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SHORT TECHNICAL NOTE

Sparse Distance Weighted Discrimination

Boxiang WANG and Hui ZOU

Distance weighted discrimination (DWD) was originally proposed to handle the data
piling issue in the support vector machine. In this article, we consider the sparse penal-
ized DWD for high-dimensional classification. The state-of-the-art algorithm for solv-
ing the standard DWD is based on second-order cone programming, however such an
algorithm does not work well for the sparse penalized DWD with high-dimensional
data. To overcome the challenging computation difficulty, we develop a very efficient
algorithm to compute the solution path of the sparse DWD at a given fine grid of reg-
ularization parameters. We implement the algorithm in a publicly available R package
sdwd. We conduct extensive numerical experiments to demonstrate the computational
efficiency and classification performance of our method.

Key Words: DWD; High-dimensional classification; SVM.

1. INTRODUCTION

The support vector machine (SVM; Vapnik 1995) is a widely used modern classification
method. In the standard binary classification problem, training dataset consists of n pairs,
{(xi , yi)}ni=1, where xi ∈ Rp and yi ∈ {−1, 1}. The linear SVM seeks a hyperplane {x :
β0 + xT β = 0}, which maximizes the smallest margin of all data points:

arg max
β0,β

min
i

di,

subject to di = yi(β0 + xT
i β) + ηi ≥ 0, ∀i,

ηi ≥ 0, ∀i,

n∑
i=1

ηi ≤ c, ||β||22 = 1, (1.1)

where di is defined as the margin of the ith data point, ηi’s are slack variables introduced
to ensure all margins nonnegative, and c > 0 is a tuning parameter controlling the overlap.
By using a kernel trick, the SVM can also produce nonlinear decision boundaries by fitting
an optimal separating hyperplane in the extended kernel feature space. The readers are
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SPARSE DISTANCE WEIGHTED DISCRIMINATION 827

referred to Hastie, Tibshirani, and Friedman (2009) for a more detailed explanation of the
SVM.

Marron, Todd, and Ahn (2007) noticed that when the SVM is applied on some data
with n < p, many data points lie on two hyperplanes parallel to the decision boundary.
Marron, Todd, and Ahn (2007) referred to this phenomenon as data pilling and claimed
that the data pilling can “affect the generalization performance of SVM.” To overcome this
issue, Marron, Todd, and Ahn (2007) proposed a new method called the distance weighted
discrimination (DWD), which finds a separating hyperplane minimizing the sum of the
inverse margins of all data points:

arg max
β0,β

∑
i

1/di,

subject to di = yi(β0 + xT
i β) + ηi ≥ 0, ∀i,

ηi ≥ 0, ∀i,
∑

i

ηi ≤ c, ||β||22 = 1. (1.2)

The initial version of Marron, Todd, and Ahn (2007) also mentioned that the sum of the
inverse margins

∑
i 1/di could be also replaced by

∑
i 1/d

q

i , the qth power of the inverse
margins, and this generalized version was used as the definition of the DWD in Hall, Mar-
ron, and Neeman (2005). Marron, Todd, and Ahn (2007) asserted that the DWD can avoid
the data piling and thereby improve the generalizability. One example (see the group 2
of Figure 3 in Marron, Todd, and Ahn 2007) shows that the DWD has about 5% predic-
tion error whereas the SVM does 15%. Enhancement of the DWD over the SVM can also
be exemplified in Hall, Marron, and Neeman (2005) through a novel geometric view. As
for the computation of the DWD, Marron, Todd, and Ahn (2007) observed that the DWD
is an application of the second-order cone programming and thus can be solved by the
primal-dual interior-point methods. The algorithm has been implemented in both Matlab
code http://www.unc.edu/∼marron/marron software.html and an R package DWD (Huang
et al. 2012). Other notable developments on DWD include the weighted DWD (Qiao et al.
2010), the multiclass DWD (Huang et al. 2012), and the distance weighted SVM (Qiao and
Zhang 2015) which is a combination of DWD and SVM.

In this article, we focus on classification with high-dimensional data where the num-
ber of covariates is much larger than the sample size. The standard SVM and DWD are
not suitable tools for high-dimensional classification for two reasons. First, based on the
scientific hypothesis that only a few important variables affect the outcome, a good classi-
fier for high-dimensional classification should have the ability to select important variables
and discard irrelevant ones. However, the standard SVM and DWD use all variables and
do not conduct variable selection. Second, because these two classifiers use all variables,
they may have very poor classification performance. As explained by Fan and Fan (2008),
the bad performance is caused by the error accumulation when estimating too many noise
variables in the classifier. Owing to these two considerations, sparse classifiers are gen-
erally preferred for high-dimensional classification. In the literature, some penalties have
been applied to the SVM to produce sparse SVMs such as the �1 SVM (Bradley and Man-
gasarian 1998; Zhu et al. 2004), the SCAD SVM (Zhang et al. 2006), and the elastic-net
penalized SVM (Wang, Zhu, and Zou 2006).
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828 B. WANG AND H. ZOU

Figure 1. The solution paths for the prostate data (n = 102, p = 6033) using the elastic-net DWD and the
elastic-net SVM. In every method, λ2 is fixed to be 1. The dashed vertical lines indicate the λ1 selected by the
five-fold cross-validation. Both timings are averaged over 10 runs.

In this work, we consider sparse penalized DWD for high-dimensional classification.
The standard DWD uses the �2 penalty and can be solved by the second-order cone
programming. However, the sparse DWD is computationally more challenging and re-
quires a different computing algorithm. To cope with the computational challenges asso-
ciated with the sparse penalty and high-dimensionality, we derive an efficient algorithm to
solve the sparse DWD by combining majorization-minimization principle and coordinate-
descent. We have implemented the algorithm in an R package sdwd. To give a quick
demonstration here, we use the prostate cancer data (Singh et al. 2002, 102 observations
and 6033 genes) as an example. The left panel of Figure 1 depicts the solution paths of the
elastic-net penalized DWD, and sdwd only took 0.453 sec to compute the whole solution
path. As comparison, we also used the code in Wang, Zhu, and Zou (2006) to compute the
solution path of the elastic-net penalized SVM. We observed that the timing of the sparse
SVM was about 290 times larger than that of the sparse DWD.

2. SPARSE DWD

In this section, we present several sparse penalized DWDs. Our formulation follows the
�1 SVM (Zhu et al. 2004). Thus, we first review the derivation process of the �1 SVM. The
standard SVM (1.1) is often rephrased as the following quadratic programming problem
(Hastie, Tibshirani, and Friedman 2009):

arg min
β0,β

||β||22
subject to yi(β0 + xT

i β) + ηi ≥ 1, ∀i,

ηi ≥ 0, ∀i,

n∑
i=1

ηi ≤ c.

Moreover, the above constrained minimization problem has an equivalent loss+penalty
formulation (Hastie, Tibshirani, and Friedman 2009):

arg min

β0, β

1

n

n∑
i=1

[
1 − yi(β0 + xT

i β)
]
+ + λ2

2
||β||22.
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SPARSE DISTANCE WEIGHTED DISCRIMINATION 829

The loss function [1 − t]+ = max(1 − t, 0) is the so-called hinge loss in the literature. For
the high-dimensional setting, the standard SVM uses all variables because of the �2 norm
penalty used therein. As a result, its performance can be very poor. Zhu et al. (2004) pro-
posed the �1-norm SVM to fix this issue:

arg min

β0, β

1

n

n∑
i=1

[
1 − yi(β0 + xT

i β)
]
+ + λ1||β||1.

Similarly, we can propose the �1 penalized DWD. It has been shown that the standard
DWD also has a loss+penalty formulation (Liu, Zhang, and Wu 2011):

arg min

β0, β

1

n

n∑
i=1

V
(
yi(β0 + xT

i β)
) + λ2

2
||β||22,

where the loss function is given by

V (u) =
{

1 − u, if u ≤ 1/2,

1/(4u), if u > 1/2.

Similar to the �1 SVM, we replace the �2 norm penalty with the �1 norm penalty to achieve
sparsity in the DWD classifier. Hence, the �1 DWD is defined by

(
β̂0(lasso), β̂(lasso)

)
= arg max

β0,β

1

n

n∑
i=1

V
(
yi(β0 + xT

i β)
) + λ1||β||1. (2.1)

The lasso penalized DWD classification rule is Sign(β̂0(lasso) + xT β̂(lasso)). The above
loss+penalty formulation of sparse DWD is not new. For example, Zhang and Lin (2013)
wrote a review article of classification methods and mentioned the sparse DWD idea in
Section 4.4 of their article, although no further technical details were given.

Besides the �1 norm penalty, we also consider the elastic-net penalty (Zou and Hastie
2005). It is now well known that the elastic-net often outperforms the lasso (�1 norm
penalty) in prediction. Wang, Zhu, and Zou (2006) studied the elastic-net penalized SVM
(DrSVM) and showed that the DrSVM performs better than the �1 norm SVM. Similarly,
we propose the elastic-net penalized DWD:

(
β̂0(enet), β̂(enet)

)
= arg min

β0, β

1

n

n∑
i=1

V (yi(β0 + xT
i β)) + Pλ1,λ2 (β), (2.2)

where

Pλ1,λ2 (β) =
p∑

j=1

(
λ1|βj | + λ2

2
β2

j

)
.

The elastic-net penalized DWD classification rule is Sign(β̂0(enet) + xT β̂(enet)). Both
λ1 and λ2 are important tuning parameters for regularization. In practice, λ1 and λ2 are
chosen from finite grids by validation or cross-validation.

A further refinement of the elastic-net penalty is the adaptive elastic-net penalty (Zou
and Zhang 2009) where we replace the �1 (lasso) penalty with the adaptive �1 (lasso)
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830 B. WANG AND H. ZOU

penalty (Zou 2006). The adaptive lasso penalty produces estimators with the oracle prop-
erties. The adaptive elastic-net enjoys the benefits of elastic-net and adaptive lasso. After
fitting the elastic-net penalized DWD, we further consider the adaptive elastic-net penal-
ized DWD:

(
β̂0(aenet), β̂(aenet)

)
= arg min

β0, β

1

n

n∑
i=1

V (yi(β0 + xT
i β)) +

p∑
j=1

(
λ1ω̂j |βj | + λ2

2
β2

j

)
,

(2.3)

and the adaptive weights are computed by

ω̂j = (|β̂j (enet)| + 1/n)−1,

where β̂j (enet) is the solution of βj in (2.2). The adaptive elastic-net penalized DWD
classification rule is Sign(β̂0(aenet) + xT β̂(aenet)).

A referee mentioned that Lingsong Zhang, and Xihong Lin
gave a presentation at JSM 2010 on the oracle property of
sparse DWD. The abstract of their presentation is available at
https://www.amstat.org/meetings/jsm/2010/onlineprogram/AbstractDetails.cfm?abstractid
=306064. Through private communications with Zhang, we learned that the sparse DWD
in his talk was the adaptive elastic-net penalized DWD.

3. COMPUTATION

In this section, we propose an intuitive but efficient algorithm for computing the so-
lution paths of the sparse DWD. Our algorithm uses the generalized coordinate descent
(GCD) proposed by Yang and Zou (2013). We introduce the algorithm in Section 3.1, the
implementation in Section 3.2, and the strict descent property in Section 3.3. The same
algorithm solves all the �1, the elastic-net, and adaptive elastic-net penalized DWDs, while
only the elastic-net is focused in the discussion for the sake of presentation.

3.1 DERIVATION OF THE ALGORITHM

Without loss of generality, we assume that the variables xj are standardized:
∑n

i=1 xij =
0, 1

n

∑n
i=1 x2

ij = 1, for j = 1, . . . , p. We fix λ1 and λ2 and let ui = yi(β̃0 + xT
i β̃). We focus

on βj ’s first. For each βj , we define the coordinate-wise update function:

F (βj |β̃, β̃0) = 1

n

n∑
i=1

V
(
ui + yixij (βj − β̃j )

) + pλ1 , λ2(βj ). (3.1)

Then the standard coordinate descent algorithm suggests cyclically updating

β̂j = arg min

βj

F (βj |β̃0, β̃) (3.2)

for each j = 1, . . . , p. However, (3.2) does not have a closed-form solution. The GCD
algorithm solves this issue by adopting the MM principle (Hunter and Lange 2004). We

D
ow

nl
oa

de
d 

by
 [

B
ox

ia
ng

 W
an

g]
 a

t 2
3:

03
 0

8 
A

ug
us

t 2
01

6 

https://www.amstat.org/meetings/jsm/2010/onlineprogram/AbstractDetails.cfm?abstractid=306064


SPARSE DISTANCE WEIGHTED DISCRIMINATION 831

approximate the F function by a quadratic function

Q(βj |β̃, β̃0) =
∑n

i=1 V (ui)

n
+

∑n
i=1 V ′(ui)yixij

n
(βj − β̃j ) + 2(βj − β̃j )2 + pλ1,λ2 (βj ).

(3.3)

Then we update β̃j by β̃new
j , the closed-form minimizer of (3.3):

β̃new
j = S

(
Mβ̃j − 1

n

∑n
i=1 V ′(ui)yixij , λ1

)
4 + λ2

, (3.4)

where S(z, r) = sign(z)(|z| − r)+ is the soft-thresholding operator (Donoho and Johnston
1994) and ω+ = max(ω, 0) is the positive part of ω.

With the intercept similarly updated, Algorithm 1 summarizes the details of the GCD
algorithm.

Algorithm 1 The GCD algorithm for the sparse DWD

1. Initialize (β̃0, β̃).

2. Cyclic coordinate descent, for j = 1, 2, . . . , p:

(a) Compute ui = yi(β̃0 + xᵀ
i β̃).

(b) Compute β̃new
j = 1

4+λ2
· S

(
4β̃j − 1

n

∑n
i=1 V ′(ui)yixij , λ1

)
.

(c) Set β̃j = β̃new
j .

3. Update the intercept term:

(a) Compute ui = yi(β̃0 + xT
i β̃).

(b) Compute β̃new
0 = β̃0 − ∑n

i=1 V ′(ui)yi/(4n).

(c) Set β̃0 = β̃new
0 .

4. Repeat Steps 2–3 until convergence of (β̃0, β̃).

3.2 IMPLEMENTATION

We have implemented Algorithm 1 in an R package sdwd. We exploit the warm-start,
the strong rule, and the active set trick to increase the algorithm speeding. In our imple-
mentation, λ2 is prechosen and we compute the solution path as λ1 varies.

First, we adopt the warm-start to lead to a faster and more stable algorithm (Friedman
et al. 2007). We compute the solutions at a grid of K decreasing λ1 values, starting at the
smallest λ1 value such that β̃ = 0. Denote these grid points by λ

[1]
1 , . . . , λ

[K]
1 . With the

warm-start trick, we can use the solution at λ
[k]
1 as the initial value (the warm-start) to

compute the solution at λ
[k+1]
1 .
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832 B. WANG AND H. ZOU

Specifically, to find λ
[1]
1 , we fit a model with a sufficiently large λ1 and thus β̃ = 0.

Let β̂0 be the estimate of the intercept. By the Karush-Kuhn-Tucker (KKT) conditions,
1
n

maxj

∣∣∑n
i=1 V ′(β̂0)yixij )

∣∣ ≤ λ1, so we can choose

λ
[1]
1 = 1

n
max

j

∣∣∣∣∣
n∑

i=1

V ′(β̂0)yixij )

∣∣∣∣∣ .
Generally, we use K = 100, and λ

[100]
1 = ελ

[1]
1 , where ε = 10−4 when n < p and ε =

10−2 otherwise. All the other grid points are placed to uniformly distribute on a log scale.
Second, we follow the strong rule (Tibshirani et al. 2010) to improve the computational

speed. Suppose β̃
[k]

and β̃
[k]
0 are the solutions at λ

[k]
1 . After we solve β̃

[k]
and β̃

[k]
0 , the

strong rule claims that any j ∈ {1, . . . , p} satisfying∣∣∣∣∣1

n

n∑
i=1

V ′(yi(β̂
[k]
0 + xT

i β̂
[k]

))yixij

∣∣∣∣∣ < 2λ
[k+1]
1 − λ

[k]
1 (3.5)

is likely to be inactive at λ
[k+1]
1 , that is, β̂

[k+1]
j = 0. Let D be the collection of j that sat-

isfies (3.5), and its compliment DC = {1, . . . , p}\D. We call DC the survival set. If the
strong rule guesses correctly, the variables contained in D are discarded, and we only ap-
ply Algorithm 1 to repeat the coordinate descent in the survival set DC . After computing
the solution β̂0 and β̂, we need to check whether some variables are incorrectly discarded.
We check this by the KKT condition,∣∣∣∣∣1

n

n∑
i=1

V ′(yi(β̂0 + xT
i β̂))yixij

∣∣∣∣∣ ≤ λ1. (3.6)

If no j ∈ D violates (3.6), β̂0 and β̂ are the solutions at λ
[k+1]
1 . We rephrase them as

β̃
[k+1]
0 and β̃

[k+1]
. Otherwise, any incorrectly discarded variable should be added to the

survival set DC . We update D by D = D/U , where

U =
{

j : j ∈ D and

∣∣∣∣∣1

n

n∑
i=1

V ′(yi(β̂0 + xT
i β̂))yixij

∣∣∣∣∣ > λ1

}
.

After each update of D, some incorrectly discarded variables are added back to the survival
set.

Third, the active set is also used to boost the algorithm speed. After we apply Algo-
rithm 1 on the survival set DC , we only apply the coordinate descent on a subset S of
DC till convergence, where S = {j : j ∈ DC and βj 	= 0}. Then another cycle of coordi-
nate descent is run on DC to investigate if the active set S changes. We finish the algorithm
if no changes in S; otherwise, we update the active set S and repeat the process.

In Algorithm 1, the margin ui can be updated conveniently: if βj is updated by βnew
j , we

update ui by ui + yixij (βnew
j − βj ).

Last, the default convergence rule in sdwd is 4(β̃new
j − β̃j )2 < 10−8 for all j =

0, 1, . . . , p.
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SPARSE DISTANCE WEIGHTED DISCRIMINATION 833

3.3 THE STRICT DESCENT PROPERTY OF ALGORITHM 1

Yang and Zou (2013) showed that the GCD algorithm enjoys descent property. In this
section, we also show the GCD algorithm has a stronger statement, the strict descent prop-
erty, when the GCD is used to solve the sparse DWD. We first elaborate the following
majorization result, whose proof is deferred in the appendix.

Lemma 1. F (βj |β̃, β̃0) is the coordinate-wise update function defined in (3.1), and
Q(βj |β̃, β̃0) is the surrogate function defined in (3.3). We have (3.7) and (3.8):

F (βj |β̃, β̃0) = Q(βj |β̃, β̃0), if βj = β̃j , (3.7)

F (βj |β̃, β̃0) < Q(βj |β̃, β̃0), if βj 	= β̃j . (3.8)

Given β̃new
j = arg min

βj
Q(βj |β̃0, β̃), and assuming β̃new

j 	= β̃j , (3.7) and (3.8) imply the

strict descent property of the GCD algorithm: F (β̃new
j |β̃, β̃0) < F (β̃j |β̃, β̃0). It is be-

cause F (β̃new
j |β̃, β̃0) < Q(β̃new

j |β̃, β̃0) < Q(β̃j |β̃, β̃0) = F (β̃j |β̃, β̃0). Note that the orig-

inal GCD article only showed F (β̃new
j |β̃, β̃0) ≤ F (β̃j |β̃, β̃0).

The arguments above prove that the objective function F strictly decreases after updat-
ing all variables in a cycle, unless the solution does not change after each update. If this
is the case, the algorithm stops. We show that the algorithm must stop at the right answer.
Assuming β̃j = β̃new

j for all j, (3.4) implies:

β̃j = S(4β̃j − 1
n

∑n
i=1 V ′(ui)yixij , λ1)

4 + λ2
.

A straightforward algebra can show that for all j,

1

n

n∑
i=1

V ′(ui)yixij + λ1sign(βj ) + λ2βj = 0, if βj 	= 0;

∣∣∣∣∣1

n

n∑
i=1

V ′(ui)yixij

∣∣∣∣∣ ≤ λ1, if βj = 0,

which is exactly the KKT conditions of the original objective function (2.2). In conclusion,
if the objective function does not change after a cycle, the algorithm necessarily converges
to the correct solution satisfying the KKT condition.

4. SIMULATION

The simulation in this section aims to support the following three points: (i) the sparse
DWD has highly competitive prediction accuracy with the sparse SVM and the sparse lo-
gistic regression; (ii) the adaptive elastic-net penalized DWD performs the best in variable
selection; and (iii) for the prediction accuracy, no single method among the �1, the elastic-
net, and the adaptive elastic-net penalized DWDs dominate the others in all situations.
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834 B. WANG AND H. ZOU

In this section, the response variables of all the data are binary. The dimension p of the
variables xi is always 3000. Within each example, our simulated data consist of a training
set, an independent validation set, and an independent test set. The training set contains
50 observations: 25 of them are from the positive class and the other 25 from the negative
class. Models are fitted on the training data only, and we use an independent validation set
of 50 observations to select the tuning parameters: λ2 is selected from 10−4, 10−3, 10−2,
0.1, 1, 5, and 10; λ1 is searched along the solution paths. We compared the prediction
accuracy (in percentage) on another independent test dataset of 20,000 observations.

We followed Marron, Todd, and Ahn (2007) to generate the first two examples. In Ex-
ample 1, the positive class is a random sample from Np(μ+, Ip), where Ip is the p by p
identity matrix and μ+ has all zeros except for 2.2 at the first dimension; the negative class
is from Np(μ−, Ip) with μ− = −μ+. In Example 2, 80% of the data are generated from the
same distributions as Example 1; for the other 20% of the data, the positive class is drawn
from Np(μ+, Ip) and negative class Np(−μ+, Ip), where μ+ = (100, 500, 0, . . . , 0). We
obtained the other three examples following Wang, Zhu, and Zou (2006). In Example 3, the
positive class has a normal distribution with mean μ+ and covariance � = Ip×p, where
μ+ has 0.7 in the first five covariates and 0 in others; the negative class has the same distri-
bution except for a different mean μ− = −μ+. In Examples 4 and 5, we consider the cases
where the relevant variables are correlated. Two classes have the same distributions except
for the covariance,

� =
(

��
5×5 05×(p−5)

0(p−5)×5 I (p−5)×(p−5)

)
.

In Example 4, the diagonal elements of �� are 1 and the off-diagonal elements are all
equal to 0.7. In Example 5, the (i, j )th element of �� equals 0.7|i−j |.

We compared the sparse DWD with the sparse SVM and the sparse logistic regres-
sion. Both the DWD and the logistic regression use the �1, the elastic-net, and the adaptive
elastic-net penalties. We used R packages sdwd and gcdnet (Yang and Zou 2013) to
compute the sparse DWDs and the sparse logistic regressions, respectively. The �1 and the
elastic-net SVMs were solved by using the code from Wang, Zhu, and Zou (2006), which
does not handle the adaptive elastic-net penalty. Table 1 presents the prediction accuracy
results. In the first two examples, the �1 DWD and the �1 logistic regression perform the
best. We attribute this good performance to the only one nonzero variable in the data, de-
spite 20% of outliers in Example 2. In Examples 3–5, we increase the number of nonzero
variables to five. For all models, the elastic-net and the adaptive elastic-net penalties have
similar performance, and both of them dominate the �1 penalties. The elastic-net DWD
produces the least prediction error in Examples 4 and 5. Table 2 compares the variable
selection. In all cases, the adaptive elastic-net penalties address all relevant variables with
relatively few mistakes. The �1 penalties share similar performance in the first two exam-
ples.

5. REAL DATA EXAMPLES

In this section, we analyze four benchmark data. The data Arcene was obtained from
Lichman (2013), the breast cancer data from Graham et al. (2010), the LSVT data from
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SPARSE DISTANCE WEIGHTED DISCRIMINATION 835

Table 1. Comparisons of mis-classification percentage on 300 training data, 300 validation data, and 20,000 test
data, based on 200 replicates. The numbers in parentheses are the standard errors. For each example, the methods
with the best performance are marked by black boxes

DWD SVM Logistic

�1 enet aenet �1 enet �1 enet aenet

Example 1 1.42 1.47 1.44 1.46 1.50 1.42 1.46 1.44

Bayes: 1.39 (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02)
Example 2 1.14 1.15 1.13 1.16 1.16 1.11 1.14 1.15

Bayes: 1.11 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
Example 3 6.41 6.25 6.21 6.45 6.15 6.40 6.21 6.22

Bayes: 5.88 (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)
Example 4 22.05 21.48 21.54 22.03 21.56 22.00 21.54 21.64

Bayes: 21.10 (0.07) (0.07) (0.05) (0.06) (0.05) (0.06) (0.06) (0.06)
Example 5 18.91 18.74 18.75 18.84 18.78 18.81 18.80 18.77

Bayes: 18.03 (0.07) (0.05) (0.05) (0.06) (0.05) (0.06) (0.05) (0.05)

Tsanas et al. (2014), and the prostate cancer was from Singh et al. (2002). We randomly
split each data with a ratio 1:1 into a training set and a test set. On the training set, we fit the
sparse DWD with imposing the elastic-net and the adaptive elastic-net penalties. With the
same tuning parameter candidates in the simulation, we used a five-fold cross-validation
to find the best pair of (λ1, λ2) incurring the least misclassification rate. Then we inves-
tigated the prediction accuracy of the selected model on the test set. As comparisons, we
considered the sparse SVM and the sparse logistic regression. Every method was trained
and tuned in the same way as the sparse DWD. All numerical experiments were carried out
on an Intel Core i7-3770 (3.40 GHz) processor.

In Table 3, we reported the average misclassification percentage on the test set from
200 independent splits. We observe that the classifiers achieving the least error in these four
datasets are the adaptive elastic-net logistic regression, the elastic-net SVM, the elastic-net,
and the adaptive elastic-net DWDs. We also find all the differences are not quite large. For

Table 2. Comparisons of the variable selection. C is the number of selected nonzero variables, and IC is the
number of zero variables incorrectly selected into the model. The results are the medians over 200 replicates

DWD SVM Logistic

�1 enet anet �1 enet �1 enet aenet

C IC C IC C IC C IC C IC C IC C IC C IC

Example 1 1 0 1 2 1 0 1 0 1 4 1 0 1 4.5 1 0
Example 2 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0
Example 3 5 0 5 5 5 0 5 0 5 2.5 5 1 5 7 5 0
Example 4 4 1 5 8.5 5 1.5 4 0 5 7 4 1 5 14 5 2
Example 5 4 1 5 3.5 5 0 4 0 5 2 4 1 5 6.5 5 0
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836 B. WANG AND H. ZOU

Table 3. The mean misclassification percentage and timings (in seconds) for four benchmark datasets. All the
timings include the five-fold cross-validation. The timings of adaptive elastic-net methods include computing the
weights. The numbers in parentheses are the standard errors. For each data, the methods with the best prediction
accuracy are marked by black boxes

Arcene Breast LSVT Prostate
n = 100, n = 42, n = 126, n = 102,

p = 10, 000 p = 22, 283 p = 309 p = 6033

Error Time Error Time Error Time Error Time

enet DWD 34.43 123.41 26.50 58.40 16.01 8.28 10.22 28.18

(0.56) (5.16) (1.00) (1.90) (0.34) (0.23) (0.30) (0.95)
aenet DWD 34.60 200.19 26.86 116.12 15.92 13.72 10.26 39.25

(0.57) (9.24) (1.00) (3.78) (0.34) (0.29) (0.26) (1.24)
enet logistic 34.16 211.18 24.67 145.35 16.96 10.73 10.65 102.19

(0.58) (3.40) (1.00) (0.74) (0.37) (0.18) (0.29) (1.56)
aenet logistic 34.15 393.03 25.12 290.31 16.93 17.02 10.75 189.44

(0.57) (6.52) (0.87) (1.47) (0.37) (0.29) (0.29) (2.84)
enet SVM 35.10 7410.09 23.95 567.43 16.27 63.10 10.56 2508.94

(0.67) (1465.68) (1.00) (15.19) (0.37) (0.77) (0.36) (0.77)

the sparse DWD, we get the same message as Marron, Todd, and Ahn (2007) concluded for
the standard DWD: “it very often is competitive with the best of the others and sometimes
is better.” We also notice that the computation of the sparse DWD is the fastest in almost all
cases. The timing of the SVM is much longer than other methods. A possible explanation
is that the SVM uses the nondifferentiable hinge loss function, which makes the GCD
algorithm not suitable for solving the sparse SVM. So far, the best algorithm for the sparse
SVM is a LARS-type algorithm (Wang, Zhu, and Zou 2006), which is very different from
the GCD algorithm for the sparse DWD and logistic regression. It has been observed that
coordinate descent may be faster than the LARS algorithm for solving the lasso penalized
least squares (Friedman et al. 2007).

6. DISCUSSION

In this article, we have proposed the sparse DWD for high-dimensional classification
and developed an efficient algorithm to compute its solution path. We have shown that the
sparse DWD has competitive prediction performance with the sparse SVM and the sparse
logistic regression and is often faster to compute with the help of our algorithm. Thus, the
sparse DWD is a valuable addition to the toolbox for high-dimensional classification.

The generalized DWD defined by Hall, Marron, and Neeman (2005) minimizes the qth
power of the inverse margins. When q = 1, it reduces to the usual DWD. For computation
considerations, Marron, Todd, and Ahn (2007) chose to fix q = 1, because it leads to a
second-order cone programming problem. We have found that our algorithm can be readily
used to solve the sparse generalized DWD with any positive q. In our numerical study, we
tried the generalized DWD with q = 0.5, 1, 2, 5, 100 and also tried to use cross-validation
to select a data-driven q value. Our numeric results indicated that using different q values
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SPARSE DISTANCE WEIGHTED DISCRIMINATION 837

does not lead to significant differences in performance. We opt to leave those results to the
technical report version of this article.

APPENDIX: PROOF

Proof of Lemma 1. (3.7) is trivial. To prove (3.8), it suffices to show for any a 	= b ∈ R,

V (a) < V (b) + V ′(b)(a − b) + 2(a − b)2. (A.1)

First, it is not hard to check that the first-order derivative V ′(·) is Lipschitz continuous, that is, for
any a 	= b,

|V ′(a) − V ′(b)| < 4|a − b|. (A.2)

Let g(a) = 2a2 − V (a), then (A.2) shows g′(a) ≡ 4a − V ′(a) is strictly increasing. Therefore,
g(a) is a strictly convex function, and its first-order condition leads to (A.1) directly.
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