 million if prices were again

to rise near $0.30 per pound. However, considering the possibility that the storage temperatures

are much higher than the ambient temperature, notably over 27 ◦C the sugar loss increases to

0.32 tons per 100 tons of sugarcane per hour. In that scenario, the losses increase to $2.4 billion

and $3.6 billion at $0.20 and $0.30 per pound of sugar, respectively. As noted in Salassi et al.

(2004), dextran formation over time can additionally impact sugar value. Regardless, even small

reductions in cut-to-crush time are likely to have an important monetary impact.

The sugarcane harvest is composed of three operations that must be coordinated: infield oper-

ations, over-the-road transport, and the mill operations. The infield operations usually occur in

several pre-specified fronts a day. A front is a cluster of geographically close, but not necessarily

contiguous, fields. The infield operations have several components. First, the cane is cut in the

field, usually using a machine known as a harvester that processes the cane into uniformly sized

billets (12-18 inches). While in operation, the harvester continuously feeds billets into an infield

storage unit known as a cart. The cart is pulled by an infield transporter. This infield transporter

and cart combination runs along side the harvester during the harvest operations, and when the

cart is filled, the transporter and cart combination must be rotated with another infield vehicle

and its associated cart to allow for continuous harvest operations. Filled carts are transported to

an area known as the trans-loading zone that serves all of the fields in a front.

The second operation of the harvest begins at the trans-loading zone. At the trans loading zone

in the fronts, the contents of the filled carts are transferred to over-the-road transport vehicles.

These vehicles take the harvested cane from the fronts to the mill. The final operation of the harvest

takes place at the mill where the over-the-road vehicles are unloaded. Once an over-the-road vehicle

is unloaded, it can return to a front for its next load. Figure 1 illustrates the sugarcane harvest

logistics problem. Note that, in practice, there are multiple fronts at varying distances from the

mill even though only one representative front is shown in the figure below.

In this paper, we present a mixed linear integer programming model for the deterministic sugar-

cane harvest logistics problem in Brazil. The decision variables are the speed of harvesters at the

fronts and the assignment of trucks to each of the loads produced at the fronts. Our objective is

to minimize the cut-to-crush time of the sugarcane subject to the constraint that the mill is never

starved of raw material. We present valid inequalities that allow us to strengthen the original for-

mulation of the problem and also a heuristic for finding an initial feasible solution. In addition, we

introduce a heuristic for lifting the lower bound of the linear relaxation. The result is particularly

important in proving optimality as the linear relaxation of the original model often returns an
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objective value of zero. With the valid inequalities and heuristics, we demonstrate the ability to

solve real-world sized problems in reasonable time.

Our main contribution is a series of insights derived from our computational experiments. First,

we identify that the majority of the reduction in waiting time comes from using only one more

truck than the minimum needed to feasibly serve all loads at their ready times. As this number

can be analytically computed, planners have a simple “rule of thumb” for determining the number

of trucks that they will need. Second, we examine the impact of forcing wait time to the fronts.

Doing so reduces the number of trucks needed to serve the loads while not impacting the schedule

variability for truck arrivals to the mill. Third, our results show that there can be significant

advantage the coordinated solution presented here versus the potentially managerially desirable

approach of allowing trucks to serve a single front throughout the day. Finally, we demonstrate

that allowing the harvest rates to vary has a significant impact on the number of trucks needed to

serve all the loads.

While the focus of this paper is on harvest logistics in Brazil, there are other applications to

which our approach or parts of our approach may be implemented. Broadly, the model and solution

methods in this paper are applicable to just-in-time delivery settings in which there is a limitation

on storage. For example, if assume that each load from a supplier requires its own vehicle, the

method proposed here can solve the problem proposed in Natarajarathinam et al. (2012) and solve

the second phase of the solution approach proposed in Ohlmann et al. (2008). Notably, the visit
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frequencies discussed in Ohlmann et al. (2008), and fed to the second stage by the first stage of their

algorithm, are no different than the number of loads required by each front in our model. As another

specific application, the supply of wood to pulp mills and the delivery of ready-made concrete have

similarities to the problem presented here. Although they focus on a higher level planning sourcing

and product-mix problem, Bredström et al. (2004) and Gunnarsson and Rönnqvist (2008) discuss

the Swedish case in which stock at the mill must be kept at even volumes and in which there is a

penalty for storing cut logs in the forest district. The model and solution approach presented in this

paper can easily be adapted to provide solutions that coordinate the daily logistics operations that

transport logs from the forest district to the mill inventories. As discussed in Durbin and Hoffman

(2008) and Schmid et al. (2009), ready-made concrete delivery also requires coordination between

concrete plant and construction site analogous to that in the Brazilian sugarcane industry. Notably,

as a perishable product, ready-made concrete must arrive in regular intervals to construction sites.

This feature is analogous to need in this paper to provide supply to the mill with as little waiting

as possible.

The rest of the paper is organized as follows. In Section 2, we survey related literature. Sec-

tion 3 presents our math programming formulation. Section 4 presents the valid inequalities that

strengthen the formulation, develops a heuristic for generating a feasible solution to the math pro-

gram, and also introduces a heuristic for lifting the lower bound of the linear relaxation. Section 5

presents our experimental design and includes a description of the datasets on which we perform

our computational experiments. The section also presents bounds on the number trucks needed to a

serve a particular mill area. These bounds are useful in designing our experiments. In Section 6, we

present the results of our computational experiments. Section 7 provides conclusions and presents

future work.

2. Literature Review

Agricultural applications have a long history in the Operations Research literature, beginning with

Heady (1954) that introduced the use of linear programming to the agricultural sector. Recent

reviews of this broad field can be found in Lowe and Preckel (2004) and Ahumada and Villalobos

(2009). The supply of feedstock to sugar mills has garnered significant attention in the academic

literature. Giles (2009) gives an overview of logistics issues stressing the need for the coordination

between harvesting, transport, and storage for the smooth operation and the profitability of a sugar

mill. Yet, to the best of the authors’ knowledge, none of the literature addresses the degradation

of sucrose during the cut-to-crush delay, a key concern in Brazil.

Most work on the sugarcane industry has been done in the last 15 years. The work can be more

or less divided into value chain optimization and harvest scheduling. The only work related to the
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Brazilian sugarcane industry of which the authors’ are aware focuses on value chain optimization.

Kawamura et al. (2006) and Paiva and Morabito (2009) focus on production planning across

multiple sugar mills, and da Silva et al. (2013) considers production planning at the individual mill

level. Jena and Poggi (2013) present an optimization model for scheduling fields for harvest. We take

these production plans and the schedule of fields to harvest as inputs to our problem. Additional

value-chain related literature includes Higgins et al. (1998), Grunow et al. (2008), and Kostin et al.

(2011), which cover the Australian, Venezuelan, and Argentinian industries, respectively.

In this paper, we focus on harvest and scheduling. This subset can be divided by country, notably

Australia, South Africa, Brazil, Cuba and Thailand. There is very little similarity among the work

from different countries because of differences in industry structure and operation. The harvesting

practices and resultantly the transportation of the cane from the field is influenced by the terrain,

the relative cost of labor and capital, the state of road and rail networks, and the distribution of

sugarcane fields relative to the mill. In Brazil, in 2009, 70.0% of the cane supply was harvested

from mill controlled fields, with 55.5% being mill owned (Neves et al. 2010), giving mill operators

significant control over the supply process for the mill. In this situation, the mill does not face the

problem of being oversupplied during the peak season as in Thailand nor is the issue of integrating

the decision making process between growers and harvesters of the importance that it is in South

Africa. Further, harvesting in Brazil is done 24 hours a day, and as a result, storage is not an issue

as it is Australia, Cuba, and the United States.

Most closely related to the work presented here is Salassi et al. (2009a). Salassi et al. (2009a)

focus on sugar harvest logistics in Louisiana in the United States. As in the Brazilian case, each

farm supplies a pre-determined number of truckloads each day. A key difference is that, once

assigned to a farm, a truck serves loads at that farm until the harvest is completed at the farm.

Further, harvest rates are fixed, and because harvesting in Louisiana takes place over 14 hours in

a day, the objective is designed to reduce truck congestion at the mill rather than to minimize

cut-to-crush delay. One similarity is that Salassi et al. (2009a) groups the many farms harvested

in a day into farm groups. These farm groups reduce the problem size as fronts do in the research

presented here. Previously, Salassi et al. (2004) had explored the value of extending the hours of

harvesting in the day. The goal was to reduce the degradation of cane resulting from storage.

In South Africa, the mill neither owns nor controls a big share of the farms. Hansen et al.

(2002) develop a simulation model and conduct sensitivity analysis to investigate and reduce the

delays in the South African sugarcane harvest and delivery systems. Their study shows that an

integrated system comprising the harvest, transport, and mill process can lead to significant reduc-

tions in delay times and cost. Le Gal et al. (2009) develop a simulation to investigate the impact
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of increased mechanization of the sugarcane harvest.Lejars et al. (2008) also develop a simula-

tion model to see the effects of centralized decision-making among the various stakeholders (sugar

cane growers, harvesters, haulers, and millers) in the South African industry versus decentralized

decision-making. McDonald et al. (2008) also develop a similar simulation model to simulate the

sugarcane harvesting, transport and mill-yard activities for a mill supply area.

In Thailand, the sugar industry has a large number of small-sized, independent farms. This

industry configuration causes uneven supplies throughout the harvesting season. Thus, research

addresses supply issues to Thai sugar mills. Supsomboon and Yosnual (2004) present a stochastic

model that helps mills optimize their order quantities, given the uncertainties of farmers’ delivery

lead times and quantities. Prichanont et al. (2005) use discrete-event simulation to demonstrate

that the number of trucks should be reduced in order to avoid excess supply. They show that the

excessive transportation cost is due to inefficient cane delivery truck utilization and extensive truck

waiting time at the mill. Using the simulation model for one of the mills they studied, they show

that as much as 600 of the existing 1000 trucks can be eliminated while the mill’s needs remain

statistically unchanged.

Diaz and Perez (2000) present a simulation model for the transportation of sugarcane in Cuba.

For the same country, Lopez Milan et al. (2006) develop a linear programming model to pick up cane

from different farms and storage locations to minimize transportation cost. The model accounts

for more than one mode of transport. Besides road transport, they consider inter-modal transports

which include first, transportation via trucks to warehouses, and then subsequent shipments to

the mill by train. In Cuba, the train system is a cheaper alternative to road transport and also

serves as a buffer because the mill operates for 24 hours a day while harvesting is done only

14 hours a day. Lopez-Milan and Pla-Aragones (2014) introduce a decision support system that

builds on the work in Lopez Milan et al. (2006) . Unlike in this paper, neither Lopez Milan et al.

(2006) nor Lopez-Milan and Pla-Aragones (2014) directly address the operational level scheduling

of individual transport vehicles.

Historically, the Australian sugar industry has been the most exposed to the “world market price”

because Australia neither has a large domestic demand like India nor access to protected high-

priced European Union or United States domestic markets (Hildebrand 2002). To stay competitive

in the market, the Australian sugar industry focused on lowering the transportation cost, and

this is the main theme of the literature related to the Australian sugar industry. While some

areas in the Australian sugar industry use rail transport (Higgins and Postma 2004, Higgins and

Davies 2005, Higgins and Laredo 2006), most relevant to the discussion in this paper is the use of

truck transportation. Unlike Brazil, in Australia, harvesting is limited to daylight hours. Higgins

(2006) develops an approach for scheduling the individual vehicles in a road-bound transportation
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system. Two alternative solution methods based on meta-heuristics are proposed for the model to

solve problems of practical sizes. Both meta-heuristics were able to find solutions with an average

reduction in vehicle queue time of about 90% compared to the manual methods used by the traffic

officers in the mills. This helped reduce the required number of vehicles. Unlike the work presented

in this paper, Higgins (2006) is concerned with reducing the waiting time for the trucks only at

the unloading zone at the mill. We are concerned with decreasing the overall cut to crush time for

the cane, while fulfilling the mill requirements at all times. We also have the option of controlling

the harvester rate. Unlike Higgins, we provide an exact solution method.

3. Model

In this section, we present a linear, mixed integer programming formulation for coordinating sug-

arcane harvest logistics. For ease of exposition, we assume that all trucks start at the mill and

harvesting has not yet started at the fronts. We also assume that the number of loads available

at the fronts exactly matches the needs of the mill for the time horizon in question. The constant

time between the mill needs reflects that the mill operates at a constant rate and that each load is

of equal size.

In this model, we allow the harvest rates to vary. Allowing the harvest rates to vary recognizes

both that harvesters can operate across a range of speeds and also that harvester capacity is

scheduled such that the harvesters at a front do not need to continuously operate at their top

speeds to harvest all of the loads required from the front in a day (Personal Communication with

Jose Coelho, Sugar Cane Segment Manager, John Deere, April 13, 2010). In addition, we assume

that, apart from control of the harvest rates (which are controlled by the decision maker), each

front’s operations are managed on site. Further, we assume that these operations do not cause

delay in the the readiness of the loads at the transloading zones. Finally, we assume that all of the

equipment necessary for each front’s operation is present at the front at the start of the day and

that no equipment needs to be moved from one front to another throughout the day.

We next introduce the notation for the problem and then present the math program.

3.1. Notation

Parameters

N : Set of needs at the mill, where the cardinality of N is N .

T : Set of trucks available to service loads, where the cardinality of T is T .

F : Set of fronts, where the cardinality of F is F .

ni : Time at which a load is needed at the mill to ensure the mill can continue operating at the

desired rate, i= 1, . . . ,N .

m : Time between two consecutive mill needs, assumed constant.
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Bf : Earliest time that harvesting can begin at front f , f = 1, . . . ,F .

Lf : Number of loads to be produced from front f, f = 1, . . . ,F .

tf : Travel time to the front f , f = 1, . . . ,F .

sf : Travel time to mill from front f , f = 1, . . . ,F .

Hf : Minimum time needed to harvest a load at front f , f = 1, . . . ,F .

bt : Earliest time time that truck t can be dispatched, t= 1, . . . , T .

Decision Variables

di : Dispatch time to pick up the ith need, i= 1, . . . ,N .

hi : Time at which the harvest of the ith mill need is completed (ready time), i= 1, . . . ,N .

pi : Pick-up Time of the ith need, i= 1, . . . ,N .

ai : Arrival time of the ith load to the mill, i= 1, . . . ,N .

xit =

{
1 if truck t brings the ith need to the mill.

0 otherwise,

yif =

{
1 if the ith need is fulfilled by front f

0 otherwise.

3.2. Formulation

(P) minimize
∑
i∈N

[(pi−hi) + (ni− ai)] (1)

subject to
∑

f ∈ F

yif = 1 , ∀ i ∈ N (2)

hi−
∑

f ∈ F

Hfyif ≥
∑

f ∈ F

Bfyif , ∀ i ∈ N (3)

hi +Hf −hi′ ≤ (2− yif − yi′f )×M, ∀ i, i′ ∈ N , i′ > i, ∀ f ∈F (4)∑
i ∈ N

yif ≤Lf , ∀ f ∈ F (5)∑
t ∈ T

xit = 1 , ∀ i ∈ N (6)

hi ≤ pi , ∀ i ∈ N (7)

di ≥
∑
t ∈ T

btxit , ∀ i ∈ N (8)

di +
∑

f ∈ F

[tf ∗ yif ]≤ pi , ∀ i ∈ N (9)



Lamsal, Jones, and Thomas: Sugarcane Harvest Logistics
10 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

pi +
∑

f ∈ F

[sf ∗ yif ] = ai , ∀ i ∈ N (10)

ai ≤ ni , ∀ i ∈ N (11)

ai− di′ ≤ (2−xit−xi′t)×M , ∀ i, i′ ∈ N , i′ > i, ∀ t ∈ T (12)

xit binary , yif binary , ∀ i ∈ N , ∀ f ∈ F , ∀ t ∈ T . (13)

Equation (1) is the problem objective. We note that we can ignore travel time as, to maintain

feasibility, all of the loads from each front must be transported to the mill and by assumption there

are only enough loads available at each front such that the total is required to meet the mill’s

needs. Constraints (2) through (5) are constraints describing the harvest of loads at the fronts.

Constraints (2) say each load is harvested only once. Constraints (3) ensure that harvesting does

not begin at a front before that front is available. Constraints (4) require that, if two loads are

harvested at the same front, we can start harvesting the latter only after the first one is harvested.

Constraints (4) also ensure that the minimum harvest time Hf passes between successive loads

from a front f . For Constraints (4), M is a large number. Constraints (5) enforce the harvest cap

on each front and ensure that the harvest at a front proceeds at a rate that allows all loads at

the front to be harvested by the end of the horizon. Together, Constraints (4) and (5) allow the

rate harvest at a front to vary. We note that these constraints ensure that the harvest at a front

proceeds at a rate that allows all loads at the front to be harvested by the end of the horizon.

Constraints (7) through (9) control the pick up of loads and the dispatch of trucks to pick up

those loads. Constraints (6) require that each load is picked up only once. Linking the harvest to the

pick-up, Constraints (7) stipulate that harvesting for a load must be completed before it is picked

up. Constraints (8) require that no truck is dispatched before it is available, and Constraints (9)

connect dispatch time and pick-up time.

Constraints (10) through (12) relate to the arrival time of loads at the mill. Constraints (10)

link pick-up time with arrival time at the mill. Constraints (11) enforce that, for the load fulfilling

the ith need, the load should arrive to the mill before the ith need. Constraints (12) are analogous

to Constraints (4), and require that, if two loads are picked up by the same truck, the dispatch

time of the latter load is at least as large as the previous load’s arrival time at the mill. As with

Constraints (4), M is a large number in Constraints (12). Finally, Constraints (13) ensure binary

decision variables.

While not explicitly modeled, P captures an ancillary desire of controlling truck queueing at

the mill. By Constraints (10), each load must arrive before the mill need that its serves and by

assumption these mill needs are equally spaced. Thus, a solution that eliminates all waiting time,

a lower bound on all solutions, would equally space the arrival of trucks to the mill, eliminating

arrival variability. Arrival variability is a well known factor in the causes of queueing. We further

address this issue in Section 6.2.
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4. Valid Inequalities, Initial Feasible Solutions, and Lifted Lower
Bounds

While the model has obvious similarities to a constrained assignment problem, the addition of

the variable harvest rates and thus variable ready times, creates challenges. Preliminary work

demonstrated that it was not possible to solve instances of the above model using commercial

solvers. In fact, it was often not possible to find even a feasible solution in a reasonable time. Thus,

in this section, we present valid inequalities, a heuristic for finding a feasible solution, and a heuristic

for lifting the lower bound of the linear relaxation. As we demonstrate in our computational results,

these enhancements allow us to solve realistically-sized problems in reasonable time.

4.1. Valid Inequalities

In this section, we present results that help strengthen the formulation in the presented previously.

We first note that, given constraints (9) and (10), we can strengthen the formulation by replacing

Constraints (11) with

(di + t)≤ pi ≤ (pi + s)≤ ai ≤ ni, ∀ i ∈ N , (14)

where t= minf∈F [tf ] and s= minf∈F [sf ].

Next, we state and prove a proposition that demonstrates the loads arriving to the mill can be

processed in a first-in-first-out manner. We note the the proof of the result relies on the fact that

all waiting time affects sucrose loss equally. As discussed in the Introduction, Saska et al. (2009)

finds that sucrose loss is linear and thus knowing the sum of waiting time is sufficient to determine

the sucrose loss.

Proposition 1 (FIFO Arrival Times). Let ai and aj denote the arrival times of loads i and

j, respectively, at the mill. Let load i be assigned to the mill need occurring at time ni and let

load j be assigned to the mill need occurring at time nj. If ai <aj and the preceding assignment is

feasible, then we may assume without loss of generality that ni ≤ nj.

Proof: Because a load cannot fill a mill need that occurs prior to its arrival, it follows that

ai ≤ ni and aj ≤ nj as we have assumed feasibility. Note that the total waiting time for the two

loads at the mill is (ni − ai) + (nj − aj). With ai < aj, it follows that ai < nj. If it were the case

that nj < ni, then it would also follow that aj < ni, and it would be possible to switch the loads

so that load i is assigned to mill need nj and load j is assigned to mill need ni. The total waiting

time for the two loads would be (nj − ai) + (ni − aj). Because the total waiting time is the same

given either assignment, the proposition follows. �

The result offers a way to break symmetry among the arrival of loads to the mill. Symmetry

occurs when a group of variables forms a “symmetry group,” a group of variables can be permuted
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without changing the value of the solution. As noted in (Margot 2010), breaking symmetry can

turn a computationally intractable problem into one that is easily solved. Consequently, we make

use of the Proposition 1 and add the following constraints to the formulation:

ai ≤ ai+1, ∀ i ∈ N \N. (15)

The next result bounds from below the arrival time values for a solution to P. To facilitate

presentation, we first present additional notation. Let Hf be the minimum time required to harvest

a load at front f and let αfl be a lower bound on the arrival time to the mill of the lth load harvested

at front f . Then, for a front f , consider the sequence of arrival times such that αf1 =Bf +Hf +sf ,

αf2 = (Bf +Hf )+Hf +sf = αf1 +Hf , and thus αfl = αf,l−1 +Hf for l= 2, . . . ,Lf . Let LBf be the

ordered set of such arrival times for front f and let LB = ∪f∈FLBf , ordered in ascending order.

We let a′i be the ith element in LB. The following result follows directly from the construction of

LB and Proposition 1.

Proposition 2. The value a′i is a lower bound on ai for all i ∈N resulting from a solution of

P.

As a result of Proposition 2, we can add the following constraints to P:

a′i ≤ ai, ∀ i ∈ N . (16)

The following corollary follows from the construction of LB and Proposition 2.

Corollary 1. If there exists a need i∈N such that a′i >ni, then P is infeasible.

We next present an upper bound on the arrival time values for a solution to P. Again, we

introduce new notation. Let ηfl be the time at which harvesting of the lth load at front f is

completed and let α̂fl be an upper bound on the arrival time to the mill of the lth load harvested at

front f . For each front f ∈F , let ηfLf
= nN − sf and α̂fLf

= ηfLf
+ sf . Then, ηfl = ηf,l+1−Hf and

α̂fl = ηf,l+1−Hf + sf = α̂f,l+1−Hf , for l= 1, . . . ,L− 1. Let UBf be the ordered set of such arrival

times for front f and let UB=∪f∈FUBf , ordered in ascending order. We let a′′i be the ith element

in UB. The following result also follows directly from the construction of UB and Proposition 1.

Proposition 3. The value a′′i is an upper bound on ai for all i ∈ N resulting from a solution

of P.

As a result of Proposition 3, we can add the following constraints to P:

a′′i >ai, ∀ i ∈ N . (17)
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In addition to the FIFO result and bounds on the earliest and latest arrivals of loads to the mill,

we can also fix some of the initial assignments of trucks to loads. Because we assume a homogeneous

fleet of vehicles, we begin by noting that, without loss of generality, we can enforce:

x11 = 1 and (18)

x1t = 0, ∀t∈ T , t 6= 1. (19)

As a consequence of Proposition 2, we know that the earliest time at which truck 1 can possibly

return back to the depot after picking up load 1 is a′1. Based on this information, we introduce

Proposition 4 that characterizes an initial set of truck assignments.

First, it is useful to define the following notation. Recall that the round trip time for front f is

rf . Let ρ= min
f∈F

rf . Define the set S such that S = {i : i∈N , ni <a
′
1 + ρ}.

Proposition 4. Every i in S requires a different truck.

Proof: As ρ is the smallest possible round trip time, having arrived back to the mill at the

earliest at time a′1, truck 1 cannot arrive back to the mill with its second load any earlier than

a′1 + ρ. Further, no truck serving a load i such that ni < a′1 + ρ, the loads in S can return from

serving its second load before a′1 + ρ. Consequently, if a truck t in T serves a load i in S, t cannot

also serve a load i′ in S. �

As a consequence of Proposition 4, we add the follow constraints to P, incorporating con-

straints (18) and (19):

xii = 1,∀i∈ S and (20)

xij = 0, ∀i∈ S, ∀t∈ T , t 6= i. (21)

Even with the strengthened formulation, the lower bound provided by the linear relaxation of

the math program above is not tight. We note that the value of the relaxation can be raised by

solving a relaxed integer program that excludes the truck assignment constraints (constraints 6

and 12). This integer program is easier to solve than that presented above. The lower bound thus

calculated gives the total wait if we could pick up all the loads at their ready times. Any constraint

on number of trucks only increases the wait time.

4.2. A Heuristic for Generating a Feasible Solution

Starting a branch-and-bound procedure with an initial feasible solution often improves computa-

tion time. In this section, we develop a heuristic that is capable of generating feasible solution to

problem P. The heuristic operates by decomposing problem P into its harvest and truck assign-

ment components. While the heuristic does not guarantee a feasible solution, our computational
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experiments demonstrate that the method does so for all of our test cases and that the feasible

solutions that are found are effective in improving computation time.

We begin by presenting an algorithm that generates a set of assignments of loads to fronts and

corresponding arrival times to the mill. Our approach is motivated by the construction of the set

UB in the previous section. It is straightforward to see that if the values in UB are feasible, then

the arrival times in UB are optimal.

The algorithm can be found in Algorithm 1. The algorithm returns a set of assignments of fronts

to mill needs, denoted ȳ, and a set of arrival times for each mill need i, denoted ā. Throughout,

using the variable lf , the algorithm tracks the number of loads at front f that are remaining to be

assigned. For each front f , the algorithm uses the value βf to track the next time at which a load

from front f can reach the mill.

The algorithm begins with the last mill need and assigns a front to meet that need and seeks

to assign loads in descending order of the time at which the load is needed at the mill. To help

maintain feasibility, before choosing a front to meet the N th and final need of the mill, we test all

fronts f to ensure that, if front f is not assigned the N th load, then f still has enough time to

harvest all Lf loads required by front f . To meet the mth need, the algorithm chooses the front that

can deliver the load as close to nm as possible. In the case of the need to break a tie, the algorithm

chooses the front f that minimizes the ratio nm
Hf×lf

, where Hf is the minimum time required to

harvest a load at front f . The ratio is a measure of a front’s flexibility to meet future loads and

choosing the front with the maximum ratio chooses the least flexible front to break the tie. Once

the assignment for the mth need is chosen, ā and ȳ are updated. The algorithm then updates the

latest time at which the front chosen to fill the mth need can supply a feasible load to the mill.

This updated time reflects the fact that load m arriving at time ām and supplied by front f must

have been harvested by time ām− sf . So, the latest time at which front f could finish harvesting

its next load is ām−sf −Hf . Then, the latest time at which a load from front f could arrive at the

mill after supplying the mth load is ām− sf −Hf + sf = ām−Hf . In the next step, the algorithm

updates the next available delivery time of all fronts to reflect the the time at which the (m− 1)st

need is required by the mill.

An alternative to Algorithm 1 is to solve a relaxation of the P that removes constraints 6 and 12.

The same relaxation is discussed in the previous section for finding an improved root node bound.

However, preliminary experiments found that the proposed algorithm more often leads to feasible

and better solutions when coupled with the following truck assignment phase.

We next present an algorithm for assigning the loads in ā to vehicles. From ā and ȳ returned by

Algorithm 1, it is straightforward to compute a set of corresponding harvest completion times h̄.

The algorithm is presented formally in Algorithm 2. Throughout, the algorithm uses the value δt



Lamsal, Jones, and Thomas: Sugarcane Harvest Logistics
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 15

Algorithm 1 Assignment of Fronts to Mill Needs

Output:

A vector of assignments of fronts to needs, ȳ, a vector a arrival times for the mill needs, ā

Initialization:

Set m=M , βf = nN∀f ∈F , lf =Lf∀f ∈F , and ȳif = 0∀i∈N , f ∈F

while m 6= 0 do

temp← arg max
f∈F,lf 6=0

{βf}

ām← βtemp

ȳm,temp← 1

βtemp ← ām−Htemp

βf ←min{βf , nm−1} ∀f ∈F

ltemp← ltemp−1

m←m− 1

end while

to represent the time at which vehicle t is available to service its next load. For each load i ∈N ,

the algorithm chooses the vehicle that has been at the mill the longest. Ties are broken arbitrarily.

Once a vehicle has been selected for assignment, the algorithm updates x̄ accordingly, and then for

the assigned vehicle t, the algorithm updates δt by computing the time at which the vehicle will

return to the depot.

Algorithm 2 Assignment of Vehicles to Harvested Loads

Output: Assignment of vehicles to loads, x̄.

Initialization:

δt = 0∀t∈ T and x̄it = 0∀i∈N , t∈ T

for i= 1 to N do

temp← arg min
t∈T

{δt}

xi,temp← 1

δtemp←max{h̄i, δtemp +
∑

f∈F(ȳif + tf )}+
∑

f∈F(ȳif + sf )

i← i+ 1

end for

4.3. A Heuristic to Lift the Lower Bound

As the linear relaxation of the proposed model, which we call P′, is often zero, proving optimal-

ity is challenging. We develop a heuristic that exploits the structure of the solution to raise the
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lower bound. For ease of exposition, we describe the heuristic with regard to the front-assignment

variables, the y variables. Algorithm 3 formally presents the heuristic. The algorithm for the truck-

assignment variables, the x variables, is analogous. A lower bound can be found by taking the

minimum of the wait times computed from the two.

The method takes as input a solution to P′, with assignment variables yif , which we will refer

to as y′ to represent that the binary condition has been relaxed. For each f = 1, . . . ,F , we let

Rf = {i | i∈N , y′if /∈ {0,1}}, the set of mill needs for which the front f fulfills a partial load in the

solution to P′. We assume that the set Rf is ordered from smallest to largest, and for algorithmic

convenience, we assume that 0 is an element ofRf for every front f . Thus, given any two consecutive

elements in Rf , say rj and rk, there exists a sequence of mill needs i= rj + 1, . . . , rk − 1 such that

y′if ∈ {0,1}.

Now, consider some sequence i= rj +1, . . . , rk−1. Let ī be the largest value in i= rj +1, . . . , rk−1

such that y′if = 1. Using an idea similar to that used in the heuristic for finding a feasible solution,

we recognize that the latest possible time at which the harvest of the īth mill need could be

completed while still maintaining the feasibility of the solution is nī− sf . Ignoring any constraints

on vehicles, this completion time would also imply that the īth mill need is satisfied with no wait.

Now, if it exists, we let ī−1 be the next largest i= rj + 1, . . . , rk−1 such that y′if = 1. Given the

previous logic, the load ī− 1 could not have been harvested any later than nī− sf − H̄f . Thus, if

front f satisfied mill need ī by harvesting the load at nī− sf , the latest that front f can harvest

load ī− 1 is min{nī − sf − H̄f , nī−1 − sf}. If the minimum is obtained by nī − sf − H̄f , then the

(̄i−1)th load incurs a minimum wait of nī−1−sf − [nī−sf − H̄f ] time units. The correctness of the

lifted lower bound follows from these feasibility arguments. The algorithm sums these waits over

all fronts and all mill needs to compute the lifted lower bound.

5. Experimental Design

In this section, we describe the computational experiments designed to test our approach as well

as to gain insight into the sugarcane harvest logistics problem. To aid the description of the

experiments, we first describe how we determine the number of trucks that should be used in a

dataset and then the datasets that we use.

5.1. Bounds on the Number of Trucks

As the number of available trucks is fixed in the short term, the number of trucks is a parameter

in our sugarcane logistics model. We test our approach on a range of the number of trucks. It is

obvious that, if there are too few trucks available, there is no feasible solution to our problem.

The number of trucks necessary for feasibility depends on how far the fronts are from the mill

and the times when the mill needs the loads. As the number of available trucks increases, we can
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Algorithm 3 Heuristics to raise lower bound

Output: Lower bound to the integer solution

Initialization: Wait= 0

Input: A solution to P′

for f = 1 to F do

for k= 1, . . . , | Rf | do

if k 6=| Rf | then

i← rk+1− 1

else

i←N

end if

Flag←TRUE

while i 6= rk && Flag= TRUE do

temp←∞

if y′if = 1 then

Flag←FALSE

Next← ni− sf − H̄f

for j = i− 1, . . . , rk + 1 do

if y′jf = 1 then

if Next < nj − sf then

Wait←Wait+nj − sf −Next

Next←Next− H̄f

else

Next← nj − sf − H̄f

end if

end if

end for

end if

i← i− 1

end while

end for

end for
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find better solutions in that the average wait time per load decreases. A sufficient increase in the

number of trucks guarantees we can pick up all the loads at their ready times so each load arrives

at the mill exactly when needed. Any further increase in the number of trucks beyond that point

cannot further reduce the wait time.

Thus, we present bounds on the number of trucks required to achieve feasibility and the number

of trucks necessary to achieve a wait time of zero. A corollary of the upper bound is that it

guarantees a solution for which each truck need serve only one front. This number of trucks provides

a managerially attractive solution, but requires more trucks to achieve the same level of average

wait time per load than the alternative in which we allow trucks to serve multiple fronts.

We begin by bounding the number of trucks necessary for feasibility. The amount of truck time

associated with each load i depends on the front at which the load is harvested. For each truck t,

t’s shift ends when the last load it transports arrives at the mill. Let endt be that time for truck t

such that endt = a(i|i is the last load picked up by truck t). The start time for the truck t is denoted by bt.

Proposition 5. The number of trucks needed to fulfill all the mill needs at the mill need times,

{n1, n2 . . . nN}, is bounded on the lower side by a positive number k such that k is the smallest

integer satisfying
∑

t∈1...k

(nN−t+1)≥
∑
f∈F

Lfrf .

Proof: Because of the assumption that the total number of loads harvested across all fronts is

exactly the number of loads needed to fulfill the mill needs,
∑
f∈F

Lfrf is the same regardless of what

need is served by what front. Further, we note that the minimum possible time needed to serve

all loads, the time when the trucks do not wait at either the mill or the fronts, is the same sum∑
f∈F

Lfrf .

Then, for k available trucks, the maximum available truck time is∑
t∈1...k

n(N−t+1) ≥
∑

t∈1...k

n(N−t+1)−
∑

t∈1...k

bt

≥
∑

t∈1...k

a(N−t+1)−
∑

t∈1...k

bt =
∑

t∈1...k

endt−
∑

t∈1...k

bt

=
∑

t∈1...k

(endt− bt).

The second inequality follows from the the fact that a load must arrive before the mill need time

that it satisfies. The first equality holds by definition of endt. The second equality rearranges terms

and represents the time that k trucks needed to serve all of the mill needs.

Thus, the smallest k such that
∑

t∈1...k

n(N−t+1) ≥
∑

i∈1...N

ρi is the smallest number of trucks that

could cover the minimum possible time needed to serve all loads. �
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If the mill needs are evenly spaced, we can rewrite
∑

t∈1...k

n(N−t+1) as k×
(

nN+n(N−k+1)

2

)
.

We also note that, by treating each front as a separate mill area, Proposition 5 allows us to

compute a lower bound on the number of trucks required to serve each front with dedicated vehicles.

We call this separability. We formally present the result in Corollary 2. The proof follows directly

from Proposition 5 and is omitted.

Corollary 2. For f ∈F , let kf be the smallest integer that satisfies∑
t∈1...kf

n(N−t+1) ≥Lfrf .

Then, k=
∑

(f∈F) kf is the minimum number of trucks that could possibly serve each front separably.

We next present an upper bound on the number of vehicles required to serve the loads. The

proof of the upper bound requires the realization that, if each load is picked up at its ready time,

the solution can be improved only by changing the harvest times.

Proposition 6. The upper bound on the number of trucks needed meet all mill needs among

fronts is given by k̂ such that k̂=
∑

(f∈F) k̂f where k̂f = min{Lf , d
rf
H̄f
e}.

Proof: The shortest possible time between the ready times of two consecutive loads at front f

is H̄f . To serve at their ready times loads whose ready times differ by H̄f , it is clear that we need

at least k̂= d rf
H̄f
e trucks. For any front, however, we never need more than k̂f =Lf trucks, because

Lf trucks is enough to serve each load at front f with its own vehicle. If each load is served by its

own vehicle, then a vehicle is always capable to serving the load at its ready time. �

5.2. Experiments

In this paper, we seek to address three questions:

1. What is the computational value of the proposed valid inequalities and initial solution heuristic

in finding optimal solutions in reasonable computation times?

2. What is the value of coordinating vehicles across fronts rather than assigning vehicles to

specific fronts for the entire horizon?

3. What is the value of allowing variable harvest rates?

We address the first question by running our datasets, discussed in Section 5.3, using the initial

model. We then add the valid inequalities and finally combine the valid inequalities with the initial

feasible solution. We note that we tried various subsets of the valid inequalities, but were able to

achieve provably optimal solutions in reasonable runtime only by using the entire set. The results

of these experiments are discussed in Section 6.1.

Our second question is motivated by our review of the literature. We found that, in sugarcane

harvesting and transportation operations, one common practice was to assign the trucks to a single
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front for the entire horizon. The practice arises particularly in countries in which the industry is

not vertically integrated. In such countries, the growers are responsible for the transport of cane

to the mill, and consequently growers employ a dedicated set of vehicles. In Brazil and as modeled

in this paper, however, the high level of vertical integration allows the coordination across the

fronts. While coordination can reduce the number of trucks, separability decreases the managerial

complexity of the operation. The results of these experiments are presented in Section 6.3.

Our third question is motivated by the knowledge, that in practice, harvesters are run at approx-

imately 70% of their capacity. As noted previously, this extra capacity is used as reactive capacity,

but on average this reactive capacity is unused. Thus, on average, the capacity cushion could also

be used facilitate coordination, as we have modeled in this paper. However, there is a managerial

challenge to such coordination, particularly when decisions are being made without automated

decision support.

To assess the value of varying harvest rates to reduce cut-to-crush time, we consider a case in

which harvest rates are fixed. We create fixed harvest rates by setting the harvest time at each front

to the average harvest time required to meet each front’s quota of loads. This choice of harvest

rates causes infeasibility in most instances. We overcome this issue by increasing the warm-up

period. To determine this warm-up period, we iterated through warm-up times seeking the lowest

warm-up time that achieved feasibility. We did not consider the cases where only a subset of fronts’

warm-up time is increased. Consequently, the average wait time that we report for the fixed harvest

rates is using the minimum warm-up period needed to meet all the mill needs. The results of these

experiments are presented in Section 6.4.

5.3. Datasets

To answer the three questions posed in the previous section, it is necessary to have datasets that

reflect the reality of sugarcane harvest logistics in Brazil. Consequently, in collaboration with our

industry partners (Personal Communication with Jose Coelho, Sugar Cane Segment Manager,

John Deere, April 13, 2010; Personal Communication with Craig Wenzel, Staff Engineer, Worksite

Systems and Productivity Group, John Deere, May 28, 2010), we developed 204 instances . All of

the data is available from myweb.uiowa.edu/bthoa/iowa/Research.html.

In the following paragraphs, we provide an overview of the datasets. The range of each parameter

is selected to reflect ranges of those parameters in Brazilian harvest logistics. These ranges were

derived from the discussions with industry partners cited above.

Each instance represents a typical mill area operation in Brazil . A mill area has four to eight

fronts. We generate two mill areas each for four through eight fronts.

The front to mill travel time is on average one and half times higher than the mill to front travel

time. The increase in return trip time reflects the impact of a load trailer. In each mill area, the
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closest front has the trip time between 30 minutes and 50 minutes whereas the farthest front has

the round trip time between 70 minutes and 120 minutes.

Each front also has a harvest quota, the number of loads to be produced from the front in the

given problem instance. The sum of the harvest quotas across all fronts in an instance is equal to

the number of the total mill needs. The closest front serves 5% to 10% of the total mill needs and

the farthest front serves between 35% and 60%.

The minimum time required to harvest a load at each front is based on the number of loads each

front serves. We first compute the time that would elapse if loads from a front were evenly spaced.

We then assume that the minimum time is 70% of that time. The 70% reflects the fact that, in

practice, a capacity cushion is used as reactive capacity. Given the previously described harvest

quotas, the closest front has the highest minimum time required to harvest a load. The minimum

harvest time of the closest front ranges from 15 minutes to 50 minutes. The farthest front has the

lowest minimum harvest time which ranges between 10 minutes and 30 minutes.

In all our instances, all the fronts and the trucks are allowed to start their operations 100 minutes

before the the mill’s first need. If the mill’s first need is at the 100th minute, all the fronts can

potentially start harvesting at 0th minute and trucks are available to leave mill for a pick up at 0th

minute. We call this gap between when fronts can start harvesting and the time of mill’s first need

the “warm-up period.” This warm-up period is analogous to having a setup time in manufacturing

setting and eases the construction of feasible datasets.

Each geography is solved for four different inter-mill need times, three, four, five, and 10 minutes,

for a total of 480 loads. These inter-mill need times reflect the range of values that might be

encountered. For each instance and inter-mill need time combination, we also solve for the number

of trucks in the range (lower bound to upper bound) as calculated in Section 5.1.

6. Computational Results

This section presents the results of our computational experiments. We first demonstrate the value

of our valid inequalities and the use of an initial feasible solution. We then explore the cost of the

managerially attractive separable solution. Finally, we explore the value of variable harvest rates.

The math programs are solved using GUROBI OPTIMIZER 5.1. The experiments were per-

formed on a 3.40 GHz Intel Core i7-3770 CPU running the Ubuntu 12.04 operating system.

For all of the reported results, we implement the lifting heuristic described in Section 4.3 and

Gurobi’s relaxation-induced-neighborhood-search routine, called RINS. The lifting heuristic was

implemented in C++ and communication with Gurobi was achieved through Gurobi’s C++ Inter-

face. In our initial experiments, these heuristics alone did not improve the performance of branch-

and-bound, but proved valuable in proving optimality once the valid inequalities of Section 4.1 and
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the initial solution of Section 4.2 were implemented. The heuristics are run on all relaxed solutions

for which 5% or fewer of the binary variables are fractional. The 5% value represents a compromise

between the runtime of the heuristic and their value in reducing overall runtime. Branching was

set to give priority to the front assignments or y variables. All runs were terminated when the

optimality gap was 1% or less.

6.1. Algorithmic Performance

Tables 1 through 4 present the results of the experiments testing the value of the valid inequalities

and the initial feasible solution. As noted previously, without the valid inequalities, the instances

rarely found a feasible solution and never return an optimal solution, even with significant runtime.

Thus, the tables report the computation times for runs with just the valid inequalities and then

runs with both the valid inequalities and an initial feasible solution. We label these computation

times as “VI” and “Both,” respectively. For each instance, the table also reports the average wait

time per load. We also report the runtimes for each instance. In almost all cases, we were able to

prove optimality with reasonable runtimes. Instances marked with “*” are instances for which we

could not prove optimality even with 10,000 seconds of runtime. In those cases, the reported result

is the best found feasible solution with the integer gap reported in the brackets after 1,000 seconds

of runtime.

Finally, for some instances, such as instance 5a with 24 trucks, we do not report any values.

In these cases, the reported number of trucks is the number of trucks that achieves the lower

bound on the number of trucks for the instance. However, even after 10,000 seconds of runtime,

we were unable to find a feasible solution for such instances. Given that the lower bound presented

in Section 5.1 does not guarantee feasibility, we believe that it is likely that the lower bound is

infeasible in these instances, but we were also unable to prove infeasbility. We mark these instances

with “–”.

The results in the tables demonstrate that valid inequalities alone are almost always able to

achieve optimal solutions. In only ten cases out of 204 did the solver return a solution without

being able to prove optimality in 10,000 seconds. Only four instances require more than 1,000

seconds to prove optimality.

In most cases, the addition of the initial feasible solution has a positive impact on runtimes. Using

results for the instances with an inter-mill need time of 3, the initial feasible solution improves

runtime by an average of almost 17% for the instances proved to optimality. We are also able to

prove optimality for three cases for which it was not previously proven.

In terms of problem characteristics, run times increase in the number of fronts but decrease in

the number of trucks. This result is not surprising. The problem size grows as the number of fronts
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grows, increasing runtime. However, the fronts are not the challenge in determining feasibility.

Feasibility is driven by the trucks and their assignments. Thus, while the problem size also grows in

the number of trucks, the computation time associated with the growth in problem size is overcome

by the decrease that comes from the reduced challenge in finding feasible solutions and the resulting

increase in fathoming in the branch-and-bound algorithm.

Finally, from a managerial perspective, it is also valuable to consider the trade-off between the

number of trucks and the average wait of each load. As an example, Figure 2 presents a graph of

the average waiting time per load and the number of trucks. It is clear that most of the reduction

in wait time comes from the addition of one truck over the number required for feasibility. This

relationship is evident throughout the instances. Given the lower bound is analytically computable

and generally feasible, the result offers a potential “rule of thumb” for planning purposes.

Geography # of trucks Average wait VI Both
4a 29 25.00 * (7.4 %) * (6%)

30 22.63 728 600
31 18.38 716 537
32 11.225 599 454
33 8.53 421 414
34 4.79 297 274
35 4.2 206 239
36 1.36 193 181
37 0.2 184 180

4b 30 34.2 * (4.5%) * (4%)
31 30.1 928 680
32 14.7 730 543
33 5.03 695 435
34 3.31 547 356
35 0.5375 539 281
36 0.2625 356 248
37 0.09 310 217

5a 24 – – –
25 23.05 846 827
26 19.15 784 741
27 13.31 516 497
28 9.375 425 408
29 5.13 394 342
30 0.10 341 325

5b 16 17.02 909 855
17 15.2 823 693
18 7.6 735 672
19 2.1 556 422
20 0.5 556 523
21 0.3 380 347

6a 17 14.41 768 711
18 9.78 832 645
19 4.25 564 518
20 1.20 510 454
21 0.425 398 386
22 0.25 319 366

6b 17 17.39 660 646
18 9.70 485 431
19 4.17 470 422
20 0.41 400 356
21 0 205 190

7a 16 8.1 * (5.6%) * (2.4%)
17 6.98 * (1.1%) 956
18 1.46 951 895
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19 1.10 813 608
20 0.12 728 340
21 0.033 567 361
22 0 507 226

7b 26 – – –
27 6.27 946 811
28 4.13 909 840
29 1.56 871 729
30 0.67 723 626
31 0.31 701 597
32 0.17 664 501

8a 23 21.81 * (7.5%) * (2.6%)
24 12.3 992 889
25 9.22 831 714
26 6.19 982 648
27 4.27 765 682
28 1.29 722 561
29 0.54 710 513
30 0.44 557 340
31 0.18 522 296

8b 31 9.56 1536 1077
32 6.725 937 918
33 2.8 639 581
34 1.70 599 394
35 0.95 564 336
36 0.67 465 432

Table 1: Intermill-Needtime = 3, 480 loads

Geography # of trucks Average wait VI Both
4a 22 27.39 * (5.3%) * (2.2%)

23 7.51 924 876
24 3.26 780 764
25 2.84 543 510
26 1.45 388 334
27 0.416 306 276
28 0.0625 289 254

4b 23 26.32 * (1.1%) 1030
24 10.9 952 873
25 8 928 715
26 5.07 837 680
27 0.996 782 490
28 0.375 650 406
29 0.083 468 362
30 0 355 227

5a 18 – – –
19 22.34 * (1.9%) * (1.7%)
20 16.28 471 401
21 8.125 418 380
22 4.08 391 358
23 0.13 184 179

5b 12 18.81 879 776
13 7.56 742 708
14 0 194 182

6a 13 17.70 878 637
14 11.28 707 581
15 1.25 462 497
16 0 256 201

6b 13 10.90 985 917
14 1.50 446 372
15 0.19 258 229
16 0 218 231

7a 13 5.99 * (3.2%) * (1.6%)
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14 4.01 1103 905
15 2.64 845 706
16 1.27 615 543
17 0.96 638 566
18 0.85 517 421

7b 20 22.9 * (1.5%) 812
21 9.09 885 711
22 1.85 685 547
23 0.57 600 433
24 0.29 610 306

8a 17 25.05 * (2.1 %) * (1.8 %)
18 16.96 903 877
19 4.97 850 762
20 1.575 776 655
21 0.85 680 519
22 0.33 585 458
23 0.21 617 364

8b 21 30.86 * (4.7 %) * (3.8 %)
22 22.02 879 764
23 11.18 709 676
24 8.15 760 619
25 2.47 469 246
26 1.17 342 221
27 0.09 305 197

Table 2: Intermill-Needtime = 4, 480 loads

Geography # of trucks Average wait VI Both
4a 17 28.44 970 879

18 14.92 575 617
19 8.89 538 512
20 4.95 421 418
21 0 272 259

4b 19 26.02 1811 1750
20 15.01 945 932
21 2.93 863 606
22 0.5875 717 596
23 0.35 532 356
24 0 547 301

5a 15 21.09 946 803
16 15.37 734 613
17 0 342 303

5b 9 – – –
10 10.89 818 713
11 0.47 602 510

6a 11 10.59 917 835
12 1.08 771 625
13 0.16 337 299
14 0.04 261 240

6b 10 26.01 963 872
11 17.15 876 774
12 8.68 677 531
13 0.22 668 594

7a 11 4.15 * (1.5%) * (1.2%)
12 2.21 630 512
13 0.575 587 369
14 0.125 557 290

7b 16 19.62 1708 1286
17 12.41 962 855
18 1.83 878 729
19 1.22 749 561
20 1.05 701 473
21 0.34 623 414
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8a 13 19.87 1025 901
14 14.80 816 785
15 4.66 728 632
16 2.24 714 563
17 0.64 698 501
18 0.18 688 317

8b 17 12.66 1757 1491
18 9.56 932 859
19 5.39 888 702
20 1.67 867 623
21 1.01 607 434
22 0.2 556 406

Table 3: Intermill-Needtime = 5, 480 loads

Geography # of trucks Average wait VI Both
4a 9 51.875 788 714

10 0.5 335 321
11 0 206 194

4b 9 54.8375 992 717
10 16.06 863 600
11 0.746 620 596
12 0.416 477 218

5a 8 17.37 833 621
9 0 247 202

5b 5 4.10 768 605
6 0 200 196

6a 6 7.51 451 319
7 0.67 298 284
8 0.32 290 264
9 0.16 244 231

6b 5 17.75 953 786
6 1.47 813 802
7 0.1 342 343

7a 5 7.03 * (6.4 %) * (2.1 %)
6 1.86 812 726
7 0.325 875 574
8 0 465 257

7b 10 10.35 706 634
11 2.6 517 369
12 0.02 408 321

8a 7 3.22 917 573
8 0 267 202

8b 9 9.56 856 632
10 3.7 800 665
11 0.48 711 533

Table 4: Intermill-Needtime =10, 480 loads

6.2. Forcing wait time to the fronts

The results in Tables 1 through 4 demonstrate that decision makers can reduce the number of trucks

needed to serve a harvest by allowing small amounts of wait. However, the objective presented in

Equation (1) treats wait times at the fronts and at the mill equally. In reality, it is better for wait

time to happen at the fronts. Wait times at the mill imply variability in the arrival times to loads
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Figure 2 Relationship between Number of available trucks and average wait times (4a- 4 mins)

at the mill. As is well known in queueing, arrival time variability impacts queueing. Using the

number of trucks that drives wait times to zero or near zero eliminates arrival variability caused

by scheduling, but when trading off trucks and wait time, a decision maker would want to shift

wait time to the fronts.

In this section, we consider a model variation that allows us to shift wait time to the front. To do

this, we offer “bonus time” that discounts waits at the fronts. Specifically, we replace Constraints (7)

with

hi +ωi ≤ pi, ∀ i ∈ N (22)

and change the objective to

minimize
∑
i∈N

[(pi−hi−ωi) + (ni− ai)] . (23)

By changing the value of ωi, we can discount waits at the front by more or lesser amounts.

Table 5, 6, 7 present the results of our experiments allowing five, 10, and 15 bonus minutes,

respectively, at the fronts. For each instance, geography and intermill need time, the third column,

labeled “Trucks Needed,” of each table shows the number of trucks required to achieve a solution

with average wait to zero (or close to it as we did in the previous section) after allowing for the

respective bonus time at the fronts. Thus, in these results, the arrivals to the mill occur exactly

at the mill need time and thus there is no variability in the scheduled arrivals to the mill. For
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comparison purposes, the final column, labeled “0 Wait Trucks,” presents the number of trucks

required to achieve a zero wait time. The values in this column were first reported in Tables 1

through 4.

Not surprisingly, discounting the wait time at the front allows for solutions that use fewer trucks

across all interarrival times. The average percentage reductions are 10.2%, 14.0%, and 16.4% for

the five, 10, and 15 minutes bonus times, respectively. Thus, allowing a small amount of wait time

at the fronts and having none at the mill allows for non-trivial reductions in the trucks needed to

serve the loads.

There is no discernible pattern for the effect of the differences in interarrival times. With a

bonus time of five minutes, the average percentage reduction in vehicles for three, four, five, and 10

minute interarrival times is 10.0%, 9.4%, 8.8%, and 12.6%, respectively. For the 10 and 15 minute

bonus time cases, these average percentage reductions are 14.3%, 15.8%, 13.3%, and 12.6% and

18.0%, 15.3%, 13.1%, and 19.1%, respectively. Nonetheless, these results demonstrate that shifting

wait time to the fronts can reduce the number of trucks needed with the added benefit of reducing

arrival time variation to the mill.

Geography InterMill Need Time Trucks Needed 0 Wait Trucks
4a 3 36 37

4 25 28
5 21 21
10 10 11

4b 3 34 39
4 26 30
5 22 21
10 11 12

5a 3 30 30
4 23 23
5 17 17
10 9 9

5b 3 19 21
4 14 14
5 11 11
10 5 6

6a 3 19 22
4 15 16
5 12 14
10 7 9

6b 3 19 21
4 14 16
5 12 13
10 6 7

7a 3 18 22
4 14 18
5 11 14
10 6 8

7b 3 29 32
4 22 24
5 18 21
10 11 12

8a 3 27 31
4 20 23
5 15 18
10 7 8
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8b 3 32 36
4 25 27
5 19 22
10 10 11

Table 5: Number of trucks needed with bonus time of 5 mins

Geography InterMill Need Time Trucks Needed 0 Wait Trucks
4a 3 31 37

4 23 28
5 18 21
10 10 11

4b 3 32 39
4 24 30
5 20 21
10 10 12

5a 3 27 30
4 21 23
5 16 17
10 8 9

5b 3 16 21
4 13 14
5 10 11
10 5 6

6a 3 18 22
4 14 16
5 11 14
10 6 9

6b 3 18 21
4 13 16
5 12 13
10 5 7

7a 3 16 22
4 13 18
5 12 14
10 5 8

7b 3 27 32
4 22 24
5 17 21
10 10 12

8a 3 24 31
4 19 23
5 15 18
10 7 8

8b 3 31 36
4 23 27
5 18 22
10 10 11

Table 6: Number of trucks needed with bonus time of 10 mins

Geography InterMill Need Time Trucks Needed 0 Wait Trucks
4a 3 31 37

4 23 28
5 18 21
10 10 11

4b 3 32 39
4 24 30
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5 20 21
10 10 12

5a 3 27 30
4 21 23
5 16 17
10 8 9

5b 3 16 21
4 13 14
5 10 11
10 5 6

6a 3 18 22
4 14 16
5 11 14
10 6 9

6b 3 18 21
4 13 16
5 12 13
10 5 7

7a 3 16 22
4 14 18
5 12 14
10 5 8

7b 3 27 32
4 22 24
5 17 21
10 10 12

8a 3 24 31
4 19 23
5 15 18
10 7 8

8b 3 31 36
4 23 27
5 18 22
10 10 11

Table 7: Number of trucks needed with bonus time of 15 mins

6.3. Cost of a Separable Solution

Table 8 presents the results of the experiment to demonstrate the value of coordination. For each

geography and intermill need time, the table presents the number of trucks needed to find a feasible

separable solution, or a solution for which the trucks serve only one front, and the number of trucks

needed to find a feasible solution when coordination across fronts is allowed. These columns are

labeled “Separable” and “Coordination,” respectively.

As the table shows, on average, when coordination is allowed, almost 27% fewer vehicles are

needed to achieve feasibility compared to the number needed to achieve feasibility when requiring

separability. This result is consistent regardless of the number of fronts. However, the value of

coordination increases as the time between mill needs increases. When the intermill need time is

three, the average difference in the number of trucks is 18.1%. At an intermill need time of 10, the

difference increases to 40.3%.

Geography InterMill Need Time Separable Coordination



Lamsal, Jones, and Thomas: Sugarcane Harvest Logistics
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 31

4a 3 32 29
4 27 22
5 21 17
10 14 9

4b 3 34 30
4 26 23
5 23 19
10 13 9

5a 3 32 25
4 24 19
5 20 15
10 11 8

5b 3 20 16
4 17 12
5 13 10
10 10 5

6a 3 22 17
4 17 13
5 14 11
10 10 6

6b 3 21 17
4 17 13
5 15 11
10 9 5

7a 3 19 16
4 18 13
5 16 11
10 9 5

7b 3 33 27
4 25 20
5 22 16
10 16 10

8a 3 39 23
4 24 17
5 19 13
10 13 7

8b 3 38 31
4 29 21
5 23 17
10 16 9

Table 8: Number of trucks needed for separable

6.4. Value of Variable Harvest Rates

Table 9 presents the results of our experiments designed to demonstrate the value of variable

harvest rates. For each instance, geography and intermill need time, we present the number of trucks

required to achieve a feasible solution when harvest rates are constant, called “Const Trucks.” We

also presented the average wait time per load associated with this number of trucks, called ”Const

Avg Wait.” Finally, Table 9 presents the number of trucks required to achieve a zero wait time

using the variable harvest rates, called “Var Trucks.”

As the table shows, allowing variable harvest rates leads to solutions that have often considerably

less wait time per load, almost 24 minutes on average, than the constant harvest rate solutions.

Further, the constant harvest rate solutions require 12% more trucks than the variable harvest rate
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case to pick up all of the loads at their ready times. In only one case does the constant harvest

rate case achieve feasibility with fewer trucks than the number required to achieve no wait with

variable harvest rates.

Geography InterMill Need Time Const Trucks Const Avg Wait Var Trucks
4a 3 39 43 37

4 31 19 28
5 24 26 21
10 13 21 11

4b 3 42 20 39
4 31 44 30
5 24 16 21
10 14 15 12

5a 3 34 64 30
4 25 38 23
5 20 26 17
10 11 45 9

5b 3 22 23 21
4 17 15 14
5 14 11 11
10 9 19 6

6a 3 24 9 22
4 19 9 16
5 14 5 14
10 8 18 9

6b 3 23 13 21
4 18 17 16
5 15 23 13
10 9 29 7

7a 3 24 28 22
4 19 13 18
5 16 20 14
10 8 33 8

7b 3 34 10 32
4 26 17 24
5 22 25 21
10 13 35 12

8a 3 34 20 31
4 25 18 23
5 20 15 18
10 12 25 8

8b 3 43 36 36
4 33 29 27
5 25 23 22
10 13 15 11

Table 9: Number of trucks needed to pick up loads at ready times and the
corresponding average wait times

7. Conclusion

In this paper, we introduce the sugarcane harvest logistics problem for Brazil. We introduce valid

inequalities and a heuristic to generate a feasible initial solution. Using these inequalities and

the initial feasible solution, we solve realistic instances that are derived from expert industry

opinion. Our results show that the presented valid inequalities and heuristic for finding feasible

solutions provide significant computational advantages. We also introduce a lifting heuristic that
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was advantageous in proving optimality. We further demonstrate that coordinating the trucks

across fronts offers the opportunity to dramatically reduce the number of vehicles needed to serve

the mills. Finally, our results show that variable harvest rates reduce cut-to-crush times while also

reducing the number of vehicles needed to serve the loads.

There are two important directions for future work. The first direction builds on the work of

Salassi et al. (2009b) that explores a sugarcane harvest logistics problem in the United States.

While there are key differences between Brazilian and US-based operations, most notably the fact

that harvests in Brazil run 24 hours a day, the US operations have many more farms involved in a

daily harvest operation. Even with the enhancements introduced in this paper, the size of the US

problem requires additional research.

Second, the problem introduced here is deterministic. Not surprisingly, a harvest operation has

a number of uncertainties. Importantly, there are isolated weather events and breakdowns that

require attention. Yet, this research is an important foundation for the stochastic case. For one,

the research presented here can be used to solve for perfect information solutions for the stochastic

case. These solutions can be helpful for evaluating heuristic approaches. Second, the methods here

can be valuable in a rolling horizon procedure. When one considers a horizon of four to six hours

rather than 24 as we have here, the proposed solution method runs in a few seconds and can thus

be amenable for use in real time.
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