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A Nonparametric Phase I Control Chart for
Individual Observations Based on Empirical
Likelihood Ratio
Wei Ning,a Arthur B. Yeh,b*† Xinqi Wuc and Boxiang Wangd
One common challenge in nonmanufacturing control chart applications is that many of the nonmanufacturing quality
characteristics are not normally distributed. In these applications, normal transformation of the observations is certainly
feasible; however, it will be done at the expense of the interpretability of the analysis that is particularly important to control
chart users in nonmanufacturing industries.

Most of the existing nonparametric control charts are designed for Phase II monitoring. Little has been done in developing
nonparametric Phase I control charts especially for individual observations that are prevalent in nonmanufacturing
applications. In this work, we propose a new nonparametric Phase I control chart for monitoring the location parameter
whose construction is essentially based on the empirical likelihood ratio test. The performance of the proposed chart, in
terms of the signal probability, compares favorably with the recently developed charts for individual observations. A
nonmanufacturing example is included in which the proposed chart and the other competing charts are applied and
compared. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

1.1. Background and literature eview
O
f the techniques that form the core of statistical process control (SPC), the control chart is perhaps the most widely used
technique in practical applications since it was first introduced by Shewhart1. In practice, the control chart applications are
divided into two phrases. In the Phase I control, the control charts are used to assess the stability of the process, determine

the process distribution, and estimate the population parameters that are needed for setting up the Phase II control charts. The
primary goal of Phase II monitoring is to detect a process change as soon as it occurs.

For many years, the control chart applications can be found predominantly in manufacturing industries. Over the last two decades,
they have begun to spread to nonmanufacturing industries such as health care, banking, and insurance, among others. As these
nonmanufacturing applications continue to spread, new challenges will inevitably arise, which will require developing more effective
control charts. One such challenge commonly encountered in nonmanufacturing applications is that many of the quality
characteristics are not normally distributed. For example, in a health care application discussed in Jones-Farmer, Jordan, and Champ2

(2009), the authors pointed out that the quality characteristic, the wait times of patients who underwent a colonoscopy procedure, does
not follow a normal distribution. In order to continue to expand control chart applications into broader sectors, it is therefore important to
develop control charts that are eithermore robust to or do not require normality assumption of the quality characteristic beingmonitored.
Several authors, for example, Woodall andMontgomery3 andWoodall4, have also pointed out the need to develop nonparametric control
charts. A comprehensive review of the development of nonparametric control charts up until 2013 can be found in Qiu5.

In the last decade or so, numerous nonparametric control charts have appeared in statistical and quality engineering journals. Most
existing nonparametric control charts utilize charting statistics that are based on ranking/ordering information of the observations
across different time points. The charting statistics could be of Shewhart, cumulative sum, or exponentially weighted moving
averages (EWMA) type. This work includes, for example, Albers and Kellenberg6; Bakir7; Chakraborti, van der Laan, and van de Wiel8;
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Bakir9; Chakraborti and Eryilmaz10; Albers and Kellenberg11; Chakraborti, Eryilmaz, and Human12; and Jones-Farmer, Jordan, and
Champ2. Some recent work, for example, Zhou, Zou, Zhang, and Wang13, Hawkins and Deng14, and Zou and Tsung15, examined
the problem from a change-point model perspective and developed nonparametric control charts using rank or likelihood-
ratio-based statistics. Most recently, Qiu and Li16 developed a charting method based on first categorizing the original
observations into categorical data and then using categorical data analysis techniques. They have shown that the method is
often more effective than the ones based on ranking/ordering information. Also, the idea of finding a transformation based
on an in-control (IC) data set and transforming the Phase II data so that a normality-based control chart can be used has been
discussed recently in Qiu and Li17 and Qiu and Zhang18. Nevertheless, these authors showed that the transformation-based
approach is often ineffective in various cases. In addition, Liu, Zou, Zhang, and Wang19 developed a nonparametric EWMA
chart based on the standardized sequential rank of each incoming observation, and Ross and Adams20 developed a
nonparametric control chart based on measuring the difference between two empirical distribution functions by either the
Cramer–von Mises (CM) or Kolmogorov–Smirnov (KS)-type distance. All of this aforementioned work focuses on univariate
processes. As for the multivariate nonparametric control charts, refer to the work by, for example, Qiu and Hawkins21,22,
Qiu23, Zou and Tsung24, Zou, Wang, and Tsung25, Sun and Zi 26, and Li, Dai, and Wang27.

The vast majority of the existing nonparametric control charts focus on monitoring the location parameter. Some charts based on
change-point model, such as those studied in Zou and Tsung15, Qiu and Li16, and Ross and Adams20, are capable of detecting simply
changes in the distribution function that could be a result of changes in the location parameter or scale parameter or both. Further,
almost all of the existing charts are designed for Phase II monitoring. As such, they typically assume that the IC value of the parameter
to be monitored is either known or can be reasonably estimated based on Phase I data that were collected when the process was IC.
Some of these methodologies do not require that the IC parameter value be known; however, they assume the existence of an IC
Phase I sample or that the process was IC. Refer to, for example, Zhou, Zou, Zhang, and Wang13, Hawkins and Deng14, Zou and
Tsung15, Qiu and Li16, and Liu, Zou, Zhang, and Wang19. Because of the assumption of known IC process parameter values or the
existence of an IC sample or an IC process, most of the aforementioned nonparametric Phase II control charts are not suitable for
retrospective analysis in Phase I control.

Despite the importance of Phase I control in SPC and that Phase II monitoring is almost impossible without properly completing
Phase I control, little has been done in developing nonparametric Phase I control charts. One such charting mechanism was the
nonparametric Phase I control chart for a subgroup location studied in Jones-Farmer, Jordan, and Champ2. The authors proposed
ranking each observation in each subgroup with respect to the entire sample and calculating the standardized average of the ranks
in each subgroup. However, their proposed chart requires that the subgroup size is at least 3.

1.2. Problem formulation

There are many practical manufacturing as well as nonmanufacturing applications in which only individual observations can be
collected for SPC implementation. Let X represent the quality characteristic to be monitored whose distribution, denoted by F, is
unknown. Let E(X) =μ and Var(X) =σ 2 denote the mean and variance of X, respectively. When the process is IC, we assume that E
(X) =μ0 and Var Xð Þ ¼ σ2

0, where both μ0 and σ2
0 are unknown. In this work, our focus is on monitoring the process mean μ in a Phase

I application; we therefore further assume that the process variance remains at σ2
0 during the course of the Phase I application. Let X1,

X2, …, Xn be n independent random observations from F, collected for the purpose of a Phase I application. That is, each Xj,
j= 1, 2,…, n, represents the only individual observation sampled from F at the jth sampling period. Under the framework just
mentioned, the conventional Shewhart chart such as the X-chart plots each Xj against predetermined control limits, and the chart
signals when any of the Xj’s plots are outside of the control limits.

In order to introduce the proposed Phase I control chart in the later sections, we formulate the problem from a change-
point model perspective. Let E(Xj) = μ(j), and j = 1, 2,…, n. When the process is IC, we assume that μ(1) = μ(2) =⋯ = μ(n) = μ0.
When the process is out of control (OC), we assume that there exists one unknown sampling period k such that μ(1) = μ(2) =
⋯ = μ(k) = μ0, μ(k + 1) = μ(k + 2) =⋯ = μ(n) = μ1, and μ0 ≠ μ1. Therefore, under the change-point model framework, the main
problem to be tackled in this work is to develop a nonparamteric Phase I control chart that can effectively detect the
occurrence of a change-point location as soon as the process becomes OC. Note that here we only consider one change-
point location in the process for the simplicity of the discussion. For the multiple change-point locations scenario, it can
be transferred to the single change-point location scenario by the binary segmentation procedure proposed by Vostrikova28.
It should be noted that, in general, the Phase I control problem is essentially the same as the change-point detection
problem in that in both cases, the sample size n is fixed, and one wishes to detect any changes in the underlying process
distribution. Therefore, most existing change-point methods are relevant to the Phase I control problems. On the other hand,
the Phase II monitoring is intrinsically different from the change-point detection problem in that the sample size increases n
as monitoring progresses.

Recently, Hawkins and Deng14 and Ross and Adams20, while focusing on Phase II monitoring, briefly discussed nonparametric
Phase I control charts based on a change-point model for individual observations. Hawkins and Deng14 discussed using a two-sample
Mann–Whitney (MW) test to detect a possible change in the location parameter. Ross and Adams20 suggested comparing two
empirical distribution functions using a CMor KS-type test statistic.

In parametric settings, control charts that are developed based on the log-likelihood ratio enjoy certain optimal properties
(refer to, e.g., Moustakidas29). On the other hand, under nonparametric settings, the empirical likelihood ratio (Owen30,31) has been
shown to provide efficient estimators and good testing power in many applications. This naturally leads to the thinking of whether
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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one can develop an effective nonparametric Phase I control chart based on the empirical likelihood ratio, as the existing charts
were not developed based on the likelihood principle. Therefore, we are motivated in this work to develop a new nonparametric
Phase I control chart for monitoring the location parameter based on the empirical likelihood ratio. The performance of the
proposed chart, in terms of the signal probability, compares favorably with that of the aforementioned nonparametric Phase I
charts, as well as the conventional X-chart, for individual observations.

The rest of the paper is organized as follows. We first briefly discuss in Section 2 the existing nonparametric Phase I control charts.
In Section 3, we discuss the change point model based on empirical likelihood ratio and the proposed nonparametric Phase I control
chart. Section 4 is devoted to comparing the performance of the proposed chart with that of the existing charts. A nonmanufacturing
example is discussed in Section 5 in which the proposed chart and the existing charts are applied and compared. Section 6 gives a
number of concluding remarks and possible future research along the same line.
3
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2. The existing methodologies

Under the change-point model framework discussed in Section 1.2, Hawkins and Deng14 suggested applying the two-sample MW test
to test whether the location parameters are equal. Specifically, assume that k is the change-point location for 1 ≤ k< n. To test H0:
μ0 =μ1 versus Ha: μ0≠μ1, the two-sample MW test statistic is equal to

MWk;n ¼
Xk
i¼1

Xn
j¼kþ1

I Xj < Xi

� �þ 1

2

Xk
i¼1

Xn
j¼kþ1

I Xj ¼ Xi

� �
; (1)

where I(A) = 1 if A happens and 0 if otherwise. Also, define the standardized MW test statistic as

SMWk;n ¼
MWk;n � E MWk;n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var MWk;n

� �q ; (2)

where

E MWk;n

� � ¼ k n� kð Þ
2

andVar MWk;n

� � ¼ k n� kð Þ nþ 1ð Þ
12

:

The change-point model formulation calls for evaluating

SMWn ¼ max
1≤k≤n�1

SMWk;n

�� ��; (3)

and that the MW-based nonparametric Phase I control chart signals when SMWn≥hα;SMWn, where the threshold hα;SMWn depends on the
desirable Phase I IC signal probability α and the sample size n. In this paper, we used Monte-Carlo simulations to approximate the
distribution of SMWn and consequently hα;SMWn .

The other two existing nonparametric Phase I control charts, both suggested by Ross and Adams20, are based on comparing two
empirical cumulative distribution functions (ECDFS), one obtained from the first k observations, X1, X2, …, Xk, and the other from the
last n� k observations, Xk+ 1, Xk+2, …, Xn. Specifically, define, for 1< k< n,

F̂ 1;k xð Þ ¼ 1

k

Xk
j¼1

I Xj < x
� �

and F̂ 2;k xð Þ ¼ 1

n� k

Xn
j¼kþ1

I Xj < x
� �

:

Further, define the ECDF constructed based on the entire sample X1, X2,…, Xn as F̂ n xð Þ ¼ 1=n
Xn

j¼1
I Xj < x
� �

. The KS-type distance

between F̂ 1;k xð Þ and F̂ 2;k xð Þ is defined as

KSk;n ¼ sup
x

F̂ 1;k xð Þ � F̂2;k xð Þ�� ��; (4)

whereas the CM-type distance is calculated as

CMk;n ¼ k n� kð Þ
n

� ∫
∞
�∞ F̂1;k xð Þ � F̂ 2;k xð Þ�� ��2dF̂n xð Þ

¼ k n� kð Þ
n2

�
Xn
j¼1

F̂ 1;k Xj

� �� F̂ 2;k Xj

� ��� ��2: (5)
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55



W. NING ET AL.

4
0

For the nonparametric Phase I control chart based on the CM-type distance, the test statistic is equal to

CMn ¼ max
1<k<n

CMk;n � E CMk;n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var CMk;n

� �q ; (6)

where

E CMk;n

� � ¼ nþ 1

6n
andVar CMk;n

� � ¼ nþ 1ð Þ � 1� 3=4kð Þn2 þ 1� kð Þn� k½ �
45n2 n� kð Þ :

The CM-based chart signals when CMn > hα;CMn , where hα;CMn depends on the IC signal probability α and the sample size n.
As for the chart based on the KS-type distance, Ross and Adams20 suggested calculating

qk;n ¼ 1� pk;n;

where pk,n is the probability of observing a more extreme value than KSk,n. The test statistic of the KS-based nonparametric Phase I
control chart is then defined as

KSn ¼ max
1<k<n

qk;n; (7)

and that the chart signals when KSn > hα;KSn . Again, the threshold hα;KSn depends on the sample size n and the IC signal probability α.
Please refer to Ross and Adams20 for details on how to calculate qk,n. In this work, we used Monte-Carlo simulations to approximate
hα;CMn as well as hα;KSn , for a given α and n.
3. The proposed methodology

3.1. Change-point model based on empirical likelihood ratio

The empirical likelihood is a data-driven method for statistical inference. It was first proposed by Thomas and Grunkemeier32 and
further developed by Owen30,31. It is a method that combines the advantages of parametric and nonparametric methods. On one
hand, similar to the parametric likelihood method, it can be used to develop a likelihood-type function for finding efficient estimators
and constructing tests with good power properties and confidence intervals (Owen33). On the other hand, it behaves similarly to a
nonparametric method that makes no distributional assumption. Therefore, it enjoys the flexibility and robustness in many
applications.

The pioneer work by Owen30,31 extended the earlier work of Thomas and Grunkemeier32 who applied a nonparametric
likelihood ratio to constructing confidence intervals for the survival functions. Owen30 showed that the likelihood-ratio-type
statistic based on the empirical likelihood method, just as in the parametric settings, has an asymptotic χ2 distribution. Since
then, the empirical likelihood method has been employed in different statistical contexts such as regression models, change-
point analysis, survival analysis, etc. Properties of the empirical likelihood ratio in the case of independent and identically
distributed random variables were investigated in Owen 31, Hall34, DiCiccio, Hall, and Romano35, and Qin and Lawless36.
Owen33 extended the empirical likelihood method to the regression models. Kolaczyk37 considered such a method in the class
of generalized linear models. Kitamura38,39 studied the empirical likelihood method for weakly dependent processes and its
applications to the time series analysis. In survival analysis, Pan and Zhou40 constructed an empirical likelihood ratio based
on the cumulative hazard functions for censored data. Ren and Zhou41 provided the inference for the Cox model using an
empirical likelihood approach. In recent years, the empirical likelihood method has also been used to investigate the
change-point problems. For instance, Zou, Liu, Qin, and Wang42 employed this method for the general change-point problems
and derived the asymptotic distribution of the empirical likelihood ratio statistic. Liu, Zou, and Zhang43 developed the
empirical likelihood method for the change-point problems in a linear regression model. Ning44 and Ning, Pailden, and Gupta45

studied different forms of the mean changes by using the empirical likelihood ratio test. For a more detailed account of the
empirical likelihood method, readers are referred to Owen46 and the references cited in the aforementioned papers. In the
current work, we follow closely the theoretical development of Zou, Liu, Qin, and Wang42 and apply it specifically to
developing a nonparametric Phase I control chart for monitoring the location parameter.

The main idea of the empirical likelihood method is to place an unknown probability mass at each observation. Let pi= P(X= xi) and
the empirical likelihood function of F is defined as

L Fð Þ ¼ ∏
n

i¼1
pi:
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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It is clear that L(F), subject to the constraints

pi≥0 and
X
i

pi ¼ 1;

is maximized at pi= 1/n, that is, the likelihood L(F) attains its maximum n� n under the full nonparametric model. When a population
parameter μ, identified by E(m(X,μ)) = 0, is of interest, the maximum of the empirical log-likelihood when μ has the true value μ0 is
obtained subject to an additional constraint

P
pim(xi,μ0) = 0. The function m(x;μ) is a real-valued function through which the

parameter of interest μ is specified by the estimating equation E(m(X,μ)) = 0. In this paper, we take m(x ;μ) = x�μ. More details of
the estimating equations can be found in Owen46. The empirical log-likelihood ratio (ELR) statistic for testing μ=μ0 is then given by

R μ0ð Þ ¼ max
p1 ;p2;…;pn

X
i

lognpi : pi≥0;
X
i

pi ¼ 1;
X
i

pim xi;μ0ð Þ ¼ 0

( )
:

Similar to the likelihood ratio test statistic in a parametric model setting, Owen30 showed that, under mild regularity conditions,
�2� R μ0ð Þ→χ2r in distribution as n→∞ under the null hypothesis μ=μ0, where r is the dimension of m(x,μ).

For the change-point model formulation described in Section 1, given a fixed k, the empirical log-likelihood function to test the
hypothesis that μ0 =μ1 is equal to

l μ0;μ1jkð Þ ¼ i
X

logui þ j
X

logvj;

where i=1,⋯, k; j= k+1,⋯, n, ui= P(X= xi), and vj= P(X= xj). With the constraints
P

i ui=
P

j vj=1, the empirical log-likelihood
function reaches the maximum value at ui= k� 1 and vj= (n� k)� 1 by a Lagrange multiplier method. Therefore, the ELR is equal to

lr μ0;μ1jkð Þ ¼
X
i

log kuið Þ þ
X
j

log n� kð Þvj
� �

:

Consequently, the profile ELR for a given μ0 and μ1 can be written as

R μ0;μ1jkð Þ ¼ supflr μ0;μ1jkð Þ :
X
i

ui ¼
X
j

vj ¼ 1;
X
i

uixi ¼ μ0;
X
j

vjxj ¼ μ1g;

where ui ≥ 0 and vj ≥ 0. To test the hypothesis μ0 =μ1, the test statistic is defined as

Zn;k ¼ �2� R μ0;μ0jkð Þ ¼ �2� μ0sup
X
i

log kuið Þ þ
X
j

log n� kð Þvj
� �

:
X
i

ui ¼
X
j

vj ¼ 1;
X
i

uixi ¼
X
j

vjxj ¼ μ0

( )
:

A more detailed discussion of how to calculate Zn,k for a given n, k, and μ0 is given in the Appendix. Here, we used a Newton–
Raphson algorithm to obtain numerical solutions to Zn,k, which we will denote as Z�

n;k . The R codes used to calculate the Z�
n;k are

available from the first author. Note that in the simple univariate population mean case, the Newton–Raphson can always find unique
solutions of the related objective functions. Refer to Owen46 and Chen, Variyatha, and Abrahama47 for more details about the
computations of the empirical likelihood function. However, one needs to be careful in choosing the initial value so that the iterations
will converge after several steps. In this paper, we adopt the algorithm proposed by Wang and Chen48. Further, in the change-point
scenario, if the true change location is at the very beginning or at the very end of the sample, that is, there are only few observations
for one of the two samples of observations, the solutions of the related objective functions may not exist. There, we recommend using
a trimmed test statistic (Section 3.2).

3.2. Nonparametric Phase I control chart based on ELR

In the context of a change-point model, since k is unknown, it is natural to use the maximal empirical likelihood ratio statistic that is
defined as

Z�
n ¼

1<k<n
max Z�

n;k

n o
;

and we will reject the null hypothesis with a significantly large value of Z�
n: Note that if k or n� k is too small, the empirical likelihood

estimators of Z�
n;k may not exist; that is, our test may not detect the change point occurring at the very beginning or the very end of

the sample. Therefore, we suggest the trimmed likelihood ratio statistic as

Z�
n ¼

k0<k<n�k1
max Z�

n;k

n o
: (8)

To obtain the asymptotic distribution of the test statistic in Equation (8), according to Csörgő and Horvath49, we choose k0 = k1 = 2
[logn], where [x] denotes the largest integer not greater than x.

We shall call the proposed nonparametric Phase I control chart that is based on calculating the Z�
n in Equation (8) the ELR chart. The

chart signals when Z�
n > cα;Z�n . In the current work, we used the asymptotic distribution of Z�

n to approximate cα;Z�
n
. The two main
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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asymptotic results, which are similar to those obtained by Csörgő and Horvath43 under a parametric likelihood ratio method, were
developed and discussed in Zou, Liu, Qin, and Wang38. When the process is IC, that, μ0 =μ1, we have

P
�
A log t nð Þð Þð Þ Z�

n

� �1=2
≤ x þ Drðlog t nð Þð Þ

�
�→exp �e�xð Þ; (9)

as n→∞ for all x, where

A xð Þ ¼ 2logxð Þ1=2;
Dr xð Þ ¼ 2logx þ r=2ð Þlog logx � logΓ r=2ð Þ;

t nð Þ ¼ n2 þ 2 logn½ �ð Þ2 � 2n logn½ �
2 logn½ �ð Þ2 ;

and r is the dimensionality of the parameter space. Consequently, in our setting, the cα;Z�
n
can be approximated by

cα;Z�n ¼ Gα þ Dr log t nð Þð Þð Þð Þ2= A log t nð Þð Þð Þð Þ2; (10)

where Gα is the 100(1� α)% percentile of a Gumbel distribution, Dr(�)and A(�) are defined in Equation (9), n is the sample size, and r=1
in the current work.
4. Performance evaluation and comparison

4.1. Simulation settings

In this section, we investigate the performance of the ELR chart and compare it with that of the conventional X-chart, as well as the
MW, CM, and KS-based charts. The performance measure is defined as the signal probability that, for the proposed ELR chart, is the
probability that Z�

n > cα;Z�
n
. As for the X-chart, the signal probability is defined as the probability of having at least one observation

plotted outside of the control limits. As for the MW, CM, and KS-based charts, the signal probability is defined in the same way as
the ELR chart.

As in most Phase I control chart applications, the population parameters, and consequently the control limits, have to be estimated
from the Phase I data. The control limits of the X-chart are estimated as

LCL ¼ X � L�MR

d2
and UCL ¼ X þ L�MR

d2
;

where X ¼
Xn

i¼1
Xi=n is the sample average of the n Phase I observations, MR ¼

Xn�1

i¼1
Xiþ1 � Xij j= n� 1ð Þ is the average of moving

ranges of length 2, d2 = 1.128 is the adjusting constant for estimating the population standard deviation using the average of sample
ranges of size 2, and L is the multiplier that depends on the IC performance of the X-chart as well as the sample size n. We set the IC
signal probability to be 0.005 and consider two sample sizes n= 50 and 100. The values of L for the X-chart that produce
approximately 0.005 IC signal probability are 3.945 and 4.093 for n = 50 and 100, respectively. For the proposed ELR chart, we
obtained the UCLs (cpha;Z�

n
) based on Equation (10). The UCLs for n= 50 and 100 are 21.4538 and 20.8743. For the MW-based chart,

the UCLs (hα;SMWn ) that produce approximately 0.005 IC signal probability for n = 50 and 100 are 3.431 and 3.586, respectively. For
the same sample sizes and IC signal probability, the UCLs (hα;CMn) of the CM-based chart were determined to be 7.985 and 8.668 for
n = 50 and 100, respectively. As for the KS-based chart, the UCLs (hα;KSn ) are 0.99973 and 0.99980 for n= 50 and 100, respectively.
The simulated IC signal probabilities of these control charts are summarized in Table I. For the X-chart, MW, CM, and KS-based
charts, we used 300,000 simulations. As for the ELR chart, 10,000 simulations were used. Note that the simulated IC signal
probabilities for the ELR chart under normal and t3 distributions are closer to but generally more conservative than 0.005. On
the other hand, when the underlying distribution is exponential, the simulated IC signal probabilities are slightly larger than the
nominal level at 0.005.

For a given sample size, we compare the performance of the proposed ELR chart with that of the X-chart and the other competing
nonparametric Phase I charts, assuming that the observations come from one of the three distributions, normal, exponential, and t3,
where t3 denotes a t-distribution with 3 degrees of freedom. Here, we choose the exponential and t3 distributions to represent the
cases of continuous skewed and longer-tailed distributions. Similar to the existing literature in which Phase I control charts are
evaluated and compared, we consider three possible OC scenarios, a step change in the process mean, the presence of outlying
observations in the sample, and a gradual shift in the process mean. For each of the scenarios, we simulate and compare the OC signal
probabilities of the competing charts for a range of process mean shifts, as characterized by μ1 =μ0 + δσ0, where μ0 and σ0 are the IC
mean and standard deviation, respectively, of a given distribution. The OC scenarios considered here are δ= 0.25, 0.50, 1.00, 1.50, 2.0,
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55



Table I. The simulated IC signal probabilities and the corresponding control limits for α=0.005

X-chart ELR MW CM KS

Normal
n= 50 .00502 .00454 .00496 .00480 .00480

(3.945) (21.4538) (3.431) (7.985) (.9997)
n= 100 .00504 .00489 .00499 .00490 .00510

(4.093) (20.8743) (3.586) (8.668) (.9999)
Exponential
n= 50 .00505 .00892 .00510 .00498 .00498

(7.999) (21.4538) (3.431) (7.895) (.9997)
n= 100 .00496 .00833 .00480 .00493 .00493

(9.260) (20.8743) (3.586) (8.668) (.9998)
t3
n= 50 .00508 .00346 .00504 .00491 .00493

(11.987) (21.4538) (3.431) (7.895) (.9997)
n= 100 .00505 .00387 .00501 .00503 .00511

(17.413) (20.8743) (3.586) (8.668) (.9998)

The control limits are listed in the parentheses.

W. NING ET AL.
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and 3.0. Note that, in the case of the X-chart, we standardize the observations before plotting them on the X-chart. More specifically,
the OC scenarios considered include the following:

1. A step change in the process mean.

For n=50, the change-point locations considered are k= 10, 25, and 40. As for n= 100, the change-point locations are set at k= 20, 50,
and 80 of the set change point locations.

2. The presence of outlying observations.

We assume that two OC observations are present in the Phase I sample, and their locations are at 20 and 40 for n= 50, and at 40 and
80 for n= 100.

3. A gradual shift in the process mean.

In this scenario, we assume that the mean shift follows a linear trend. That is, for a given δ, the process mean μ( j), j= 1, 2,…, n, at the j
th observation is defined by

μ jð Þ ¼ μ0 þ
j � 1ð Þ
n� 1

� δσ0:

Note that μ(1) =μ0 and μ(n) =μ1.

4.2. Simulation results

Note that the value of L that determines the control limits used in the X-chart is specifically chosen so that the signal probability is
approximately 0.005 when the IC process follows a standard normal distribution. However, when the IC process follows a nonnormal
distribution, the actual IC signal probability is likely to be different if the same control limits are used. In fact, in our simulation settings,
if the IC process is exponential, using the same control limits obtained under a normal process will produce IC signal probabilities of
0.4252 and 0.6557, respectively, for n=50 and 100. These IC signal probabilities are much larger than the expected 0.005. Similarly,
the actual IC signal probabilities when the IC process follows a t3 distribution are 0.3930 and 0.6392 for n= 50 and 100, respectively.
These larger than nominal IC signal probabilities indicate that the X-chart is not a suitable Phase I control charting mechanism when
the IC process does not follow a normal distribution.

In order to compare the proposed ELR chart and the X-chart under nonnormal processes, similar to Jones-Farmer, Jordan, and
Champ2, we adjusted the values of L for the exponential and the t3 distributions such that the IC signal probability is approximately
0.005. The L values for the exponential distribution are 7.999 and 9.260 for n= 50 and 100, respectively. As for the t3 distribution,
the corresponding Ls for n= 50 and 100 are 11.987 and 17.413, respectively. Refer to Table I for the corresponding simulated IC
signal probabilities.

4.3. A step change in process mean

The simulated signal probabilities when the process mean incurs a step change are summarized in Table II (n= 50) and Table III
(n= 100). In general, for any given control chart, except for the X-chart, the signal probability is higher if the change point
occurs in the middle of the sample than early or later in the sample and if the sample size is larger. When the process is
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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normal, it is surprising that the X-chart is even not as effective as the other nonparametric Phase I control charts. The signal
probabilities of the X-chart under normal processes as shown in Tables II and III should give practitioners some caution as to
whether the X-chart is an effective Phase I control chart even under normal processes, when the process mean and standard
deviation have to be estimated using the Phase I data.

Of the three existing nonparametric Phase I charts, the MW-based chart is the best performing chart. This is consistent with the
observations in Ross and Adams19 in the context of Phase II monitoring as the MW test is specifically designed to test the difference
of the location parameters coming from two samples of observations.

Comparing the proposed ELR chart with the MW-based chart, if the process is normal, the MW-based chart overall seems to
perform better than does the proposed ELR chart. When the process is not normal, the proposed ELR chart has better performance
when the change point occurs early or in the middle of the Phase I sample. On the other hand, if the change point occurs later in the
Phase I sample, the MW-based chart tends to perform better.

In practice, the process distribution may not be easy to determine, especially if a large Phase I sample is not available. If the
prevalent concern in Phase I is that the process mean may incur a sustained shift, the results in Tables I and II seem to indicate that
the proposed ELR chart is a viable alternative to the MW-based chart under certain nonnormal processes.

4.4. The presence of outlying observations

Summarized in Table IV are the simulated OC signal probabilities with the presence of two outlying observations that occur on the
20th and 40th observations for n=50 and on the 40th and 80th observations for n= 100. The results in Table IV indicate that none
of the three existing nonparametric Phase I charts is effective in detecting the presence of outlying observations in the Phase I sample
because all the OC signal probabilities are close to the IC signal probability of 0.005. The X-chart is also ineffective in detecting the
presence of outlying observations, although it performs slightly better than the three existing nonparametric charts for normal and
exponential distributions, especially when δ ≥ 1.5.

The proposed ELR chart, on the other hand, is much more effective, relative to the X-chart and the MW, CM, and
KS-based charts, in detecting the presence of outlying observations. Intuitively, when there are only a few outlying
observations present in the Phase I sample, the plotting statistics of the MW, CM, and KS-based charts will not change
much, thus making these charts ineffective in detecting the presence of outlying observations. On the other hand,
because of the constraints placed on the probability masses and the data-dependent weighted sample average, even
if only a few outlying observations are present in the Phase I sample, the ELR test statistic Z�

n;k , and thus Z�
n in

Equation (8), will likely incur more noticeable changes, thus making the ELR chart more effective than the three existing charts.
It should be noted, however, that the OC signal probabilities of the ELR chart are not as high as those under step-change
OC scenarios.

4.5. A gradual shift in process mean

When the process mean undergoes a gradual shift, the simulated OC signal probabilities are summarized in Table V for n=50 and
100. When the process is normally distributed, the MW-based chart still has the best performance among the existing nonparametric
Phase I charts. It also slightly outperforms the proposed ELR chart.

When the process follows a nonnormal distribution, such as the exponential and t3 distributions considered here, the proposed
ELR chart is more effective than the three existing charts, except when the process follows a t3 distribution and that δ=3 under
n= 100; in that case, both the MW and CM-based charts have slightly better performance. Note that the X-chart remains ineffective
in detecting a gradual mean shift.

4.6. Summary

1. As compared with the proposed ELR chart and the three existing nonparametric charts, the conventional Phase I X-chart is not
as effective in detecting OC processes not only when the process distribution is nonnormal but also when the process follows a
normal distribution.

2. Of the three existing nonparametric Phase I control charts, the MW-based chart has the best performance in almost all of the OC
scenarios considered regardless of the process distribution.

3. The proposed ELR chart, when compared with the MW-based chart, is a viable alternative for detecting step changes
in the process location parameter. When a normal process undergoes a step change in its location parameter, the
MW-based chart has better performance over all. On the other hand, if the process is nonnormal and the step change
occurs early or in the middle of the Phase I sample, the proposed ELR chart performs better than the MW-
based chart.

4. When outlying observations are present in the Phase I sample, the ELR chart is much more effective than the X-chart as well
as the three existing nonparametric charts in all OC scenarios considered. In this case, caution should be exercised when
using the existing nonparametric charts as their OC signal probabilities are all very close to the IC signal probability. If the
cause of an OC process is because of a gradual shift in the process mean, the proposed ELR chart is more effective than
the MW-based chart, especially if the process distribution is nonnormal. However, the MW-based chart has better
performance under normal processes.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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Co
5. In practical Phase I applications, the exact distribution of the process is usually not readily available. The results summarized in
Tables 2–5 indicate that the proposed ELR chart is an effective nonparametric Phase I control chart in that it provides reasonably
good detecting power overall under various OC scenarios and process distributions.
5. An example

In this section, we apply the proposed ELR chart to an example discussed in Jones-Farmer, Jordan, and Champ2. The data, collected
from a regional medical center, consist of the wait times (in minutes) of 150 patients who underwent a colonoscopy procedure, taken
over a period of 30 days with five patients per day. For a more detailed account of the example, please refer to Jones-Farmer, Jordan,
and Champ2.

In order to apply the rank-based Phase I control chart, Jones-Farmer, Jordan, and Champ2 treated the data set as having 30 subgroups
of 5 observations per subgroup. The standardizedX-chart is shown in Figure 1. The two sets of control limits, (LCL, UCL) = (�3.1485, 3.1485)
and (�3.46, 3.46), give rise to IC signal probabilities of 0.05 and 0.005, respectively. As indicated in Figure 1, an OC signal was detected on
day 15 on the X-chart under 0.05 but not 0.005 IC signal probability. Because each subgroup of five patients was taken throughout the
entire day, it is perhaps more appropriate to treat the wait time of each patient as an individual observation, with a total of 150
observations. The standardized X-chart of the patient wait times is shown in Figure 2. The two sets of control limits on Figure 2,
(LCL, UCL)= (�3.59, 3.59) and (�4.18, 4.18), correspond to IC signal probabilities of 0.05 and 0.005, respectively.

When the IC signal probability is set at 0.05, observations 26, 71, 73, and 148 are OC on the X-chart. It is interesting to point out that
for the same signal probability, the X -chart also found that sample 15 was OC and that observations 71 and 73 fall on sample 15.
Nevertheless, the X-chart already detected an OC signal at observation 71 that was the first observation of day 15, while the X-chart
did not signal until the end of day 15. Further, the X-chart also detected OC signals as early as observation 26 and as late as

observation 148, while the X -chart failed to detect OC signals at samples 6 and 30 to which observations 26 and 148 belong,
respectively. When the IC signal probability is set at 0.005, the X-chart no longer shows any OC sample, while the X-chart still detects
an OC signal at observation 73.
ure 1. The X-chart of the colonoscopy data

ure 2. The X-chart of the colonoscopy data
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Figure 3. The ELR chart of the colonoscopy data
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As suggested by Jones-Farmer, Jordan, and Champ2, the histogram of the observations indicates that the distribution of the wait
times is rightly skewed (Figure 1 of Jones-Farmer, Jordan, and Champ2). The violation of normality is likely to affect the performance of
the X-chart in that the chart is probably more likely to signal than expected under a normal distribution. The proposed ELR chart,
when applied to the 150 individual wait times, is shown in Figure 3. The two control limits 10.7698 and 20.7183 correspond to
0.05 and 0.005 IC signal probabilities, respectively.

As suggested in Figure 3, when the IC signal probability is set at 0.05, the ELR chart signals at sample 25, which indicates that
the process mean shift starts at sample 26. This conclusion is consistent with what was observed on the X-chart in Figure 2.Note
that the charting statistic of the ELR chart is the maxmimum of the calculated Z�

n;k (Equation (8)). In Figure 3, we simply plotted

Z�
n;k versus the sampling sequence. In practice, once a change point is identified, the data set is split into two groups, the

observations up to the change point and the observations after the change point. The ELR chart is further applied to both groups
of observations in order to test whether additional change points exist in either of the two groups. In the colonoscopy example, we
applied the same ELR calculation to the first 25 observations and the last 125 observations. For the first 25 observations, the test
statistic was 3.3175, whereas the control limits for α=.05 and 0.005 were 9.5368 and 23.3197, respectively. As for the last 125
observations, the test statistic turned out to be 4.1573, which was not significant as judged against the control limits of 10.6656
and 20.7780 for α=.05 and 0.005, respectively. Unlike the X-chart, which indicated that samples 71, 73, and 148 were also OC,
the ELR chart only identified sample 26 as the OC sample. This difference may be because of the increased IC signal probability
of the X-chart when it is applied to nonnormal processes.

The MW-based Phase I chart of the colonoscopy data is shown in Figure 4. The two control limits for α=.05 and 0.005 are 3.0033
and 3.6508, respectively. The test statistic, obtained at sample 42, exceeded both control limits, indicating that the location parameter
of the first 42 observations is different from that of the last 108 observations. Note that this conclusion is different from the X-chart
and the proposed ELR chart. The data set was further split into two groups, the first 42 observations and the last 108 observations, and
the MW-based Phase I chart was applied to both groups of observations. For the first 42 observations, the test statistic was 1.5592,
while the control limits were 2.7797 and 3.3873 for α=.05 and 0.005, respectively. On the other hand, the test statistic for the last
108 observations was calculated to be 2.8929 whose control limits for α=.05 and 0.005 were determined to be 2.9599 and 3.6043,
respectively. Therefore, similar to what was observed from the ELR chart, no additional change points were identified after the entire
data set was split into two groups.
Figure 4. The MW-based chart of the colonoscopy data

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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Shown in Figure 5 is the CM-based Phase I chart of the colonoscopy data. The control limits are 5.9014 for α=.05 and 8.8669
for α=.005. The test statistic CMn, which occurred in sample 42, was above both control limits, indicating that the distribution
of the first 42 observations is different from that of the last 108 observations. Note that this conclusion is identical to what was
observed from the MW-based chart. The entire sample of 150 observations was split into two groups, the first 42 observations
and the last 108 observations, and the CM-based chart was applied to both groups of observations. For the first 42
observations, the test statistic was 1.7423, which was not significant, when judged against the control limits at α=.05 and
0.005, which were 5.3955 and 7.9569, respectively. As for the last 108 observations, the test statistic was determined to be
5.1218, which did not exceed the control limits of 5.8789 and 8.7082 at α=.05 and 0.005, respectively. Therefore, no additional
change points were further identified in either of the two groups of observations, a conclusion similar to the results obtained
from the ELR and MW-based charts.

The KS-based Phase I chart for the colonoscopy data is shown in Figure 6. Note that the scale was changed to � log(1� qk,n) for
better visualization. The test statistic of the KS-based chart, which occurred at sample 41, exceeded the control limit at α=.05 but not
at α=.005. The change point as identified at sample 41 is similar to that of the MW and CM-based charts. The entire sample was further
split into two groups, and the KS-based chart was applied to both groups of observations. For the first 41 observations, the control
limits were 0.99723 and 0.99967 for α=.05 and 0.005, respectively, and the test statistic 0.89910 was not significant. As for the last
109 observations, the test statistic was calculated to be 0.99421, which was not significant at α=.05 and 0.005, whose corresponding
control limits were 0.99796 and 0.99983, respectively.

Summarizing the observations from Figures 2–6, the three existing nonparametric Phase I charts, the MW, CM, and KS-based
charts, gave rise to very similar results. They produced an OC signal at almost the same time, sample 42 for the MW and CM-
based charts and sample 41 for the KS-based chart. The X-chart, on the other hand, produced an OC signal at as early as
sample 26. As indicated in Figure 2, the OC scenario for the colonoscopy data bears the closest resemblance to the case of
having outlying observations in the Phase I sample. As pointed out earlier in Section 4, this is an OC scenario that the existing
nonparametric charts are very ineffective in detecting. Similar to the X-chart, the proposed ELR chart also indicated a change
point starting at sample 26.
Figure 5. The CM-based chart of the colonoscopy data

Figure 6. The KS-based chart of the colonoscopy data (the scale has been modified)

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55
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6. Concluding remarks

In this work, we proposed a nonparametric Phase I control chart for monitoring the process mean with individual observations.
Based on a change-point model formulation, the proposed chart is based on the empirical likelihood ratio test of testing H0:
μ0 = μ1 versus Ha: μ0 ≠ μ1. When compared with the conventional Shewhart X-chart when the process distribution is indeed normal,
the simulation results indicated, rather surprisingly, that the proposed ELR chart and the other existing nonparametric Phase I
charts outperform the X-chart. The simulation results also indicated that the performance of the proposed ELR chart is more robust
against OC scenarios than are the existing charts. For example, the MW-based chart has the best overall performance when the
process mean incurs a step change. However, the same chart is very ineffective when there are outlying observations in the sample.
On the other hand, the proposed ELR chart is relatively effective in detecting either the presence of outlying observations or a
gradual mean shift.

As mentioned earlier, the empirical likelihood ratio test approach is not limited to testing the process mean. It would be
worthwhile to study how the same approach can be used to develop nonparametric Phase I control charts for monitoring the process
variability, a topic that has received very little attention in the literature. In a recent paper by Yeh and Zerehsaz50, the authors
developed a Phase I control chart for monitoring simple linear profiles with individual observations under the conventional
assumption that the error term follows a normal distribution. The empirical likelihood ratio test for linear models is well established
in the literature. It naturally leads to the question as to whether it is possible to develop ELR-based nonparametric Phase I control
charts for monitoring linear profiles with individual observations.

Several authors, for example, Qiu and Hawkins21, Zou and Tsung24, and Zou, Wang, and Tsung25, have developed
nonparametric multivariate control charts for Phase II monitoring. The flexibility of the ELR in dealing with multivariate
distributions has been pointed out in the seminal work by Owen31. Recently, Sun and Zi26 developed an ELR-based
nonparametric multivariate EWMA chart for Phase II monitoring of the process mean vector. Li, Dai, and Wang27 studied a
nonparametric multivariate Phase I control chart based on the multivariate data depth concept. It would be worth it to develop
ELR-based nonparametric multivariate Phase I control charts for monitoring the process mean vector or process variability and
compare them with the data-depth-based charts.
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Appendix

Calculating Z�
n;k

Using the Lagrange multiplier method, we define

G μ0; λ1; η1; λ2; η2; ui; vj
� � ¼ X

i

log kuið Þ � nλ1
�X

i

uixi � μ0

�
þ η1

�X
i

ui � 1
�

þ
X
j

log n� kð Þ:vj
� �� nλ2ð

X
j

vjxj � μ0Þ þ η2ð
X
j

vj � 1Þ;

where i= 1,⋯, k; j= k+ 1,⋯, n. By taking the first derivative of G with respect to ui, we obtain

∂G
∂ui

¼ 1

ui
� λ1 xi � μ0ð Þ þ η1 ¼ 0

⇒ui ¼ 1

nλ1 xi � μ0ð Þ � η1
:

From the previously mentioned equation, we have the following results immediately:

P
ui
∂G
∂ui

¼
X

ui
1

ui
� λ1 xi � μ0ð Þ þ η1

� 	
¼ 0

⇒η1 ¼ �k

⇒ui ¼ 1

k þ nλ1 xi � μ0ð Þ:

Similarly, one can also obtain

vj ¼ 1

n� kð Þ þ nλ2 xj � μ0

� � :

Finally, taking the first derivative of G with respect to μ0, it leads to
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 37–55



W. NING ET AL.

5
4

∂G
∂μ0

¼ λ1 þ λ2 ¼ 0⇒λ2 ¼ �λ1:

Therefore,

vj ¼ 1

n� kð Þ � nλ1 xj � μ0

� � :
For convenience, we denote θk ¼ k

n and λ1 = λ. It follows that

ui ¼ 1

nθk þ nλ xi � μ0ð Þ ¼
1

nθk
� 1

1þ θ�1
k λ xi � μ0ð Þ;

vj ¼ 1

n 1� θkð Þ � nλ xj � μ0

� � ¼ 1

n 1� θkð Þ �
1

1� 1� θkð Þ�1λ xi � μ0ð Þ:

Hence,

Zn;k ¼ Z θk ; λ;μ0ð Þ ¼ 2
X
i

log 1þ θ�1
k λ xi � μ0ð Þ� �þX

j

log 1� 1� θkð Þ�1λ xj � μ0

� �� �( )
:

Define the score functions

ϕ1 λ;μ0ð Þ ¼ ∂Z θk ; λ;μ0ð Þ
2∂λ

¼
X
i

θ�1
k xi � μ0ð Þ

1þ θ�1
k λ xi � μ0ð Þ �

X
j

1� θkð Þ�1 xj � μ0

� �
1� 1� θkð Þ�1λ xj � μ0

� �
and

ϕ2 λ;μ0ð Þ ¼ ∂Z θk ; λ;μ0ð Þ
�2λ∂μ0

¼
X
i

θ�1
k

1þ θ�1
k λ xi � μ0ð Þ �

X
j

1� θkð Þ�1

1� 1� θkð Þ�1λ xj � μ0

� �:
Then, λ̂ θkð Þ; μ̂0 θkð Þ

� �
are determined by

ϕ1 λ̂ θkð Þ; μ̂0 θkð Þ
� �

¼ 0;

ϕ2 λ̂ θkð Þ; μ̂0 θkð Þ
� �

¼ 0:

Note that the previously mentioned two equations ϕ1(λ,μ0) and ϕ2(λ,μ0) do not have closed form solutions. Here, we used a
Newton–Raphson algorithm to obtain numerical solutions to these equations. Therefore, we have

Z�
n;k ¼ Z θk ; λ̂ θkð Þ; μ̂0 θkð Þ

� �
:
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